Что такое прилив в море. Морские приливы и отливы


Содержание статьи

ПРИЛИВЫ И ОТЛИВЫ, периодические колебания уровня воды (подъемы и спады) в акваториях на Земле, которые обусловлены гравитационным притяжением Луны и Солнца, действующим на вращающуюся Землю. Все крупные акватории, включая океаны , моря и озера , в той или иной степени подвержены приливам и отливам, хотя на озерах они невелики.

Реверсивный водопад

(меняющий направление на противоположное) – это еще одно явление, связанное с приливами на реках. Типичный пример – водопад на р.Сент-Джон (пров. Нью-Брансуик, Канада). Здесь по узкому ущелью вода во время прилива проникает в котловину, расположенную выше уровня малой воды, однако несколько ниже уровня полной воды в этой же теснине. Таким образом, возникает преграда, перетекая через которую вода образует водопад. Во время отлива сток воды устремляется вниз по течению через суженный проход и, преодолевая подводный уступ, образует обычный водопад. Во время прилива проникшая в ущелье крутая волна обрушивается водопадом в вышележащую котловину. Попятное течение продолжается до тех пор, пока уровни воды по обе стороны порога не сравняются и не начнется отлив. Затем опять восстанавливается водопад, обращенный вниз по течению. Средний перепад уровня воды в ущелье составляет ок. 2,7 м, однако при самых высоких приливах высота прямого водопада может превысить 4,8 м, а реверсивного – 3,7 м.

Наибольшие амплитуды приливов.

Самый высокий в мире прилив формируется в условиях сильного течения в бухте Минас в заливе Фанди. Приливные колебания здесь характеризуются нормальным ходом с полусуточным периодом. Уровень воды во время прилива часто поднимается за шесть часов более чем на 12 м, а затем в течение последующих шести часов понижается на ту же величину. Когда воздействие сизигийного прилива, положение Луны в перигее и максимальное склонение Луны приходятся на одни сутки, уровень прилива может достигать 15 м. Такая исключительно большая амплитуда приливо-отливных колебаний отчасти обусловлена воронкообразной формой залива Фанди, где глубины уменьшаются, а берега сближаются по направлению к вершине залива.

Ветер и погода.

Ветер оказывает существенное влияние на приливо-отливные явления. Ветер с моря нагоняет воду в сторону берега, высота прилива увеличивается сверх обычной, и при отливе уровень воды тоже превосходит средний. Напротив, при ветре, дующем с суши, вода сгоняется от берега, и уровень моря понижается.

За счет повышения атмосферного давления над обширной акваторией происходит понижение уровня воды, так как добавляется наложенный вес атмосферы. Когда атмосферное давление возрастает на 25 мм рт. ст., уровень воды понижается приблизительно на 33 см. Понижение атмосферного давления вызывает соответствующее повышение уровня воды. Следовательно, резкое падение атмосферного давления в сочетании с ветром ураганной силы способно вызвать заметный подъем уровня воды. Подобные волны, хотя и называются приливными, на самом деле не связаны с воздействием приливообразующих сил и не обладают периодичностью, характерной для приливо-отливных явлений. Формирование упомянутых волн может быть сопряжено либо с ветрами ураганной силы, либо с подводными землетрясениями (в последнем случае они называются сейсмическими морскими волнами, или цунами).

Использование энергии приливов.

Разработаны четыре метода использования энергии приливов, но наиболее практичным из них является создание системы приливных бассейнов. При этом колебания уровня воды, связанные с приливо-отливными явлениями, используются в системе шлюзов так, что постоянно поддерживается перепад уровней, позволяющий получать энергию. Мощность приливных электростанций непосредственно зависит от площади бассейнов-ловушек и потенциального перепада уровней. Последний фактор, в свою очередь, является функцией амплитуды приливо-отливных колебаний. Достижимый перепад уровней, безусловно, наиболее важен для производства электроэнергии, хотя стоимость сооружений зависит от площади бассейнов. В настоящее время крупные приливные электростанции действуют в России на Кольском п-ове и в Приморье, во Франции в эстуарии р.Ранс, в Китае близ Шанхая, а также в других районах земного шара.

Таблица: Сведения о приливах в некоторых портах мира
СВЕДЕНИЯ О ПРИЛИВАХ В НЕКОТОРЫХ ПОРТАХ МИРА
Порт Интервал между приливами Средняя высота прилива, м Высота сизигийного прилива, м
ч мин
м. Моррис-Джесеп, Гренландия, Дания 10 49 0,12 0,18
Рейкьявик, Исландия 4 50 2,77 3,66
р. Коксоак, Гудзонов пролив, Канада 8 56 7,65 10,19
Сент-Джонс, Ньюфаундленд, Канада 7 12 0,76 1,04
Барнтко, залив Фанди, Канада 0 09 12,02 13,51
Портленд, шт. Мэн, США 11 10 2,71 3,11
Бостон, шт. Массачусетс, США 11 16 2,90 3,35
Нью-Йорк, шт. Нью-Йорк, США 8 15 1,34 1,62
Балтимор, шт. Мэриленд, США 6 29 0,33 0,40
Майами-Бич, шт. Флорида, США 7 37 0,76 0,91
Галвестон, шт. Техас, США 5 07 0,30 0,43*
о. Марака, Бразилия 6 00 6,98 9,15
Рио-де-Жанейро, Бразилия 2 23 0,76 1,07
Каллао, Перу 5 36 0,55 0,73
Бальбоа, Панама 3 05 3,84 5,00
Сан-Франциско, шт. Калифорния, США 11 40 1,19 1,74*
Сиэтл, шт.Вашингтон, США 4 29 2,32 3,45*
Нанаймо, пров.Британская Колумбия, Канада 5 00 ... 3,42*
Ситка, шт.Аляска, США 0 07 2,35 3,02*
Санрайз, залив Кука, шт. Аляска, США 6 15 9,24 10,16
Гонолулу, шт. Гавайи, США 3 41 0,37 0,58*
Папеэте, о. Таити, Французская Полинезия ... ... 0,24 0,33
Дарвин, Австралия 5 00 4,39 6,19
Мельбурн, Австралия 2 10 0,52 0,58
Рангун, Мьянма 4 26 3,90 4,97
Занзибар, Танзания 3 28 2,47 3,63
Кейптаун, ЮАР 2 55 0,98 1,31
Гибралтар, влад. Великобритании 1 27 0,70 0,94
Гранвиль,Франция 5 45 8,69 12,26
Лит, Великобритания 2 08 3,72 4,91
Лондон, Великобритания 1 18 5,67 6,56
Дувр, Великобритания 11 06 4,42 5,67
Эйвонмут, Великобритания 6 39 9,48 12,32
Рамси, о. Мэн, Великобритания 10 55 5,25 7,17
Осло, Норвегия 5 26 0,30 0,33
Гамбург, Германия 4 40 2,23 2,38
* Суточная амплитуда прилива.

