Нагреватель из резисторов своими руками. Как сделать паяльник своими руками


Домашнему мастеру приходится выполнять разные работы, соединять детали всевозможными способами. Среди них метод пайки провода, металлов и пластмасс остается одним из наиболее доступных.

Несмотря на большое количество в продаже промышленных моделей вашему вниманию предлагается ознакомиться с технологией изготовления удобного электрического паяльника своими руками, уяснить принцип его конструкции.

По предлагаемой статье несложно изготовить такой паяльник.

Неоспоримым преимуществом этой модели является практически мгновенный вывод в рабочее положение пайки из холодного состояния и быстрое остывание нагревательного элемента при отключении.

Это значительно уменьшает дымы и запахи, сопровождающие длительный разогрев обычного наконечника, используемого в резистивных моделях.


Электрический паяльник, взятый за образец

Вот такой раритетный экспонат уже четвертое десятилетие продолжает успешно работать в домашней мастерской практически без всяких поломок. Диэлектрическая рукоятка удобна при пайке, кнопка включения очень легко управляет нагревом, а лампочка накаливания освещает любое затененное рабочее место.


Мощности в 65 ватт вполне достаточно для пайки транзисторов, микросхем, проводов и других радиотехнических изделий.

Единственное условие поддержания работоспособности - своевременно заменять рабочее жало - наконечник, которое под действием высокой температуры со временем перегорает.

Наконечник выгибается круглогубцами из медной одножильной монтажной проволоки с поперечным сечением 1,5 мм квадратных. На концах создаются кольца, затягиваемые по ходу вращения крепежных гаек. Для обеспечения хорошего электрического контакта места соприкосновения проволоки, шайб и силовой шины необходимо поддерживать в чистоте, отчищать от нагара ножом или отверткой при замене жала.

Принцип работы электрической схемы паяльника

Трансформатор

В основу конструкции положен обыкновенный трансформатор, состоящий из:

  • первичной обмотки на 220 вольт;
  • закороченной вторичной силовой обмотки из двух витков;
  • магнитопровода.

Для удобства пайки можно создать дополнительную вторичную обмотку на 4,5 вольта, питающую лампочку накаливания от карманного фонарика или мощный светодиод. Когда пространство магнитопровода ограничено, то допускается для цепи подсветки делать низковольтное ответвление от первичной обмотки по принципу автотрансформатора. Создастся экономия пространства и провода.

Силовая вторичная обмотка выполнена из толстой медной шины, постоянно работает в режиме короткого замыкания на более тонкий наконечник из меди. За счет большого теплового воздействия тока КЗ происходит быстрый разогрев жала паяльника до рабочей температуры.

Отвод тепла в окружающую среду и на расплавление припоя в кратковременном режиме пайки обеспечивают тепловой баланс, исключающий перегрев обмоток трансформатора и наконечника до критической температуры.

Схема питания трансформатора

220 вольт подается через обычную электрическую вилку со шнуром. Внутри рукоятки паяльника размещают микровыключатель, задействованный через нормально отключенный контакт с кнопкой управления.

При нажатии на кнопку питания напряжение подается на трансформатор, а при отпускании - снимается. В целях обеспечения электроинструментом рекомендуется устанавливать не одиночный, а сдвоенный микрик в разрыв каждого провода питания.

В такой конструкции опасный всегда будет отсутствовать на трансформаторе при разомкнутых контактах выключателя.

Материалы, необходимые для сборки паяльника

Чтобы собрать самодельный паяльник потребуется разобрать несколько однотипных трансформаторов, которые раньше широко использовались в старых ламповых телевизорах, магнитофонах, радиоприемниках и другой подобной аппаратуре.


Их пластины из трансформаторного железа будут использованы для создания магнитопровода, а лакированные провода обмотки пойдут на намотку катушки первичной обмотки и лампы подсветки.


Для изготовления вторичной силовой обмотки потребуется медная шинка прямоугольного сечения. У меня оно составляет 3х8 мм. Можно чуть меньше, но сильно занижать не желательно- увеличивается электрическое сопротивление цепи. Более толстые шинки займут все свободное место, не позволят намотать первичную обмотку.

Если прямоугольной медной шинки найти не удается, то можно попробовать использовать круглый проводник соответствующего сечения.

Также для сборки потребуются:

  • микровыключатель;
  • электрическая вилка;
  • шнур питания или провод;
  • лампочка;
  • рукоятка, которую можно использовать от пластмассовых игрушечных пистолетов;
  • бумага или лакоткань для изоляции;
  • кусок жести для корпуса.

Последовательность расчета деталей электрической схемы

Выбор мощности паяльника

Основным показателем эффективности конструкции является количество теплоты, выделяемой на жале в момент прохождения через него электрического тока. Его сила, специально увеличенная режимом короткого замыкания, как раз и разогревает медь наконечника.

Ток, проходящий через жало моего паяльника, немного превышает 200 ампер. Специально проверял токоизмерительными клещами. А вот напряжение, даже в режиме холостого хода, меньше десятых долей вольта. Поэтому оно не представляет особой опасности при пайке.

Произведение тока, проходящего по силовой обмотке на величину напряжения на ней, характеризуется вторичной или выходной мощностью трансформатора S2. Вот эта величина нас и интересует. Однако, для упрощения расчета будем начинать оперировать с первичной мощностью S1, определяющей потребление электроэнергии.

Она отличается на коэффициент полезного действия - кпд. Ее значение в 65 ватт взято за основу промышленного образца, показанного на первой фотографии. Для своих целей я выбрал 80 ватт.

Влияние КПД

Конструктивное соотношение между вторичной мощностью трансформаторов для радиоэлектронных устройств и кпд приведено в таблице.

КПД Мощность в ваттах
0,95÷0,98 ≥1000
0,93÷0,95 300÷1000
0,90÷0,93 150÷300
0,80÷0,90 50÷150
0,50÷0,80 15÷50

Набор магнитопровода пластинами из трансформаторного железа

Магнитные характеристики магнитопровода и трансформатора в целом определяются:

  1. объемом железа;
  2. и его свойствами.

На второй параметр мы особо повлиять не можем, ибо используем то железо от старого трансформатора, которое попало под руку. Поэтому применяем самую простую усредненную методику, не особо вдаваясь в сложные коэффициенты, поправки, графики.

Для паяльника мы можем выбрать магнитопровод одной из форм:

  • прямоугольника;
  • Ш-образный.

Площадь его сечения для каждого случая показана на картинке. Здесь же приведены формулы для расчета.


Выбрав первичную мощность паяльника в ваттах и зная форму магнитопровода вычисляем Qc - площадь сечения по эмпирической формуле.

Определив ее и измерив размер «А» на железе можно рассчитать глубину «В», которую потребуется набрать определенным количеством пластин.

Расчет провода для обмотки катушки

Определение диаметра

По первичной мощности, например, 80 ватт и напряжению 220 вольт не сложно рассчитать ток, который будет протекать по первичной катушке.

Где d - диаметр проволоки в мм, а I - ток в амперах.

Определение числа витков

Используем эмпирическую закономерность, называемую количеством витков на вольт - ω’. Ее вычисляют:

Первичная катушка

Qc уже вычислена раньше. Определив ω’ следует эту величину умножить на 220, ибо у нас в первичной обмотке действует такое напряжение, а не один вольт.