Уровень поверхности воды в морях и океанах нашей планеты периодически меняется, колеблется в некоторых интервалах. Эти периодические колебания и есть морские приливы и отливы .

Картина морских приливов и отливов

Чтобы наглядно представить себе картину морских приливов и отливов , вообразите, что вы стоите на отлогом берегу океана, в какой-нибудь бухте, в 200–300 метрах от воды. На песке много разных предметов – старый якорь, немного ближе большая куча белого камня.

Вот совсем уже недалеко лежит повалившийся на бок железный корпус небольшого судёнышка. Низ его корпуса в носовой части сильно пропорот. Очевидно, когда-то это судно, находясь недалеко от берега, налетело на якорь. Эта авария произошла, по всей вероятности, во время отлива, и, по-видимому, судно лежит на этом месте уже не один год, так как почти весь его корпус успел покрыться коричневой ржавчиной. Виновником аварии судна вы склонны считать неосторожного капитана.

Видимо, якорь и был тем острым орудием, на которое налетело повалившееся на бок судно. Вы ищете этот якорь и не можете найти. Куда он мог деться? Тут вы замечаете, что вода уже подбирается к куче белых камней, и тогда догадываетесь, что виденный вами якорь давно уже затоплен приливной волной. Вода «наступает» на берег, она продолжает подниматься всё дальше и дальше вверх. Вот уже и куча белых камней оказалась почти вся скрытой под водой.

Явления морских приливов и отливов

Явления морских приливов и отливов люди давно связывали с движением Луны, но эта связь оставалась загадкой до тех пор, пока гениальный математик Исаак Ньютон не объяснил на основании открытого им закона тяготения. Причиной этих явлений служит действие притяжения Луны, оказываемое на водную оболочку Земли.

Ещё знаменитый Галилео Галилей связывал приливы и отливы с вращением Земли и видел в этом одно из наиболее обоснованных и верных доказательств справедливости учения Николая Коперника, (подробнее: ). Парижская академия наук в 1738 году объявила премию тому, кто даст наиболее обоснованное изложение теории приливов.

Премию тогда получили Эйлер, Маклорен, Д. Бернулли и Кавальери . Первые трое брали в основу своих работ закон тяготения Ньютона, а иезуит Кавальери объяснял приливы на основании гипотезы вихрей Декарта. Однако наиболее выдающиеся работы в этой области принадлежат Ньютону и Лапласу , и все последующие исследования основываются на выводах этих великих ученых.

Как объяснить явление приливов и отливов

Как наиболее наглядно объяснить явление приливов и отливов . Если для простоты будем считать, что земная поверхность вся сплошь покрыта водной оболочкой, и посмотрим на земной шар с одного из его полюсов, то картину морских приливов и отливов можно будет представить следующим образом.

Лунное притяжение

Та часть поверхности нашей планеты, которая обращена к Луне, находится к ней всего ближе; вследствие этого она подвергается большему воздействию силы лунного притяжения , чем, например, центральная часть нашей планеты и, следовательно, оттягивается по направлению к Луне больше, нежели остальные части Земли. В силу этого на стороне обращенной к Луне, и образуется приливный горб.

Одновременно с этим на противоположной стороне Земли наименее подвергнутой притяжению Луны, возникает такой же приливный горб. Земля поэтому принимает вид фигуры, несколько вытянутой вдоль прямой, соединяющей центры нашей планеты и Луны.

Таким образом, на двух противоположных сторонах Земли, расположенных на одной прямой, которая проходит через центры Земли и Луны, образуются два больших горба, два огромных водяных вздутия .

В это же самое время на двух других сторонах нашей планеты, расположенных под углом в девяносто градусов от указанных выше точек максимального прилива, происходят наибольшие отливы. Здесь вода спадает больше, чем где бы то ни было в другом месте поверхности земного шара. Линия, соединяющая эти точки в момент отлива, несколько сокращается, и тем самым создаётся впечатление увеличения вытянутости Земли в направлении максимальных точек прилива.

Эти точки максимального прилива вследствие лунного притяжения постоянно сохраняют своё положение относительно Луны, но, так как Земля совершает вращение вокруг оси, то за время суток они как бы перемещаются по всей поверхности земного шара. Поэтому в каждой местности на протяжении суток бывает два прилива и два отлива .

Солнечные приливы и отливы

Солнце, так же как и Луна, силой своего притяжения производит приливы и отливы. Но оно находится на гораздо большем расстоянии от нашей планеты по сравнению с Луной, и солнечные приливы, возникающие на Земле, почти в два с половиной раза меньше лунных. Поэтому солнечные приливы , отдельно не наблюдаются, а рассматривается только их влияние на величину лунных приливов.

Так, например, наибольшие морские приливы и отливы бывают во время полнолуний и новолуний , так как в это время Земля, Луна и Солнце находятся на одной прямой, и наше дневное светило своим притяжением усиливает притяжение Луны.

Наоборот, когда мы наблюдаем Луну в первой или в последней четверти (фазе), имеют место наименьшие морские приливы и отливы . Это объясняется тем, что в данном случае лунный прилив совпадает с солнечным отливом . Действие лунного притяжения уменьшается на величину притяжения Солнца.

Приливное трение

«Приливное трение », существующее в нашей планете, оказывает в свою очередь влияние на лунную орбиту, так как приливная волна, вызываемая лунным притяжением, оказывает обратное действие на Луну, создавая тенденцию к ускорению её движения. Вследствие этого Луна постепенно удаляется от Земли, период её обращения возрастает, и она, по всей вероятности, немного отстаёт в своём движении.

Величина морских приливов

Кроме относительного положения в пространстве Солнца, Земли и Луны, на величину морских приливов в каждой отдельной местности оказывают влияние форма морского дна и характер очертания берегов. Известно также, что в закрытых морях, как, например, в Аральском, Каспийском, Азовском и Черном, приливы и отливы почти не наблюдаются.

С трудом их удаётся обнаружить и в открытых океанах; здесь приливы едва достигают одного метра, уровень воды повышается очень незначительно. Но зато в некоторых бухтах наблюдаются приливы такой колоссальной величины, что вода поднимается на высоту более десяти метров и в некоторых местах затопляет колоссальные пространства .

Приливы и отливы в воздушной и твердой оболочках Земли

Приливы и отливы происходят также в воздушной и твердой оболочках Земли . Эти явления в низших слоях атмосферы мы почти не замечаем. Для сравнения укажем, что и на дне океанов приливы и отливы не наблюдаются. Это обстоятельство объясняется тем, что в приливных процессах участвуют главным образом верхние слои водной оболочки. Приливы и отливы в воздушной оболочке можно обнаружить только при весьма длительном наблюдении за изменением атмосферного давления.

Что касается земной коры, то каждая её часть вследствие приливного и отливного действия Луны за время суток два раза поднимается и два раза опускается примерно на несколько дециметров. Иначе говоря, колебания твёрдой оболочки нашей планеты по своей величине приблизительно в три раза меньше колебаний уровня поверхности океанов. Таким образом, наша планета всё время как бы дышит, делая глубокие вдохи и выдохи, а её внешняя оболочка, как грудь великого чудо-богатыря, то немного поднимается, то опускается.