Вторичная катушка

Для цепи подсветки напряжение 4,5 вольта. На него и умножаем полученное значение ω’.

Обе вычисленные величины: диаметр и количество витков усреднены. Ими придется варьировать в небольших пределах с учетом того, что пространство в окне магнитопровода ограничено. Диаметр провода лучше сразу занизить - паяльник работает в кратковременном режиме.

А вот с числом витков поступать следует осторожнее. Они сильно влияют на вольтамперную характеристику паяльника и общую картину нагрева жала.

Силовая катушка делается двумя витками.

Сборка паяльника

Каркас обмотки

Обычную катушку для намотки провода можно сделать из трансформаторного картона или даже от обычных коробок. Только лучше выбирать плотный материал.


Внутри каркаса должны поместиться все пластины железа, а между их полостями снаружи следует уложить витки провода. Все обмотки между собой изолируют лакотканью или бумагой. Первичная и вторичные обмотки отделяются гальванической развязкой.

Силовая обмотка

Ее потребуется выгнуть из медной шинки. Такую работу поможет выполнить металлический шаблон из куска металла по габаритам полости каркаса для железа. Работу выполняют в слесарных тисках аккуратными ударами молотка по заготовке.

На картинке показана последовательность выгиба, начатая с одного конца шинки. Несколько проще выполнять ее одновременно с середины обмотки.


Когда шинка выгнута, то ее витки изолируют между собой полоской бумаги, а затем размещают внутри картонного каркаса. Останется намотать остальные обмотки, обеспечив их изоляцию, и надеть железные пластины, создав их плотное прилегание с минимально возможными зазорами.

Как сделать паяльник своими руками в домашних условиях? На сегодняшний день это довольно актуальный вопрос.

Паяльник – один из главных инструментов мужчины-мастера на все руки, наряду с молотком, пассатижами и, конечно, отверткой.

Конечно, паяльники бывают разные, и их модель и функциональность отличается в зависимости от назначения.

Один тип паяльника понадобится для радиатора вашего авто и совершенно другой легко справится с такими бытовыми задачами, как пайка проводов при их удлинении, восстановление отлетевших сетевых разъемов и прочее.

Для всего этого подойдет небольшой, маломощный паяльник, всего 25-40 ватт, который можно изготовить самостоятельно (при наличии времени и желания).

Его преимуществом станет, также и то, что качество такого паяльника будет на порядок выше, чем качество многих ширпотребовских инструментов, доступных в розничных сетях, а цена на порядок меньше.

Изготовить в домашних условиях небольшой электрический паяльник не представляет особой сложности.

Этот инструмент пригодится для работы с миниатюрными деталями – к примеру, во время пайки разного типа микросхем, электронных наручных часов, различного рода микроэлементов.

Использующихся в радиоэлектронике; помимо этого, с помощью самодельного паяльника можно запросто собрать зарядное устройство для мобильного телефона.

Способ №1. Как сделать маленький паяльник и как сделать паяльник на батарейках ?

Для изготовления электрического паяльника нам не потребуется огромное количество подручных средств и материалов.

Все, что необходимо – это отрезок медной проволоки, из которой мы сделаем жало нашего паяльника;

Кусок медной фольги, небольшой длины нихромовая проволока, а также трубка из жести (она послужит кожухом электронагревателя).

Кроме того, нужна термостойкая пластиковая рукоятка, надежно изолированный электрический шнур; обыкновенный силикатный клей и немного талька для создания электроизолирующей массы.

Пожалуй, ничто из перечисленного, кроме, пожалуй, медной фольги не способно вызвать затруднения в приобретении

Однако, если вам так и не удалось достать этот материал, отчаиваться не стоит. Вместо медной фольги вполне подойдет фольгированный стеклотекстолит – тот, из которого изготавливают печатные схемы и платы.

Стоимость этого материала в магазинах по продаже радиотоваров весьма низкая (около 200 рублей).

Для того, чтобы отделить фольгу от стеклотекстолита, необходимо нагреть его при помощи утюга: просто зацепить краешек фольги, и, по движению утюга наматывать фольгу на заранее приготовленный круглый стержень.

Самым важным является плавное, равномерное снятие фольги .
Далее нам понадобится электролита (подойдет, разумеется, и газовая), обыкновенный пинцет, пассатижи, слесарные щипцы, подставочки для покрытия деталей клейкой массой, тряпка-ветошь для протирания инструментов и рук.

Питанием для будущего электропаяльника послужит обыкновенная электросеть, пониженная через преобразователь 220/12 в.; вторичная обмотка этого прибора должна компенсировать электрический ток 1А в 12-омную нагрузку.

Для этого нас вполне может устроить трансформатор NDR-110K, который используется с целью кадровой развертки в устаревших телевизорах на ламповых транзисторах.

Как вы понимаете, современный жидкокристаллический телевизор нам не пригодится.

Итак, вооружившись отрезком медной проволоки, приступаем к изготовлению жала для будущего миниатюрного паяльника.

Следует заточить по форме двугранного угла с радиусом 40˚ один из концов отрезка. Грани полученного угла, которые представляют собой «щечки» будущего жала, следует залудить.

Полученное жало найдет свое применение в нагревательном элементе паяльника.

Полученную массу тонким слоем необходимо наносить на цилиндрическую поверхность. «Кистью» для этого нам послужит пинцет или пластинка.

Следует учесть, что полученная путем замеса масса весьма липкая, и, с целью предотвращения залипания инструмента, его нужно обильно посыпать сухим порошком талька .

Теперь «оденем» на наше жало трубочку (длина — 30мм) из медной фольги.

Это будет основой нашего нагревательного элемента паяльника (кончик жала, который будет выступать из этой трубочки, должен быть не более 10 мм длиной).

Трубочку необходимо намазать тоненьким слоем электроизолирующей массы. После этого нужно тщательно просушить её над конфоркой газовой плиты (при температуре не менее 100-150°С ) до тех пор, пока электроизолирующая масса целиком не «спечется».

Итак, у нас есть основание нагревательного элемента, которое мы обмотаем нагревательной спиралью из нихромовой проволоки (длина – 350 мм, диаметр – 0,2 мм).

Следует очень плотно обтягивать, виток за витком, данное основание.

Важно учесть, что выводные концы проволоки необходимо оставить прямыми, один – 30 мм длиной, другой («заворотный») – 60 мм длиной.

Обмотку нужно покрыть электроизолирующей массой, и снова, в том же объеме производить просушивание над огнем.

После того, как просохнет изоляционный слой, покрывающий обмотку, длинный конец проволоки необходимо завернуть назад и прижать его к трубке.

Итогом нашей деятельности стал нагревательный элемент электропаяльника.

Выходящие из нагревательного элемента концы проволоки следует тоже покрыть (на 50% длины) электроизоляционным раствором (свободная длина в последствие будет подведена к жилам электрошнура).

Данный процесс требует усиленного терпения и кропотливости.

Наконец, последним этапом на пути к созданию электропаяльника собственными руками – является его сборка.

Через термостойкую рукоятку необходимо продеть шнур в термостойкой изоляции, а к его оголенным жилам привинтить окончания нихромового электронагревателя.