Эти процессы, происходящие в твёрдой оболочке Земли, удаётся обнаружить лишь с помощью приборов, служащих для регистрации землетрясений.

Следует заметить, что приливы и отливы происходят и на других мировых телах и оказывают громадное влияние на их развитие.

Если бы Луна была неподвижна по отношению к Земле, то при отсутствии других факторов, влияющих на запаздывания приливной волны, в любом месте земного шара через каждые 6 часов происходило бы за сутки два прилива и два отлива.

Но так как Луна непрерывно обращается вокруг Земли и притом в ту же сторону, в которую вращается вокруг своей оси и наша планета, то получается некоторое запаздывание: Земля успевает повернуться к Луне каждой своей частью не в течение суток, а приблизительно в 24 часа и 50 минут. Поэтому в каждой местности прилив или отлив продолжается не ровно 6 часов, а около 6 часов и 12,5 минут.

Чередования приливов и отливов

Кроме того, следует отметить, что правильность чередования приливов и отливов нарушается в зависимости от характера расположения материков на нашей планете и непрерывного трения воды о поверхность Земли. Эти неправильности в чередовании иногда достигают нескольких часов.

Таким образом, наиболее «высокая» вода бывает не в момент кульминации Луны, как это следует согласно теории, а на несколько часов позднее прохождения Луны через меридиан; это запаздывание называется прикладным часом порта и достигает иногда 12 часов.

Раньше было распространено мнение, что морские приливы и отливы связаны с морскими течениями. Теперь всем известно, что это – явления разного порядка. Прилив – род волнового движения, подобного тому, которое возникает вследствие ветра.

Прилив и отлив

Прили́в и отли́в - периодические вертикальные колебания уровня океана или моря , являющиеся результатом изменения положений Луны и Солнца относительно Земли вкупе с эффектами вращения Земли и особенностями данного рельефа и проявляющееся в периодическом горизонтальном смещении водных масс. Приливы и отливы вызывают изменения в высоте уровня моря, а также периодические течения, известные как прили́вные течения, делающие предсказание приливов важным для прибрежной навигации .

Интенсивность этих явлений зависит от многих факторов, однако наиболее важным из них является степень связи водоёмов с мировым океаном . Чем более замкнут водоём, тем меньше степень проявления приливо-отливных явлений.

Ежегодно повторяющийся приливо-отливной цикл остаётся неизменным вследствие точной компенсации сил притяжения между Солнцем и центром масс планетной пары и силами инерции, приложенными к этому центру.

Поскольку положение Луны и Солнца по отношению к Земле периодически меняется, меняется и интенсивность результирующих приливо-отливных явлений.

Отлив у Сен-Мало

История

Отливы играли заметную роль в снабжении прибрежного населения морепродуктами, позволяя собирать на обнажившемся морском дне годную для еды пищу.

Терминология

Малая вода (Бретань, Франция)

Максимальный уровень поверхности воды во время прилива называется полной водой , а минимальный во время отлива - малой водой . В океане, где дно ровное, а суша далеко, полная вода проявляется как два «вздутия» водной поверхности: одно из них находится со стороны Луны, а другое - в противоположном конце земного шара. Также могут присутствовать ещё два меньших по размеру вздутия со стороны, направленной к Солнцу, и противоположной ему. Объяснение этому эффекту можно найти ниже, в разделе физика прилива .

Так как Луна и Солнце перемещаются относительно Земли, вместе с ними перемещаются и водные горбы, образуя прили́вные волны и прили́вные течения . В открытом море приливные течения имеют вращательный характер, а вблизи берегов и в узких заливах и проливах - возвратно-поступательный.

Если бы вся Земля была покрыта водой, мы бы наблюдали два регулярных прилива и отлива ежедневно. Но так как беспрепятственному распространению приливных волн мешают участки суши: острова и континенты , а также из-за действия силы Кориолиса на движущуюся воду, вместо двух приливных волн наблюдается множество маленьких волн, которые медленно (в большинстве случаев с периодом 12 ч 25,2 мин) обегают вокруг точки, называющейся амфидромической , в которой амплитуда прилива равна нулю. Доминирующая компонента прилива (лунный прилив М2) образует на поверхности Мирового океана около десятка амфидромических точек с движением волны по часовой стрелке и примерно столько же - против часовой (см. карту). Всё это делает невозможным предсказание времени прилива только на основе положений Луны и Солнца относительно Земли. Вместо этого используют «ежегодник приливов» - справочное пособие для вычисления времени наступления приливов и их высоты в различных пунктах земного шара. Также используются таблицы приливов, с данными о моментах и высотах малых и полных вод, вычисленными на год вперёд для основных прили́вных по́ртов .

Составляющая прилива M2

Если соединить на карте точки с одинаковыми фазами прилива, мы получим так называемые котидальные линии , радиально расходящиеся из амфидромической точки. Обычно котидальные линии характеризуют положение гребня приливной волны для каждого часа. Фактически котидальные линии отражают скорость распространения приливной волны за 1 час. Карты, на которых представлены линии равных амплитуд и фаз приливных волн, называются котидальными картами .

Высота прилива - разница между высшим уровнем воды при приливе (полная вода) и низшим её уровнем при отливе (малая вода). Высота прилива - величина непостоянная, однако средний её показатель приводится при характеристике каждого участка побережья.

В зависимости от взаимного расположения Луны и Солнца малая и большая приливные волны могут усиливать друг друга. Для таких приливов исторически сложились специальные названия:

  • Квадратурный прилив - наименьший прилив, когда приливообразующие силы Луны и Солнца действуют под прямым углом друг к другу (такое положение светил называется квадратурой).
  • Сизигийный прилив - наибольший прилив, когда приливообразующие силы Луны и Солнца действуют вдоль одного направления (такое положение светил называется сизигией).

Чем меньше или больше прилив, тем меньше или, соответственно, больше отлив.

Самые высокие приливы в мире

Можно наблюдать в бухте Фанди (15,6-18 м), которая находится на восточном побережье Канады между Нью-Брансуиком и Новой Шотландией.

На Европейском континенте самые высокие приливы (до 13,5 м) наблюдаются в Бретани у города Сен-Мало . Здесь приливная волна фокусируется береговой чертой полуостровов Корнуолл (Англия) и Котантен (Франция).

Физика прилива

Современная формулировка

Применительно к планете Земля причиной приливов является нахождение планеты в гравитационном поле, создаваемом Солнцем и Луной. Поскольку создаваемые ими эффекты независимы, то воздействие этих небесных тел на Землю можно рассматривать по отдельности. В таком случае для каждой пары тел можно считать, что каждое из них обращается вокруг общего центра гравитации. Для пары Земля - Солнце этот центр находится в глубине Солнца на расстоянии 451 км от его центра. Для пары Земля-Луна он находится в глубине Земли на расстоянии 2/3 её радиуса.