Заключительной процедурой является очередное покрытие и просушивание.

Нужно заизолировать оголенные концы стыковки нагревательного элемента с электрическим шнуром. Будьте осторожны, чтобы не обжечься и не получить электрический удар.

И, наконец, встроим наш электронагреватель в соразмерный защитный жестяной чехол, который мы совместим с рукояткой. За этим следует контрольное включение прибора. Это один из вариантов изготовления миниатюрного паяльника. Для решения других задач потребуется иная конструкция устройства. Рассмотрим ряд интересных идей.

Способ №2. Использование резистора

Наиболее удачным и несложным решением задачи по самостоятельному изготовлению электропаяльника будет использование технологии применения резистора. В этом случае вам не понадобится сетевое напряжение. Устройство будет работать в диапазоне от 6 до 24 вольт, поэтому питание обеспечат как гальванические элементы, так и автомобильные аккумуляторы. Это делают конструкцию мобильной. Если использование паяльника стационарное, то подать питание можно от обычной сети через понижающий трансформатор 220/12В. Для изготовления устройства своими руками понадобится:

1.Резистор мощностью 7 Ватт и сопротивлением 20 Ом.

2. Листовой текстолит. Из него получится удобная ручка.

3. Круг из меди различного диаметра. Больший диаметр должен соответствовать внутреннему диаметру отверстия в резисторе. Меньший пруток будет служить жалом паяльника.

4. Пружина, соответствующая наружному диаметру большего прутка. Винт и шайба.

Самостоятельное изготовление паяльника у себя дома предполагает выполнение следующих операций:

  • Просверлить в торце прутка большего диаметра отверстия и нарезать резьбу по размеру выбранного винта. Проточить канавку по толщине проволоки пружины. От пружины отрубить одно кольцо, оно будет служить фиксатором.

  • С другой стороны в торце прутка большого диаметра просверлить отверстие равное наружному размеру меньшего прутка. Он будет выполнять функцию жала паяльника. Эти работы для обеспечения максимальной точности желательно выполнить на токарном станке. Если такового под рукой не имеется, нужно проявить все навыки и знания слесарного дела.
  • Далее собираем конструкцию, как показано на фото.

  • Стержень паяльника вставляем до фиксатора и с обратной стороны закрепляем винтом с шайбой.
  • Из листового текстолита изготовить удобный держатель из двух половинок. Для этого выпилить две одинаковые по форме детали. Просверлить в них сквозные отверстия под крепежные болты, после чего в одной из накладок рассверлить отверстия под гайки так, чтобы они были заподлицо с поверхностью держателя. Во внутренней стороне накладок необходимо сделать выборку под клеммы резистора и питающий провод.

  • Подключить провод питания к выводам нагревательного элемента.

  • Окончательно собрать паяльник и провести тестовое включение.

Еще одной довольно увлекательной идеей можно считать следующий вариант миниатюрного паяльника.

Способ №3. Шариковая ручка — второе рождение

Иногда в фильме видим как, очередной агент из подручных материалов создает уникальное спецсредство, способное вытащить его из казалось бы безвыходной ситуации. Оказывается не нужно быть супер героем, чтобы в повседневной жизни из подручных средств собрать уникальный, полезный прибор, паяльник, который впоследствии поможет в быту.

Используем все, что есть под рукой можно сконструировать электрический паяльник:

  1. Обычная авторучка.

2. Элемент с сопротивлением 10 Ом и мощностью 0,5 Вт.

3. Полоса конструкционного материалами с электроизоляционными свойствами.

4. Миллиметровая проволока из меди.

5. Пруток из стали диаметром 0,8 мм средней жесткости.

6. Питающий провод.

Все это нетрудно найти в любой домашней мастерской. Теперь немного усилия, чтобы выполнить простые операции самостоятельной сборки паяльника:

  • Удалите краску с элемента сопротивления, если не получается, целесообразно подключить его к диммируемому источнику питания и подвергнуть нагреву.
  • Возьмите резистор с одной стороны путем среза удалите проволоку и в торце сверлом сделайте отверстие по диаметру проволоки из меди. Важно! Проволока ни в коем случае не должна соприкасаться с чашечкой резистора. Далее необходимо зенковать отверстие более толстым сверлом, как показано на фото. Кроме этого сделайте пропил на чашке резистора для токовода


  • Теперь нужно собрать паяльник из ручки. Это определено элементарная операция.

  • Установите жало в подготовленное место. Во избежание прожига медной проволокой резистора, необходимо установить в качестве предохранительного элемента кусочек несгораемого материала между задней стенкой и жалом.

  • Завершающим шагом будет подключение суперприбора к блоку питания с напряжением 12 В.

Вы сумели собрать своими руками миниатюрное средство — электропаяльник. Интересны идеи следующих паяльников.

Способ №4. Импульсный вариант большой мощности

Это относительно несложный электропаяльник, но чтобы собрать такую модель необходимо иметь знания в области электротехники и навыки чтения электрических схем. Именно схема, размещенная ниже, послужила проектом создания мощной импульсной модели.

Эта модель имеет преимущество в том, что нагрев рабочего элемента паяльника происходит в течение незначительного времени. Всего через 5 секунд после включения питания можно расплавлять припой.

Как и в ранее предлагаемых вариантах, главным условием считается возможность изготовления в домашних условиях, своими руками и из подручных материалов. В нашем случае основой будущего паяльника будет модернизированный импульсный блок питания лампы дневного света. Кроме этого, рассмотрим и другие комплектующие для нашего устройства:

ферритовый фильтр, изготовленный в виде кольца из импульсного преобразователя. На первичной обмотке должно быть 100 — 120 витков медной проволоки, толщиной 0,5 мм, прежнюю вторичную обмотку удаляем и самостоятельно делаем один виток медной шины диаметр не более 3,5 мм.

провод диаметром 1,5 — 2 мм из меди для рабочего элемента (жала).

Изготовление паяльника заключается в подключении жала к вторичной обмотке и выводов балласта к сетевой обмотке трансформатора. Вот и все паяльник готов.

Нелишней будет информация, как сделать своими руками подставку для паяльника с регулятором температуры. Смотрите видеою

Если вам необходимо что нибудь быстро перепаять, кроме электрического можно использовать газовый паяльник, сделанный из обычной газовой зажигалки, куска медной проволоки и изоленты. Подробное описание процесса внизу на видео.

Резюмировать можно следующим образом: если вы не доверяете производителям электрооборудования, наводнившим рынок дешевым инструментом низкого качества, не хотите понапрасну тратить деньги на то.

Что можно сделать самому, или же вам просто интересно сделать что-то своими руками, а именно паяльник, потратив немного сил и времени, вы легко можете сделать вещь «под себя».

Для своих конкретных целей и нужд, простой в работе и использовании, который прослужит вам достаточно долго и сможет быть легко заменен новым самодельным качественным инструментом.

Самодельный паяльник, благодаря примененным здесь советам и рекомендациям, прослужит вам достаточно долго, и позволит гордиться собственными умениями и мастерством.

Теперь вопрос «как сделать паяльник в домашних условиях» больше не будет вас беспокоить!