Каждое из этих тел испытывает действие приливных сил, источником которых являются сила гравитации и внутренние силы, обеспечивающие целостность небесного тела, в роли которых выступает сила собственного притяжения, далее называемая самогравитацией. Наиболее наглядно возникновение приливных сил прослеживается на примере системы Земля - Солнце.

Приливная сила представляет собой результат конкурирующего взаимодействия силы тяготения, направленной к центру гравитации и убывающей обратно пропорционально квадрату расстояния от него, и фиктивной центробежной силы инерции, обусловленной обращением небесного тела вокруг этого центра. Эти силы, будучи противоположными по направлению, совпадают по величине только в центре масс каждого из небесных тел. Благодаря действию внутренних сил Земля обращается вокруг центра Солнца как целое с постоянной угловой скоростью для каждого элемента составляющей её массы. Поэтому по мере удаления этого элемента массы от центра гравитации действующая на него центробежная сила растёт пропорционально квадрату расстояния. Более детальное распределение приливных сил в их проекции на плоскость, перпендикулярную плоскости эклиптики , приведены на рис.1.

Рис.1 Схема распределения приливных сил в проекции на плоскость, перпендикулярную Эклиптике. Тяготеющее тело либо справа, либо слева.

Достигаемое в результате действия приливных сил воспроизводство изменений формы подвергаемого их действию тел может, в соответствие с ньютонианской парадигмой, быть достигнуто лишь в том случае, если эти силы полностью скомпенсированы иными силами, в число которых может входить и сила Всемирного тяготения.

Рис.2 Деформация водной оболочки Земли как следствие баланса приливной силы, силы самогравитации и силы реакции воды на усилие сжатия

В результате сложения этих сил и возникают симметрично по обе стороны земного шара приливные силы, направленные в разные стороны от него. Приливная сила, направленная к Солнцу, имеет гравитационную природу, а направленная от Солнца есть следствие фиктивной силы инерции.

Эти силы крайне слабы и не идут ни в какое сравнение с силами самогравитации (создаваемое ими ускорение в 10 миллионов раз меньше ускорения свободного падения ). Однако они вызывают сдвиг частиц воды Мирового океана (сопротивление сдвигу в воде при малых скоростях движения практически равно нулю, в то время как сжатию - чрезвычайно велико), до тех пор, пока касательная к поверхности воды не станет перпендикулярной результирующей силе.

В итоге на поверхности мирового океана возникает волна, занимающая постоянное положение в системах взаимно тяготеющих тел, но бегущая по поверхности океана совместно с суточным движением его дна и берегов. Таким образом (в пренебрежении океаническими течениями) каждая частица воды дважды совершает в течение суток колебательное движение вверх-вниз.

Горизонтальное движение воды наблюдается лишь у берегов как следствие подъёма её уровня. Скорость движения тем больше, чем более полого расположено морское дно.

Приливообразующий потенциал

(концепция акад. Шулейкина )

Пренебрегая размером, строением и формой Луны, запишем удельную силу притяжения пробного тела, находящегося на Земле. Пусть - радиус-вектор, направленный от пробного тела в сторону Луны, - длина этого вектора. В этом случае сила притяжения этого тела Луной будет равна

где - селенометрическая гравитационная постоянная. Пробное тело поместим в точку . Сила притяжения пробного тела, помещённого в центр масс Земли будет равна

Здесь под и понимаются радиус-вектор, соединяющий центры масс Земли и Луны, и их абсолютные величины. Приливной силой мы будем называть разность этих двух сил тяготения

В формулах (1) и (2) Луна считается шаром со сферически-симметричным распределением масс. Силовая функция притяжения пробного тела Луной ничем не отличается от силовой функции притяжения шара и равна Вторая сила приложена к центру масс Земли и является строго постоянной величиной. Для получения силовой функции для этой силы мы введём временную систему координат. Ось проведём из центра Земли и направим в сторону Луны. Направления двух других осей оставим произвольными. Тогда силовая функция силы будет равна . Приливообразующий потенциал будет равен разности этих двух силовых функций. Обозначим его , получим Постоянную определим из условия нормировки, согласно которому приливообразующий потенциал в центре Земли равен нулю. В центре Земли , Отсюда следует, что . Следовательно, мы получаем окончательную формулу приливообразующего потенциала в виде (4)

Поскольку

При малых величинах , , последнее выражение можно представить в следующем виде

Подставив (5) в (4), получим

Деформация поверхности планеты под действием приливов и отливов

Возмущающее воздействие приливного потенциала деформирует уровненную поверхность планеты. Оценим это воздействие, считая, что Земля представляет собой шар со сферически-симметричным распределением массы. Невозмущённый гравитационный потенциал Земли на поверхности будет равен . Для точки . , находящейся на расстоянии от центра сферы, гравитационный потенциал Земли равен . Сократив на гравитационную постоянную, получим . Здесь переменными величинами являются и . Обозначим отношение масс гравитирующего тела к массе планеты греческой буквой и решим полученное выражение относительно :

Так как с той же степенью точности получим

Учитывая малость отношения последние выражения можно записать так

Мы получили, таким образом, уравнение двухосного эллипсоида, у которого ось вращения совпадает с осью , т.е с прямой, соединяющей тяготеющее тело с центром Земли. Полуоси этого эллипсоида, очевидно, равны

Приведём в конце небольшую численную иллюстрацию данного эффекта. Вычислим приливной «горб» на Земле, вызванный притяжением Луны. Радиус Земли равен км, расстояние между центрами Земли и Луны с учётом нестабильности лунной орбиты км, отношение массы Земли к массе Луны равно 81:1. Очевидно, что при подстановке в формулу мы получим величину, примерно равную 36 см.

См. также

Примечания

Литература

  • Фриш С. А. и Тиморева А. В. Курс общей физики, Учебник для физико-математических и физико-технических факультетов государственных университетов,Том I. М.: ГИТТЛ,1957
  • Щулейкин В. В. Физика моря. М.:Изд-во «Наука»,Отделение наук о Земле АН СССР 1967
  • Войт С. С. Что такое приливы. Редколлегия научно-популярной литературы Ан СССР

Ссылки

  • WXTide32 - свободно распространяемая программа для составления таблиц приливов

Приливы и отливы, как считается на сегодня, вызваны притяжением Луны. Так, Земля поворачивается к спутнику тем или иным боком, Луна притягивает эту воду к себе - вот и приливы. В зоне, откуда уходит вода - отливы. Земля вращается, приливы и отливы сменяют друг друга. Вот такая вот лунная теория, в которой всё хорошо кроме ряда необъяснённых фактов.




Например, знаете ли вы, что Средиземное море считается без приливным, но около Венеции и на проливе Эврикос на востоке Греции, приливы и отливы бывают до одного метра и больше. Это считается одной из загадок природы. Однако итальянские физики обнаружили на востоке Средиземного моря, на глубине более трех километров цепочки подводных водоворотов, по десять километров в диаметре каждый. Интересное совпадение аномальных приливов и водоворотов, не так ли?