А также вы можете посмотреть видео о супер паяльнике своими руками

Подобрано для вас:

Паяльник – незаменимый прибор для радиолюбителей и домашних умельцев. Часто возникает потребность паять в удалении от электророзетки 220 В и использовать для подключения, например, 12-вольтовый автомобильный аккумулятор. При пайке сверхминиатюрных устройств необходимы мини паяльники с особыми характеристиками. В связи с этим многие задаются вопросом, как сделать паяльник своими руками, получив удобный аппарат и сэкономив при этом средства.

Паяльник для SMD

Устройства SMD – это микросхемы в мобильных телефонах, ноутбуках или планшетах. Монтаж элементов схем ведется на площадке с контактами, где существует тепловой барьер для недопущения распространения тепла по дорожкам.

Требования к паяльнику для SMD:

  1. Мощность не должна быть больше 10 Вт;
  2. Температура паяльника не должна быть больше той, которую выдерживает элемент микросхемы;
  3. Если жало чересчур холодное, то долгая процедура пайки может еще хуже повлиять на деталь из-за длительного времени теплового воздействия;
  4. Надо добиться нагрева жала примерно на 40°C выше, чем температура, при которой плавится припой. Здесь главная помеха – инерция паяльника.

Материал для изготовления жала

Самое лучшее жало – медь никелированная, с присадками. Это самый дорогой материал и найти его для изготовления паяльника своими руками проблематично.

Жало из бронзы или латуни не подходит для пайки SMD плат, потому что оно обладает высокой тепловой инерцией.

У жала из меди тоже есть недостатки: небольшой срок службы из-за обгорания, но его элементарно можно менять. Зато медь обладает высокой теплопроводностью, и лучше материала для работ с миниатюрными платами нет.

Сделать мини паяльник своими руками можно из резистора МЛТ-0,5. Его трубка достаточно тонкая и не будет мешать нагревать жало.

Что необходимо подготовить:

  • корпус от простой шариковой ручки;
  • МЛТ-0,5 с сопротивлением от 5 до 10 Ом;
  • кусок текстолита 1-3 см;
  • проволока стальная 0,8 мм;
  • проволока медная 1 мм.

Этапы изготовления

  1. Зачистить резистор от краски острым предметом. Если счищается плохо, подключить к источнику тока для прогрева;

  1. С одного конца резистора срезать вывод и просверлить отверстие, в которое вставляется отрезок медной проволоки – будущего жала паяльника. Второй вывод выпрямить и оставить, он будет служить одним токопроводом;

Важно! Жало должно входить в отверстие в керамическом корпусе, но не касаться стенок боковой металлической чашки. Для этого отверстие в чашке должно быть немного шире, чем в корпусе. Кстати, корпус с отверстиями существует только у отечественных резисторов.

  1. По поверхности этой же металлической чашки делается пропил для укладки второго токопровода;
  2. Второй токопровод изготавливается из стальной проволоки, которая сгибается так, чтобы в середине образовалось незамкнутое кольцо, плотно укладываемое в сделанный пропил;

  1. В верхней части корпуса шариковой ручки либо какого-то другого подходящего полого пластмассового стержня должна быть установлена плата из двустороннего текстолита, которой придается необходимая форма;
  2. Кольцо из стальной проволоки надевается на чашечку и припаивается для обеспечения хорошего контакта. Этот минусовой токопровод еще служит в качестве скрепляющего элемента;
  3. К верхней части платы из текстолита припаиваются с двух сторон токопроводы, а к нижней части – проводники, которые продеваются в пластиковую трубку (корпус ручки);
  4. Перед тем, как поставить жало, внутрь надо поместить крохотный осколок слюды, чтобы медь не соприкасалась с находящейся на другом конце чашкой резистора. Жало можно периодически заменять.

Для подводящего провода хорошо взять МГТФ. Его изоляция выдерживает случайное соприкосновение с нагревательным элементом. Пайка таким инструментом, изготовленным в домашних условиях, выполняется с обыкновенным припоем и флюсом. Самодельный паяльник запитывается от БП. Надо получить на выходе 7-10 В, в зависимости от сопротивления резистора. Неплохо использовать БП, где можно регулировать напряжение.

Паяльник из резистора

Проволочный резистор – это уже имеющийся нагреватель из нихрома. Он способен разогреться до 250°C, когда мощность рассеивается в окружающее пространство. Если установить жало, которое будет отводить тепло, резистор длительно выдерживает двукратную перегрузку по мощности. Жало при этом нагреется до 300°C. Можно и увеличить нагрев, создав трехкратную перегрузку, но тогда самодельный паяльник необходимо периодически (через 1,5 ч.) отключать.

При расчете паяльника учитывается сопротивление и мощность резистора. Резистор надо взять типа ПЭВ, старый, но еще выпускающийся. Они покрыты стекловидной эмалью, выдерживают многоразовый перегрев, могут только потемнеть.

Важно! Резисторы типа С5-35В, которые нельзя использовать, окрашены со всех сторон. Краска полностью не удаляется. Когда греется изготовленный из них прибор, краска плавится, жало может прикипеть навечно, без возможности замены.

Из резистора ПЭВ-10 можно сконструировать паяльник мощностью 30-40 Вт. При этом, если запитывать его от 12-вольтового источника, сопротивление должно быть примерно 5 Ом. Если прибор будет работать от сети 220 В, надо использовать ПЭВ-20 со значительно большим сопротивлением. Конструкция такого паяльника похожа по принципу, но отличается по исполнению.

Как сделать мини паяльник из резистора, питающийся от 12-вольтового источника напряжения, можно рассмотреть на примере:

  1. Нужно подготовить конструкцию жала, чтобы оно вплотную вставлялось в керамический корпус. Берется медный стержень диаметром, примерно соответствующим размеру отверстия в корпусе, и высверливается с двух сторон: под жало, которым будет стержень несколько меньшего размера, и под болт для крепежа. В обоих отверстиях надо нарезать резьбу, как и на поверхности жала;

  1. На большем стержне делается пропил, куда надевается кольцо для фиксации всей конструкции;
  2. Теперь надо припаять электрический шнур к выводам резистора и сделать удобную ручку из изоляционного материала. Для защиты и укрепления медных выводов резистора сверху можно прикрепить на них металлические зажимные скобы.

Важно! Рабочий ток изготовленного мини паяльника не должен быть выше 1 А.

Это две самые простые конструкции электропаяльника. Опытные домашние мастера могут их усложнить, не используя резистор, а сделав нагревательный элемент самостоятельно.

Перед тем как сделать паяльник своими руками рекомендуется определиться с его моделью. Этот инструмент можно использовать для радиатора автомобиля, пайки проводов, восстановления сетевого разъема. Для выполнения вышеописанных работ изготавливают самодельный паяльник мощностью в 25-40 Вт.

Перед началом работы по изготовлению самодельного паяльника следует определиться с его последующим предназначением.

Конструктивные особенности

Чтобы сделать электрический инструмент, потребуется медная и нихромовая проволока, фольга, жестяная трубка, электрический шнур, пинцет, пассатижи, электролит. Для питания электропаяльника используют обыкновенную электросеть с преобразователем и трансформатором NDR-110K. Последний агрегат можно демонтировать из лампового телевизора.

Миниатюрный паяльник изготавливают из медной проволоки. Один конец отрезка затачивают по форме двугранного угла радиусом в 40 градусов. Грани угла понадобится залудить. Следующий этап заключается в приготовлении электроизолирующей массы.

Мучное тесто смешивается с жидким стеклом и тальком. Полученная смесь наносится на цилиндрическую поверхность. Для этого можно использовать пластинку либо пинцет.

Предварительно инструмент обрабатывается сухим составом талька. На жало надевается трубочка из медной фольги. Ее длина должна быть 30 мм. Полученная конструкция является основой для паяльника.

Вернуться к оглавлению

Дополнительные работы

На трубочку намазывают электроизолирующую массу. Затем ее просушивают при температуре 100-150 градусов. Основание обматывают нагревательным нихромовым элементом. Специалисты рекомендуют плотно обтягивать основание.

Выводные концы проволоки оставляют прямыми. Затем производится повторная обмотка основания. Масса просушивается над огнем. Длинный конец проволоки заворачивают назад, прижав его к трубке. Затем наносят третий слой изоляционного раствора, который требует повторного просушивания.

Если нагревательный элемент готов, то концы проволоки покрывают электроизоляционным раствором. Чтобы собрать мини паяльник своими руками, потребуется продеть шнур в термостойкой изоляции. Если окончания нихромового электронагревателя привинчены к оголенным жилам, тогда производится повторное покрытие и просушивание инструмента. Оголенные провода изолируют. Паяльник можно встроить в защитный чехол из жести.

Вернуться к оглавлению

Импульсное устройство

Чтобы выполнить электронные работы, потребуется сделать легкий и компактный паяльник. Такой инструмент отличается принципом работы обогревателя жала. В стандартных паяльниках применяется нихромовая спираль. Она является обогревательным элементом, который передает своре тепло жалу.

Специалисты рекомендуют самостоятельно изготавливать паяльник, который разогревается за 5 секунд. Это время ему необходимо для приобретения способности плавить олово. В качестве его основы используют импульсный аккумулятор.

Принцип работы импульсного самодельного инструмента заключается в коротком замыкании второй обмотки трансформатора.

Последнее устройство представлено в виде медной шины. Для его изготовления можно использовать две жилы (по 1,7 мм). Обмотка состоит из одного витка.

Жало изготавливается из никелевой либо медной проволоки, которую затем подключают ко второй обмотке трансформатора. Последнее устройство представлено в виде ферритового кольца. Его можно демонтировать из импульсного преобразователя. В противном случае применяют кольца от блоков электронных трансформаторов.

Кольца могут иметь различные параметры. В сетевой обмотке насчитывается 100-200 витков провода сечением в 0,5 мм. Обмотка должна быть равномерно растянутой по всему кольцу. Допускается отклонение балласта на 30%. Полученное устройство легкое и не занимает много места. Специалисты рекомендуют изготавливать импульсные паяльники из компактных балластов от ЛДС.

Собрать паяльник своими руками домашних (и не только) мастеров побуждают прежде всего экономические соображения. Простой паяльник на 220 В для обычных мелких спаечных работ лучше, конечно, купить. Однако и его возможно доработать, не разбирая, чтобы продлить жизнь жала. Но вот «топор» на 150-200 Вт, которым можно паять металлические водопроводные трубы, стоит уже не 4,25, а вдесятеро больше. И не советских рублей, а вечнозеленых условных единиц. Та же проблема возникает, если паять нужно вне доступности электросети от автомобильных 12 В или карманного литий-ионного аккумулятора. Как самостоятельно сделать паяльник на такие случаи, и не только на такие, рассматривается в сегодняшней публикации.

Что такое smd

Sub Micro Devises, сверхминиатюрные устройства. Наглядно можно увидеть smd, открыв мобильный телефон, смартфон, планшет или компьютер. По технологии smd малюсенькие (возможно, меньше среза спички) компоненты без проволочных выводов монтируются пайкой на контактные площадки, по терминологии smd называемые полигонами. Полигон может быть с тепловым барьером, предотвращающим растекание тепла по дорожкам печатной платы. Тут опасность не только и не столько в возможности отслоения дорожек – от нагрева может порваться пистон, соединяющий слои монтажа, что приведет устройство в полную негодность.

Паяльник для smd должен быть не только микромощным, до 10 Вт. Запас тепла в его жале не должен превышать того, который может выдержать паяемая деталь. Но долгая пайка слишком холодным паяльником еще более опасна: припой все не плавится, но деталюшка-то греется. А на режим пайки существенно влияет наружная температура, и тем больше, чем меньше мощность паяльника. Поэтому паяльники для smd выполняются либо с ограничением времени и/или величины теплоотдачи при пайке, либо в оперативной, на протяжении текущей технологической операции, регулировкой температуры жала. Причем держать ее нужно на 30-40 градусов выше температуры плавления припоя с точностью буквально до 5-10 градусов; это т. наз. допустимый температурный гистерезис жала. Этому очень мешает тепловая инерция самого паяльника, и основная задача при конструировании такового – добиться его возможно меньшей постоянной времени по теплу, см. далее.

Сделать паяльник в домашних условиях возможно для любой из указанных целей. В т.ч. и мощный для пайки стального либо медного водопровода, и достаточно точный мини для smd.

Примечание: вообще-то в паяльнике жало это рабочая (залуживаемая) часть его стержня. Но, поскольку стержни бывают и другие разные, будем для ясности считать весь стержень жалом. Если рабочая часть паяльника насаживается на стержень, она называется наконечником. Примем, что наконечник со стержнем это тоже жало.

Самый простой

Пока не будем вдаваться в сложности. Допустим, нам нужен обычный паяльник на 220В без затей. Идем выбирать и видим, разница в ценах достигает 10 и более раз. Разбираемся – почему. Первое: нагреватель, нихромовый или керамический. Последний (не «альтернативный»!) практически вечен, но, если паяльник уронить на твердый пол, может расколоться. Жало паяльников на керамике обязательно несменное – значит, надо покупать новый. А нихромовый нагреватель, если паяльник не забывать включенным на ночь, служит более 10 лет; при эпизодическом пользовании – свыше 20. И в крайнем случае его можно перемотать.

Разница в цене сократилась теперь до 3-4 раз, в чем еще дело? В жале. Никелированное из меди со специальными присадками мало растворяется припоем и очень медленно пригорает в обойме паяльника, но стоит дорого. Латунное или бронзовое хуже греется, и паять им smd нельзя – температурный гистерезис никак не удается вогнать в норму вследствие много худшей, чем у меди, теплопроводности материала. Красномедное жало и съедается припоем, и довольно быстро распухает от окиси меди, но зато дешевле.

Примечание: жало из электротехнической меди (отрезок обмоточного провода) для обычного паяльника непригодно – быстро растворяется и обгорает. Однако для smd такое жало самое то, его теплопроводность максимально возможная, а тепловая инерция и гистерезис минимальны. Правда, менять его придется часто, но жало-то со спичку или меньше.

С обгоранием и распуханием красномедного жала можно бороться просто аккуратностью: окончив работу и дав паяльнику остыть, жало вынимают, обколачивают от окисла, постукивая о край стола, а канал обоймы паяльника продувают. С растворением припоем хуже: часто подтачивать жало неудобно и оно быстро срабатывается.