Замечена закономерность, там где есть водовороты, в океанах морях и озерах, там есть приливы и отливы, а там где нет водоворотов, там нет приливов и отливов...Просторы мирового океана сплошь покрыты водоворотами, а водовороты обладают свойством гироскопа сохранять положение оси в пространстве, независимо от вращения земли.

Если смотреть на землю со стороны Солнца, водовороты вращаясь вместе с Землей, опрокидываются два раза в сутки, в результате чего ось водоворотов прецессирует (1-2 градусов) и создает приливную волну, что и является причиной приливов и отливов, и вертикального перемещения океанических вод.


Прецессия волчка




Гигантский океанический водоворот




Средиземное море считается без приливным, но около Венеции и на проливе Эврикос на востоке Греции, приливы и отливы бывают до одного метра и больше. И это считается одной из загадок природы, но в тоже время, Итальянские физики обнаружили на востоке Средиземного моря, на глубине более трех километров цепочки подводных водоворотов, по десять километров в диаметре каждый. Из этого можно сделать вывод, что вдоль побережья Венеции, на глубине нескольких километров, находится цепь подводных водоворотов.




Если бы в Черном море, вода вращалась как и в Белом море, то приливы и отливы были бы более значительней. Если бухту заливает приливная волна и волна там закручивается, то приливы и отливы в этом случае бывают более высокими... Место водоворотов, и атмосферных циклонов и антициклонов в науке, на стыке океанологии метеорологии, и небесной механики изучающей гироскопы. Поведение атмосферных циклонов и антициклонов, полагаю аналогичны поведению водоворотов в океанах.


Чтобы проверить эту идею, на глобусе, там где находится водоворот, я закрепил вентилятор, вместо лопастей вставил металлические шарики на пружинах. Включил вентилятор (водоворот) одновременно вращая глобус как вокруг оси, так и вокруг Солнца, и получил имитацию приливов и отливов.


Привлекательность данной гипотезы в том, что она довольно убедительно проверяется, закрепленным на глобусе вентилятором- водоворотом. Чувствительность гироскоп- водоворота настолько высока что глобус приходится вращать крайне медленно (один оборот за 5 минут). И если гироскоп-водоворот, установить на глобусе, у устья реки Амазонки, то вне всякого сомнения, он покажет точную механику прилива и отлива реки Амазонки. При вращении только глобуса вокруг оси, гироскоп- водоворот наклоняется в одну сторону, и неподвижно стоит, а если глобус двигать и по орбите, водоворот- гороскоп начинает колебаться(прецессировать) и дает два прилива и отлива в сутки.


Сомнения в наличии прецессии у водоворотов, в следствии медленного вращения, снимаются большой скоростью опрокидывания водоворотов, за 12часов.. И не надо забывать, что орбитальная скорость земли, тридцать раза больше орбитальной скорости луны.


Опыт с глобусом более убедителен, чем теоретическое описание гипотезы. Дрейф водоворотов так же связан с эффектом гироскопа -водоворота, и в зависимости в каком полушарии находится водоворот, и в какую сторону вращается водоворот, вокруг своей оси, зависит направление дрейфа водоворота.


Гибкий диск



Опрокидывающийся гироскоп



Опыт c гироскопом



Океанологи в середине океана, на самом деле замеряют не высоту приливной волны, a волну создаваемую гироскопическим эффектом водоворота, создаваемого прецессией, оси вращения водоворота. И только водоворотами можно объяснить, наличие приливного горба, на противоположной стороне земли. В природе нет суеты и если водовороты существуют, то у них в природе есть назначение, и это назначение, полагаю вертикальное и горизонтальное перемешивание океанических вод, для выравнивания температуры и содержания кислорода в мировом океане.


А лунные приливы если бы и существовали, то не перемешивали бы океанические воды. Водовороты в какой то степени, не дают океанам заилится. Если пару миллиардов лет назад, земля действительно вращалась быстрее, то водовороты, были более активными. Марианская впадина и марианские острова, полагаю результат деятельности водоворота.

Календарь приливов и отливов, существовал, задолго, до открытия приливной волны. Как существовал, и обычный календарь, до Птолемея, и после Птолемея, и до Коперника, и после Коперника. Есть на сегодня и непонятные вопросы особенностей приливов. Так, в некоторых местах (Южно-Китайское море, Персидский залив, Мексиканский и Сиамский заливы) наблюдается только один прилив в день. В ряде районов Земли (например, в Индийском океане) бывает то один, то два прилива в день.

500 лет назад, когда формировалась идея приливов и отливов, у мыслителей не было достаточно технических средств, чтобы проверить эту идею, и о водоворотах в океанах мало что было известно. И сегодня, эта идея своей привлекательностью и правдоподобностью настолько укоренилась в сознании общественности и мыслителей, что отказаться от неё будет не легко.


Почему, каждый год и каждое десятилетие, в один и тот же календарный день(например первое мая) в устьях рек и заливов, не бывает одинаковой приливной волны? Полагаю водовороты которые находятся в устьях рек и заливов дрейфуют и меняют свои размеры.




А если бы причиной приливной волны, была гравитация луны, высота приливов и отливов не менялась бы тысячелетиями. Существует мнение, что приливную волну движущуюся с востока на запад, создает притяжение луны, и волна заливает бухты и устье рек. Но почему, устье Амазонки хорошо заливает, а залив Ла плата, что находится южнее Амазонки, не очень хорошо заливает, хотя залив Ла плата по всем параметрам должно заливать больше Амазонки.

Полагаю приливную волну у устья Амазонки создает один водоворот, а для горлвины Ла плата приливную волну создает, другой водоворот, менее мощный (диаметр, высота, обороты).


Водоворот Амазоноки




Приливная волна врезается в Амазонку со скоростью около 20 километров в час, высота волны составляет около пяти метров, ширина волны, десять километров. Эти параметры больше подходят для приливной волны, создаваемой прецессией водоворота. А если бы это была лунная приливная волна, то она врезалась бы со скоростью, несколько сот километров в час, а ширина волны составляла бы около тысяча километров.


Считается, если бы глубина океана составляла 20 километров, то лунная волна двигалась бы как и положенно 1600км.час, говорят что ей мешает мелкий океан. А сейчас она врезается в Амазонку со скоростью 20км.час, а в реку Фучуньцзян, со скоростью 40км.час. Полагаю сомнительная математика.

И если Лунная волна двигается так медленно, то почему на картинках и анимациях приливной горб всегда направлен в сторону Луны, Луна то гораздо быстрее вращается. И непонятно почему, не меняется давление воды, под приливным горбом, на дне океана... Есть зоны в океанах, где вообще не бывают приливы и отливы (амфидромические точки).