Сделать жало для паяльника из обычной красной меди в разы более стойким к действию расплавленного припоя можно, не заточив его рабочий конец, а проковав до нужной формы. Холодная медь отлично куется обычным слесарным молотком на наковальне настольных тисков. У автора этой статьи в древнем советском ЭПЦН-25 кованое жало сидит уже более 20 лет, хотя в работе этот паяльник бывает если не каждый день, то уж точно каждую неделю.

Простой из резистора

Расчет

Самый простой паяльник можно сделать из проволочного резистора, это готовый нихромовый нагреватель. Рассчитать его также несложно: при рассеивании номинальной мощности в свободном пространстве проволочные резисторы греются до 210-250 градусов. С теплоотводом в виде жала «проволочник» держит долговременную перегрузку по мощности в 1,5-2 раза; температура жала при этом будет не ниже 300 градусов. Ее можно повысить до 400, дав перегрузку по мощности в 2,5-3 раза, но тогда после 1-1,5 час работы паяльнику нужно будет давать остыть.

Рассчитывают необходимое сопротивление резистора по формуле: R = (U^2)/(kP), где:

R – искомое сопротивление;

U – рабочее напряжение;

P – требуемая мощность;

k – указанный выше коэффициент перегрузки по мощности.

Напр., нужен паяльник на 220 В 100 Вт для пайки медных труб. Теплоотдача большая, поэтому берем k = 3. 220^2 = 48400. kP = 3*100 = 300. R = 48400/300 = 161,3… Ом. Берем резистор на 100 Вт 150 или 180 Ом, т.к. «проволочников» на 160 Ом не бывает, этот номинал из ряда на 5% допуск, а «проволочники» не точнее 10%.

Обратный случай: есть резистор на мощность p, какой мощности из него можно сделать паяльник? От какого напряжения его запитывать? Вспоминаем: P = U^2/R. Берем P = 2 p. U^2 = PR. Берем из этой величины квадратный корень, получаем рабочее напряжение. Напр., есть резистор 15 Вт 10 Ом. Мощность паяльника выходит до 30 Вт. Берем квадратный корень из 300 (30 Вт*10 Ом), получаем 17 В. От 12 В такой паяльник разовьет 14,4 Вт, можно паять мелочь легкоплавким припоем. От 24 В. От 24 В – 57,6 Вт. Перегрузка по мощности почти в 6 раз, но изредка и недолго спаять этим паяльником что-то большое возможно.

Изготовление

Как сделать паяльник из резистора, показано на рис. выше:

  • Подбираем подходящий резистор (поз. 1, см. также далее).
  • Готовим детали жала и крепеж к нему. Под кольцевую пружину надфилем выбирается канавка на стержне. Под болт (винт) и наконечник делаются резьбовые глухие отверстия, поз. 2.
  • Собираем стержень с наконечником в жало, поз.3.
  • Закрепляем жало в резисторе-нагревателе болтом (винтом) с широкой шайбой, поз. 4.
  • Крепим нагреватель с жалом к подходящей рукоятке любым удобным способом, поз. 5-7. Одно условие: термостойкость рукоятки не ниже 140 градусов, до такой температуры могут нагреваться выводы резистора.

Тонкости и нюансы

Описанный выше паяльник из резисторов на 5-20 Вт делали многие (в т.ч. и автор во дни пионерской молодости) и, попробовав, убеждались – работать им всерьез нельзя. Греется невыносимо долго, и паяет только мелочь тычком – слой керамики мешает теплопередаче от нихромовой спирали в жало. Именно поэтому нагреватели фабричных паяльников мотаются на слюдяные оправки – теплопроводность слюды на порядки выше. К сожалению, свернуть слюду в трубочку дома невозможно, да и мотать нихром 0,02-0,2 мм дело тоже не для каждого.

Но вот с паяльниками от 100 Вт (резисторы от 35-50 Вт) дело другое. Тепловой барьер из керамики в них относительно тоньше, слева на рис., а запас тепла в массивном жале на порядок больше, т.к. его объем растет по кубу размеров. Качественно пропаять стык медных труб 1/2″ 200 Вт паяльником из резистора вполне возможно. Особенно, если жало не сборное, а цельное кованое.

Примечание: проволочные резисторы выпускаются на мощность рассеяния до 160 Вт.

Только для паяльника надо искать резисторы старых типов ПЭ или ПЭВ (в центре на рис., в производстве до сих пор). Их изоляция остеклованная, выдерживает многократный нагрев до светло-красного без потери свойств, только темнеет, остывая. Керамика внутри чистая. А вот резисторы С5-35В (справа на рис.) крашеные, внутри тоже. Снять краску в канале полностью невозможно – керамика пористая. При нагреве краска обугливается и жало прикипает намертво.

Регулятор для паяльника

Пример с низковольтным паяльником из резистора приведен выше не зря. Резистор ПЭ (ПЭВ) из хлама или с железного базара чаще всего оказывается неподходящего номинала под наличное напряжение. В таком случае нужно делать регулятор мощности для паяльника. В наши дни это гораздо проще даже людям, имеющим об электронике самое смутное представление. Идеальный вариант – купить у китайцев (ну, Али Экспресс, а то как же) готовый универсальный регулятор напряжения и тока TC43200, см. рис. справа; стоит он недорого. Допустимое входное напряжение 5-36 В; выходное – 3-27 В при токе до 5 А. Напряжение и ток выставляются отдельно. Поэтому можно не только выставить нужное напряжение, но и регулировать мощность паяльника. Есть, напр., инструмент на 12 В 60 Вт, а сейчас нужно 25 Вт. Выставляем ток в 2,1 А, на паяльник пойдет 25,2 Вт и ни милливаттом больше.

Примечание: для использования с паяльником штатные многооборотные регуляторы TC43200 лучше заменить обычными потенциометрами с градуированными шкалами.

Импульсные

Многие предпочитают импульсные паяльники: они лучше подходят для микросхем и др. мелкой электроники (кроме smd, но см. и далее). В ждущем режиме жало импульсного паяльника или холодное, или немного подогревается. Паяют, нажав на кнопку пуска. Жало при этом быстро, за доли-единицы с, греется до рабочей температуры. Контролировать пайку очень удобно: растекся припой, выдавил из капли флюс – отпустил кнопку, жало так же быстро остыло. Нужно только успеть его убрать, чтобы не припаялось туда же. Опасность сжечь компонент, имея некоторый опыт, минимальна.

Типы и схемы

Импульсный разогрев жала паяльника возможен несколькими способами в зависимости от рода работы и требований к эргономике рабочего места. В любительских условиях, или мелкому ИП-одиночке импульсный паяльник удобнее и доступнее будет сделать по одной из след. схем:

  1. С токоведущим жалом под током промышленной частоты;
  2. С изолированным жалом и форсированным его разогревом;
  3. С токоведущим жалом под током высокой частоты.

Электрические принципиальные схемы импульсных паяльников указанных типов приведены на рис: поз. 1 – с токоведущим жалом промышленной частоты; поз. 2 – с форсированным подогревом изолированного жала; поз. 3 и 4 – с токоведущим жалом высокой частоты. Далее мы разберем их особенности, достоинства, недостатки и способы реализации в домашних условиях.

50/60 Гц

Схема импульсного паяльника с жалом под током промышленной частоты наиболее проста, но это не единственное ее достоинство, и не главное. Потенциал на жале такого паяльника не превышает долей вольта, поэтому он безопасен для самых нежных микросхем. Пока не появились индукционные паяльники системы METCAL (см. далее), именно импульсниками промышленной частоты работала значительная часть монтажников на производстве электроники. Недостатки – громозкость, значительный вес и, как следствие, плохая эргономика: на смене длинее 4 час. работники уставали и начинали ошибаться. Но в любительском обиходе импульсных паяльников промышленной частоты до сих пор много: Зубр, Сигма (Sigma), Светозар и др.

Устройство импульсного паяльника на 50/60 Гц показано на поз. 1 и 2 рис. Видимо, ради экономии на издержках производства изготовители чаще всего применяют в них трансформаторы на сердечниках (магнитопроводах) типа П (поз 2), но это далеко не оптимальный вариант: чтобы паяльник паял как ЭПЦН-25, мощность трансформатора нужна 60-65 Вт. Вследствие большого поля рассеяния трансформатор на П-сердечнике в режиме КЗ сильно греется, а время разогрева жала доходит до 2-4 с.

Если П-сердечник заменить на ШЛ от 40 Вт с вторичной обмоткой из медной шины (поз. 3 и 4), то паяльник выдерживает часовую работу с интенсивностью 7-8 паек в минуту без недопустимого перегрева. Для работы в режиме периодических кратковременных КЗ число витков первичной обмотки увеличивают на 10-15% против расчетного. Данное исполнение выгодно и тем, что жало (медная проволока диаметром 1,2-2 мм) можно крепить непосредственно к выводам вторичной обмотки (поз. 5). Поскольку ее напряжение доли вольта, это еще увеличивает экономичность паяльника и удлиняет время его работы до перегрева.

С форсированным подогревом

Схема паяльника с форсированным подогревом особых пояснений не требует. В дежурном режиме нагреватель работает на четверти номинальной мощности, а при нажатии на пуск в него выбрасывается накопленная в батарее конденсаторов энергия. Отключая/подключая к батарее емкости, можно довольно грубо, но в допустимых пределах дозировать количество выделяемого жалом тепла. Достоинство – полное отсутствие наведенного потенциала на жале, если оно заземлено. Недостаток – на имеющихся в широкой продаже конденсаторах схема реализуема лишь для резисторных мини-паяльников, см. далее. Применяется в основном для эпизодических работ на не насыщенных компонентами платах гибридной сборки, smd + обычный печатный монтаж в сквозные пистоны.

На высокой частоте

Импульсные паяльники на повышенной или высокой частоте (десятки или сотни кГц) весьма экономичны: тепловая мощность на жале почти равна паспортной электрической инвертора (см. ниже). Также они компактны и легки, а их инверторы пригодны для питания резисторных мини-паяльников постоянного нагрева с изолированным жалом, см. далее. Нагрев жала до рабочей температуры – за доли с. В качестве регулятора мощности без доработок применим любой тиристорный регулятор напряжения 220 В. Могут быть запитаны постоянным напряжением 220 В.

Примечание: на мощность свыше ок. 50 Вт ВЧ импульсный паяльник делать не стоит. Хотя, напр. компьютерные ИПБ бывают мощностью до 350 Вт и более, но жало на такую мощность сделать практически невозможно – или не прогреется до рабочей температуры, или само расплавится.

Серьезный недостаток – на рабочих частотах сказывается влияние собственной индуктивности жала и вторичной обмотки. Из-за этого на жале на время более 1 мс может возникать наведенный потенциал свыше 50 В, что опасно для компонент КМОП (КМДП, CMOS). Также существенный недостаток – оператор облучается потоком мощности электромагнитного поля (ЭМП). Работать импульсным ВЧ паяльником мощностью 25-50 Вт можно не более часа в день, а до 25 Вт – не более 4-х час, но не более 1,5 час кряду.

Самый простой способ схемной реализации инвертора импульсного ВЧ паяльника на 25-30 Вт для обычных спаечных работ – на основе сетевого адаптера галогеновой лампы на 12 вольт, см. поз. 3 рис. со схемами. Трансформатор можно намотать на сердечнике из 2-х сложенных вместе колец К24х12х6 из феррита с магнитной проницаемостью μ не ниже 2000, или на Ш-образном магнитопроводе из такого же феррита сечением не менее 0,7 кв. см. Обмотка 1 – 250-260 витков эмалированного провода диаметром 0,35-0,5 мм, обмотки 2 и 3 – по 5-6 витков такого же провода. Обмотка 4 – 2 витка в параллель провода диаметром от 2 мм (на кольце) или оплетки от телевизионного коаксиального кабеля (поз. 3а), также запараллеленных.

Примечание: если паяльник более чем на 15 Вт, то транзисторы MJE13003 лучше заменить на MJE130nn, где nn>03, и поставить из на радиаторы площадью от 20 кв. см.

Вариант инвертора для паяльника до 16 Вт может быть выполнен на базе импульсного пускового устройства (ИПУ) для ЛДС или начинки перегоревшей лампочки-экономки соотв. мощности (не бейте колбу, там пары ртути!) Доработку иллюстрирует поз. 4 на рис. со схемами. То, что выделено зеленым, может быть различно в ИПУ разных моделей, но нам оно все равно. Нам нужно удалить пусковые элементы лампы (выделено красным на поз. 4а) и замкнуть накоротко точки А-А. Получим схему поз. 4б. В ней параллельно фазосдвигающему дросселю L5 подключается трансформатор на одном таком же кольце, как в пред. случае или на Ш-образном феррите от 0,5 кв. см (поз. 4в). Первичная обмотка – 120 витков провода диаметром 0,4-0,7; вторичная – 2 витка провода D>2 мм. Жало (поз. 4г) из такого же провода. Готовое устройство компактно (поз. 4д) и может быть помещено в удобный корпус.

Мини и микро на резисторах

Паяльник с нагревательным элементом на основе металлопленочного резистора МЛТ конструктивно аналогичен паяльнику из проволочного резистора, но выполняется на мощность до 10-12 Вт. Резистор работает с перегрузкой по мощности в 6-12 раз, т.к., во-первых, теплоотвод через относительно толстое (но абсолютно более тонкое) жало больше. Во-вторых, резисторы МЛТ физически в разы меньше ПЭ и ПЭВ. Отношение их поверхности к объему соотв. увеличивается и теплоотдача в окружающую среду относительно растет. Поэтому паяльники на резисторах МЛТ делаются только в вариантах мини и микро: при попытке увеличить мощность маленький резистор сгорает. Хотя МЛТ для спецприменения выпускаются на мощность до 10 Вт, своими силами реально сделать только паяльник на МЛТ-2 для мелких дискретных компонент (россыпи) и небольших микросхем, см. напр. видео ниже:

Видео: микро-паяльник на резисторах

Примечание: цепочка резисторов МЛТ может быть также использована в качестве нагревателя автономного аккумуляторного паяльника для обычных спаечных работ, см. след. ролик:

Видео: аккумуляторный мини-паяльник

Гораздо интереснее сделать мини паяльник из резистора МЛТ-0,5 для smd. Керамическая трубочка – корпус МЛТ-0,5 – очень тонкая и почти не препятствует теплопередаче на жало, но не пропустит тепловой импульс в момент касания полигона, отчего частенько сгорают компоненты smd. Подобрав жало (что требует довольно значительного опыта), smd таким паяльником можно не спеша паять, непрерывно контролируя в микроскоп процесс.