Амфидромическая точка



M2 прилив, высота прилива показана цветом. Белые линии - это котидальные лини с фазовым интервалом 30°. Амфидромические точки - тёмно-синие области, где сходятся белые линии. Стрелки вокруг этих точек показывают направление "обегания". Амфидроми́ческая точка - это точка в океане, где амплитуда приливной волны равна нулю. Высота прилива увеличивается с удалением от амфидромической точки. Иногда эти точки называют узлами приливов: приливная волна "обегает" эту точку вокруг по или против часовой стрелки. В этих точках сходятся котидальные линии. Амфидромические точки возникают благодаря интерференции первичной приливной волны и её отражений от береговой линии и подводных препятствий. Вносит свой вклад и сила Кориолиса.


Хотя для приливной волны, они находятся в удобной зоне, полагаю в этих зонах водовороты вращаются крайне медленно. Считается, что максимальные приливы и отливы бывают в новолунии, по той причине что Луна и Солнце воздействуют гравитацией на Землю в одном направлении.



Для справки: гироскоп - это прибор, который за счёт вращения иначе реагирует на внешние силы, чем неподвижный предмет. Простейший гироскоп - юла. Раскрутив юлу на горизонтальной поверхности и наклонив поверхность, вы заметите, что юла сохраняет горизонтальное кручение.


Но с другой стороны, в новолунии орбитальная скорость земли, бывает максимальной, а в полнолунии, минимальной, и возникает вопрос, какая из причин является ключевой. Расстояние от земли до луны составляет 30 диаметров земли, приближение и удаление луны от земли составляет 10 процентов, это можно сравнить взяв на вытянутые руки булыжник и камушек, и приближать и отдалять их на 10 процентов, возможны ли приливы и отливы при такой математике. Полагают что в новолунии, континенты нарываются на приливной горб, со скоростью около 1600 километров час, возможно ли такое.

Существует мнение что приливные силы остановили вращение луны, и теперь она вращается синхронно. Но известных спутников более трех сот, и почему они все остановились одновременно, и куда делась сила, вращавшая спутники... Гравитационная сила между Солнцем и Землей, не зависит от орбитальной скорости Земли, а центробежная сила зависит от орбитальной скорости Земли, и этот факт не может является, причиной Лунных приливов и отливов.

Называть приливы и отливы, явление горизонтального и вертикального перемещения океанических вод, не совсем соответствует действительности, по той причине что большинство водоворотов не контактирует с береговой линией океана... Если смотреть на Землю со стороны Солнца, водовороты которые находятся в полуночной и полуденной стороне земли более активны, так как они находятся в зоне относительного движения.


А когда водоворот входит в зону заката и рассвета и становится ребром к Солнцу, то водоворот попадает во власть сил Кориолиса и стихает. В новолунии приливы и отливы увеличиваются по той причине, что орбитальная скорость земли бывает максимальной...


Материал прислан автором : Юсуп Хизиров

Продолжим разговор о силах, действующих на небесные тела и вызываемых при этом эффектах. Сегодня я расскажу о приливах и негравитационных возмущениях.

Что это значит – «негравитационные возмущения»? Возмущениями обычно называют малые поправки к большой, главной силе. Т. е. речь пойдет о каких-то силах, влияние которых на объект значительно меньше гравитационных

Какие ещё в природе бывают силы кроме гравитации? Сильные и слабые ядерные взаимодействия оставим в стороне, они имеют локальный характер (действуют на крайне малых расстояниях). А вот электромагнетизм, как известно, намного сильнее гравитации и распространяется так же далеко – беспредельно. Но поскольку электрические заряды противоположных знаков обычно уравновешены, а гравитационный «заряд» (роль которого выполняет масса) всегда одного знака, то при достаточно больших массах, конечно же, гравитация выходит на первый план. Так что реально мы будем говорить о возмущениях движения небесных тел под действием электромагнитного поля. Больше вариантов нет, хотя есть ещё тёмная энергия, но о ней – позже, когда речь пойдет о космологии.

Как я рассказывал на , простой ньютонов закон тяготения F = G M m /R ² очень удобно использовать в астрономии, потому что большинство тел имеют близкую к сферической форму и достаточно удалены друг от друга, так что при расчёте их можно заменить точками – точечными объектами, содержащими всю их массу. Но тело конечного размера, сравнимого с расстоянием между соседними телами, всё-таки, испытывает силовое влияние разное в разных своих частях, потому что эти части по-разному удалены от источников гравитации, и это нужно учитывать.

Притяжение плющит и раздирает

Чтобы ощутить приливный эффект, проделаем популярный у физиков мысленный эксперимент: представим себя в свободно падающем лифте. Отрезаем удерживающую кабину верёвочку и начинаем падать. Пока не упали, можем смотреть, что вокруг нас происходит. Подвешиваем свободные массы и наблюдаем, как они себя поведут. Сначала они падают синхронно, и мы говорим – это невесомость, потому что все объекты в этой кабине и она сама ощущают примерно одинаковое ускорение свободного падения.

Но со временем наши материальные точки начнут менять свою конфигурацию. Почему? Потому что нижняя из них в начале была чуть ближе к центру притяжения, чем верхняя, поэтому нижняя, притягиваясь сильнее, начинает опережать верхнюю. А боковые точки всегда остаются на одинаковом расстоянии от центра тяготения, но по мере приближения к нему они начинают сближаться друг с другом, потому что равные по модулю ускорения не параллельны. В результате система несвязанных объектов деформируется. Это и называют приливным эффектом.

С точки зрения наблюдателя, который рассыпал вокруг себя крупу и смотрит, как отдельные крупинки перемещаются, пока вся эта система падает на массивный объект, можно ввести такое понятие как поле приливных сил. Определим эти силы в каждой точке как векторную разницу гравитационного ускорения в этой точке и ускорения наблюдателя или центра масс, и если брать только первый член разложения в ряд Тейлора по относительному расстоянию, то получится симметричная картина: ближние крупинки будут опережать наблюдателя, дальние – отставать от него, т.е. система будет растягиваться вдоль оси, направленной на тяготеющий объект, а вдоль перпендикулярных ей направлений частицы будут прижиматься к наблюдателю.

Как вы думаете, что будет происходить при затягивании планеты в чёрную дыру? Кто не слушал лекций по астрономии, тем обычно кажется, что чёрная дыра только с обращённой к себе поверхности будет срывать вещество. Они не знают, что почти столь же сильный эффект проявляется на обратной стороне свободно падающего тела. Т.е. оно разрывается в двух диаметрально противоположных направлениях, отнюдь не в одном.

Опасности открытого космоса

Чтобы показать, насколько важно учитывать приливной эффект, возьмём Международную космическую станцию. Она, как и все спутники Земли, свободно падает в гравитационном поле (если не включены двигатели). И поле приливных сил вокруг неё – это вполне ощутимая вещь, поэтому космонавт, когда работает на внешней стороне станции, обязательно себя к ней привязывает, причём, как правило, двумя тросиками – на всякий случай, мало ли что может произойти. А окажись он непривязанным в тех условиях, где приливные силы его оттягивают от центра станции, он запросто может потерять с ней контакт. Такое часто бывает с инструментами, ведь все их не привяжешь. Если у космонавта что-то выпало из рук, то этот предмет уходит вдаль и становится самостоятельным спутником Земли.

План работ на МКС включает испытания в открытом космосе индивидуального реактивного ранца. И когда его двигатель отказывает, приливные силы уносят космонавта, и мы его теряем. Имена пропавших без вести засекречиваются.

Это, конечно, шутка: подобного происшествия пока ещё, к счастью, не было. Но такое вполне могло бы произойти! И, возможно, когда-нибудь случится.

Планета-океан

Вернёмся к Земле. Это самый интересный для нас объект, и действующие на него приливные силы ощущаются вполне заметно. Со стороны каких небесных тел они действуют? Главный из них – это Луна, потому что она близко. Следующее по масштабу воздействия – Солнце, потому что оно массивное. Остальные планеты тоже оказывают некоторое влияние на Землю, но оно едва ощутимо.

Чтобы анализировать внешнее гравитационное воздействия на Землю, её обычно представляют в виде твёрдого шара, покрытого жидкой оболочкой. Это неплохая модель, поскольку у нашей планеты действительно есть подвижная оболочка в виде океана и атмосферы, а всё остальное довольно твёрдое. Хотя земная кора и внутренние слои имеют ограниченную жёсткость и немного поддаются приливному влиянию, их упругой деформацией можно пренебречь при расчётах эффекта, производимого на океан.

Если в системе центра масс Земли нарисовать векторы приливных сил, то получим такую картину: поле приливных сил вытягивает океан вдоль оси «Земля – Луна», а в перпендикулярной ей плоскости прижимает его к центру Земли. Таким образом, планета (во всяком случае, её подвижная оболочка) стремится принять форму эллипсоида. При этом возникают две выпуклости (их называют приливными горбами) на противоположных сторонах земного шара: одна обращена к Луне, другая – от Луны, а в полосе между ними возникает, соответственно, «впуклость» (точнее, поверхность океана там имеет меньшую кривизну).

Более интересная вещь происходит в промежутке – там, где вектор приливной силы пытается сместить жидкую оболочку вдоль земной поверхности. И это естественно: если в одном месте вы хотите приподнять море, а в другом месте – опустить, то вам надо переместить воду оттуда сюда. И между ними приливные силы перегоняют воду в «подлунную точку» и в «анти-лунную точку».

Количественно рассчитать приливный эффект очень просто. Гравитация Земли старается сделать океан шарообразным, а приливная часть лунного и солнечного влияния – вытянуть его вдоль оси. Если оставить Землю в покое и дать ей возможность свободно падать на Луну, то высота выпуклости достигла бы примерно полуметра, т.е. всего-то на 50 см океан приподнимается над своим средним уровнем. Если Вы плывёте на пароходе по открытому морю или океану, полметра – это не ощутимо. Это называют статическим приливом.

Почти на каждом экзамене мне попадается студент, который уверенно утверждает, что прилив происходит только на одной стороне Земли – на той, которая обращена к Луне. Как правило, такое говорит девушка. Но бывает, хотя и реже, что и юноши в этом вопросе заблуждаются. При этом в целом знания астрономии более глубокие у девушек. Любопытно было бы выяснить причину этой «приливно-гендерной» асимметрии.

Но чтобы создать в подлунной точке полуметровую выпуклость, нужно сюда большое количество воды перегнать. А ведь поверхность Земли не остаётся неподвижной, она по отношению к направлению на Луну и на Солнце быстро вращается, делая полный оборот за сутки (а Луна по орбите медленно идёт – один оборот вокруг Земли почти за месяц). Поэтому приливный горб постоянно бегает по поверхности океана, так что твёрдая поверхность Земли за сутки 2 раза оказывается под приливной выпуклостью и 2 раза – под отливным понижением уровня океана. Прикинем: 40 тысяч километров (длина земного экватора) в сутки, это 463 метра в секунду. Значит, эта полуметровая волна, типа мини-цунами набегает на восточные побережья континентов в районе экватора со сверхзвуковой скоростью. На наших широтах скорость достигает 250-300 м/с – тоже довольно много: хоть волна и не очень высокая, за счёт инерции она может создать большой эффект.

Второй объект по масштабу влияния на Землю – это Солнце. Оно в 400 раз дальше от нас, чем Луна, но в 27 млн раз массивнее. Поэтому эффекты от Луны и от Солнца получаются сравнимыми по величине, хотя Луна все же действует чуть сильнее: гравитационный приливный эффект от Солнца примерно вполовину слабее, чем от Луны. Иногда их влияние складывается: это происходит в новолуние, когда Луна проходит на фоне Солнца, и в полнолуние – когда Луна с противоположной от Солнца стороны. В эти дни – когда Земля, Луна и Солнце выстраиваются в линию, а происходит это каждые две недели – суммарный приливный эффект получается в полтора раза больше, чем только от Луны. А через неделю Луна проходит четверть своей орбиты и оказывается с Солнцем в квадратуре (прямой угол между направлениями на них), и тогда их влияние ослабляет друг друга. В среднем высота приливов в открытом море меняется от четверти метра до 75 сантиметров.

Морякам приливы известны давно. Что делает капитан, когда корабль сел на мель? Если вы читали морские приключенческие романы, то знаете, что он сразу смотрит, в какой фазе Луна, и ждёт, когда будет ближайшее полнолуние либо новолуние. Тогда максимальный прилив может поднять корабль и снять с мели.

Береговые проблемы и особенности

Приливы особенно важны для портовых работников и для моряков, которые собираются ввести свой корабль в порт либо вывести из порта. Как правило, проблема мелководья возникает вблизи берегов, и чтобы она не мешала движению судов, для входа в бухту прорывают подводные каналы – искусственные фарватеры. Их глубина должна учитывать высоту максимального отлива.

Если мы посмотрим в какой-то момент времени на высоту приливов и проведём на карте линии равной высоты воды, то получатся концентрические окружности с центрами в двух точках (в подлунной и анти-лунной), в которых прилив максимальный. Если бы орбитальная плоскость Луны совпадала с плоскостью земного экватора, то эти точки всегда бы перемещались по экватору и за сутки (точнее – за 24ʰ 50ᵐ 28ˢ) делали бы полный оборот. Однако Луна ходит не в этой плоскости, а близ плоскости эклиптики, по отношению к которой экватор наклонен на 23,5 градуса. Поэтому подлунная точка «гуляет» также и по широте. Таким образом, в одном и том же порту (т. е. на одной и той же широте) высота максимального прилива, повторяющегося через каждые 12,5 часов, в течение суток меняется в зависимости от ориентации Луны относительно земного экватора.