Процесс изготовления такого паяльника показан на рис. Мощность – 6 Вт. Нагрев либо непрерывный от инвертора из описанных выше, либо (лучше) с форсироваанным подогревом постоянным током от ИП на 12 В.

Примечание: как сделать усовершенствованный вариант такого паяльника с более широким диапазоном применения, подробно описано здесь – oldoctober.com/ru/soldering_iron/

Индукционные

Индукционный паяльник на сегодняшний день вершина технических достижений в области пайки металлов эвтектическими припоями. В сущности, паяльник с индукционным нагревом это миниатюрная индукционная печь: ВЧ ЭМП катушки-индуктора поглощается металлом жала, которое при этом греется вихревыми токами Фуко. Изготовить своими руками индукционный паяльник не так уж сложно, если есть в распоряжении источник токов ВЧ, напр. компьютерный импульсный блок питания, см. напр. сюжет

Видео: индукционный паяльник


Однако качественно-экономические показатели индукционных паяльников для обычных спаечных работ невысоки, чего не скажешь об их вредном влиянии на здоровье. Фактически единственное их преимущество – прикипевшее к обойме в корпусе жало можно выдирать, на опасаясь порвать нагреватель.

Гораздо больший интерес представляют индукционные мини-паяльники системы METCAL. Их внедрение на производстве электроники позволило уменьшить процент брака из-за ошибок монтажников в 10000 раз (!) и удлинить рабочую смену до нормальной, причем работники расходились после нее бодрыми и дееспособными во всех прочих отношениях.

Устройство паяльника типа METCAL показано слева вверху на рис. Изюминка – в ферроникелевом покрытии жала. Паяльник питается ВЧ точно выдержанной частоты 470 кГц. Толщина покрытия выбрана такой, что на данной частоте вследствие поверхностного эффекта (скин-эффекта) токи Фуко сосредотачивались только в покрытии, которое сильно греется и передает тепло в жало. Самое жало оказывается заэкранированным от ЭМП и наведенные потенциалы на нем не возникают.

Когда покрытие прогреется до точки Кюри, выше которой по температуре ферромагнитные свойства покрытия исчезают, оно поглощает энергию ЭМП гораздо слабее, но ВЧ в медь все равно не пускает, т.к. электрическую проводимость сохраняет. Остыв ниже точки Кюри само по себе или вследствие оттока тепла на пайку, покрытие вновь начинает интенсивно поглощать ЭМП и подогревает жало. Таким образом, жало держит температуру, равную точке Кюри покрытия с точностью буквально до градуса. Тепловой гистерезис жала при этом ничтожен, т.к. определяется тепловой инерцией тонкого покрытия.

Во избежание вредного влияния на людей паяльники выпускаются с несменными жалами, наглухо закрепленными в картридже коаксиальной конструкции, по которому и подводится к катушке ВЧ. Картридж вставляется в ручку паяльника – держатель с коаксиальным разъемом. Картриджи выпускаются типов 500, 600 и 700, что соответствует точке Кюри покрытия в градусах Фаренгейта (260, 315 и 370 градусов Цельсия). Основной рабочий картридж – 600; 500-м паяют особо мелкие smd, а 700-м крупные smd и россыпь.

Примечание: чтобы перевести градусы Фаренгейта в Цельсия, нужно от фаренгейтов отнять 32, умножить остаток на 5 и поделить на 9. Если надо наоборот, к цельсиям добавляем 32, результат множим на 9 и делим на 5.

Все замечательно в паяльниках METCAL, кроме цены картриджа: за «(название фирмы) новый, хороший» – от $40. «Альтернативные» в полтора раза дешевле, но вырабатываются вдвое быстрее. Сделать самому жало METCAL нереально: покрытие наносится напылением в вакууме; гальваническое при температуре Кюри мгновенно отслаивается. Посаженная на медь тонкостенная трубка не обеспечит абсолютного теплового контакта, без чего METCAL превращается просто в плохой паяльник. Тем не менее, сделать самому почти полный аналог паяльника METCAL, причем со сменным жалом, хоть и трудно, но возможно.

Индукционный для smd

Устройство самодельного индукционного паяльника для микросхем и smd, по рабочим качествам аналогичного METCAL, показано справа на рис. Когда-то похожие паяльники применялись на спецпроизводстве, но METCAL их полностью вытеснили благодаря лучшей технологичности и большей рентабельности. Однако для себя такой паяльник сделать можно.

Его секрет – в соотношении плеч наружной части жала и выступающего из катушки внутрь хвостовика. Если оно такое, как показано на рис. (приблизительно), а хвостовик покрыт теплоизоляцией, то тепловой фокус жала не выйдет за пределы обмотки. Хвостовик будет, конечно, горячее кончика жала, но их температуры будут меняться синхронно (теоретически термогистерезис нулевой). Раз настроив автоматику с помощью дополнительной термопары, измеряющей температуру кончика жала, дальше можно паять спокойно.

Роль точки Кюри играет таймер. Сигналом от терморегулятора на подогрев он обнуляется, напр., открыванием ключа, шунтирующего накопительную емкость. Запускается таймер сигналом, свидетельствующим о фактическом начале работы инвертора: напряжение с дополнительной обмотки трансформатора из 1-2 витков выпрямляется и разблокирует таймер. Если паяльником долго не паяют, таймер спустя 7 с выключит инвертор, пока жало не остынет и терморегулятор не выдаст новый сигнал на подогрев. Суть здесь в том, что термогистерезис жала пропорционален отношению времен выключенного и включенного нагрева жала O/I, а средняя мощность на жале обратному I/O. До градуса такая система температуру жала не держит, но +/–25 Цельсия при рабочей жала 330 обеспечивает.

В заключение

Так какой же паяльник делать? Мощный из проволочного резистора однозначно стоит: расходов на него всего ничего, есть не просит, а выручить может основательно.

Стоит также сделать, чтобы был на хозяйстве, простой паяльник для smd из резистора МЛТ. Кремниевая электроника выдохлась, она в тупике. Квантовая уже на подходе, и вдали явственно замаячила графеновая. Напрямую с нами та и другая не сопрягаются, как компьютер через экран, мышку и клавиатуру или смартик/планшетка через экран и сенсоры. Поэтому кремниевое обрамление в устройствах будущего останется, но исключительно smd, а теперешняя россыпь покажется чем-то вроде радиоламп. И не думайте, что это фантастика: всего 30-40 лет тому назад ни один фантаст до смартфона не додумался. Хотя первые образцы мобильников тогда уже были. А утюг или пылесос «с мозгами» тогдашним мечтателям и в дурном сне в голову не пришли бы.

(1 оценок, среднее: 5,00 из 5)

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...