Эта «мелочь» важна для теории приливов. Посмотрим еще раз: Земля вращается вокруг своей оси, а плоскость лунной орбиты наклонена к ней. Поэтому каждый морской порт в течение суток «обегает» вокруг полюса Земли, один раз попадая в область максимально высокого прилива, а через 12,5 часов – опять в область прилива, но менее высокого. Т.е. два прилива в течение суток не равноценны по высоте. Один всегда больше другого, потому что плоскость лунной орбиты не лежит в плоскости земного экватора.

Для жителей побережья приливный эффект жизненно важен. Например, во Франции есть , который соединен с материком асфальтовой дорогой, проложенной по дну пролива. На острове живёт много людей, но они не могут пользоваться этой дорогой, пока уровень моря высокий. По этой дороге можно проехать только два раза в сутки. Люди подъезжают и ждут отлива, когда уровень воды понизится и дорога станет доступной. Люди ездят на побережье на работу и с работы, пользуясь специальной таблицей приливов, которая публикуется для каждого населённого пункта побережья. Если не учитывать это явление, вода по пути может захлестнуть пешехода. Туристы просто приезжают туда и гуляют, чтобы посмотреть на дно моря, когда нет воды. А местные жители что-то при этом со дна собирают, иногда даже для пропитания, т.е. по сути этот эффект кормит людей.


Жизнь вышла из океана благодаря именно приливам и отливам. Некоторые прибрежные животные в результате отлива оказывались на песке и вынуждены были научиться дышать кислородом непосредственно из атмосферы. Если бы не было Луны, то жизнь, может быть, не так активно выходила бы из океана, потому что там во всех отношениях хорошо – термостатированная среда, невесомость. Но если ты вдруг попал на берег, то надо было как-то выживать.

Побережье, особенно если оно плоское, во время отлива сильно обнажается. И на некоторое время люди теряют возможность пользоваться своими плавсредствами, беспомощно лежащими как киты на берегу. Но в этом есть кое-что полезное, потому что период отлива можно использовать для ремонта судов, особенно в какой-нибудь бухточке: кораблики приплыли, потом вода ушла, и их можно в это время подремонтировать.

Например, есть такой залив Фанди на восточном побережье Канады, в котором, говорят, самые высокие в мире приливы: перепад уровня воды может достигать 16 метров, что считается рекордом для морского прилива на Земле. Моряки к этому свойству приспособились: они во время прилива подводят судно к берегу, укрепляют его, а когда вода уходит, судно повисает, и ему можно подконопатить дно.

Люди издавна стали следить и регулярно записывать моменты и характеристики высоких приливов, чтобы научиться прогнозировать это явление. Вскоре изобрели мареограф – прибор, в котором поплавок вверх-вниз ходит в зависимости от уровня моря, а показания автоматически вычерчиваются на бумаге в виде графика. Кстати, средства измерения почти не изменились с момента первых наблюдений и до наших дней.

На основе большого количества записей гидрографов математики стараются создать теорию приливов. Если у вас есть многолетняя запись периодического процесса, вы можете разложить его на элементарные гармоники – разной амплитуды синусоиды с кратными периодами. И потом, определив параметры гармоник, продлить суммарную кривую в будущее и на этой основе сделать таблицы приливов. Сейчас такие таблицы опубликованы для каждого порта на Земле, и любой капитан, собирающийся войти в порт, берёт для него таблицу и смотрит, когда там будет достаточный для его корабля уровень воды.

Самая известная история, связанная с прогностическими расчётами, произошла во Вторую мировую войну: в 1944-м году наши союзники – англичане и американцы – собирались открыть второй фронт против гитлеровской Германии, для этого надо было высадиться на французское побережье. Северное побережье Франции в этом отношении очень неприятное: берег обрывистый, высотой 25-30 метров, а дно океана довольно мелкое, так что корабли могут подойти к берегу только в моменты максимальных приливов. Если бы они сели на мель, их бы просто расстреляли из пушек. Чтобы этого избежать, была создана специальная механическая (электронных тогда еще не было) вычислительная машина. Она выполняла Фурье-анализ временных рядов морского уровня с помощью вращающихся каждый со своей скоростью барабанов, через которые проходил металлический трос, который суммировал все члены ряда Фурье, а связанное с тросом пёрышко выписывало график высоты прилива в зависимости от времени. Это была совершенно секретная работа, которая сильно продвинула теорию приливов, потому что оказалось возможным с достаточной точностью предсказать момент наиболее высокого прилива, благодаря чему тяжёлые военные транспортные корабли переплыли Ла-Манш и высадили десант на берег. Так математики и геофизики сохранили жизнь многим людям.

Некоторые математики стараются обобщить данные в масштабе всей планеты, стараясь создать единую теорию приливов, но сравнивать записи, сделанные в разных местах, трудно, потому что Земля очень неправильная. Это лишь в нулевом приближении единый океан всю поверхность планеты покрывает, а на самом деле есть материки и несколько слабо связанных океанов, и у каждого океана своя частота собственных колебаний.

Предыдущие рассуждения о колебаниях уровня моря под действием Луны и Солнца касались открытых океанских просторов, где от одного берега к другому приливное ускорение очень сильно меняется. А в локальных водоёмах – например, озёрах – может ли прилив создать заметный эффект?

Казалось бы, не должно быть, ведь во всех точках озера приливное ускорение примерно одинаково, разница маленькая. Например, в центре Европы есть Женевское озеро, оно всего около 70 км в длину и никак не связано с океанами, но люди давно заметили, что там есть существенные суточные колебания воды. Почему они возникают?

Да, приливная сила чрезвычайно мала. Но главное – она регулярна, т.е. действует периодически. Все физики знают эффект, который при периодическом действии силы иногда вызывает увеличенную амплитуду колебаний. Например, вы берёте в столовой на раздаче тарелку супа и . Это значит, что частота Ваших шагов попала в резонанс с собственными колебаниями жидкости в тарелке. Заметив это, мы резко меняем темп ходьбы – и суп «успокаивается». Своя базовая резонансная частота есть у каждого водоёма. И чем больше размер водоёма, тем ниже частота собственных колебаний жидкости в нём. Так вот, у Женевского озера собственная резонансная частота оказалось кратной частоте приливов, и малое приливное влияние «разбалтывает» Женевское озеро так, что на его берегах уровень меняется вполне ощутимо. Эти стоячие волны большого периода, возникающие в замкнутых водоемах, называются сейши .

Энергия приливов

В наше время пытаются один из альтернативных источников энергии связать с приливным эффектом. Как я уже говорил, главный эффект приливов не в том, что вода поднимается и опускается. Главный эффект – это приливное течение, которое за сутки перегоняет воду вокруг всей планеты.

В неглубоких местах этот эффект очень важен. В районе Новой Зеландии через некоторые проливы капитаны даже не рискуют проводить корабли. Парусникам там вообще никогда не удавалось пройти, да и современные корабли проходят с трудом, потому что дно мелкое и приливные течения имеют колоссальную скорость.

Но раз вода течёт, эту кинетическую энергию можно использовать. И уже построены электростанции, на которых турбины туда-сюда вращаются за счёт приливного и отливного течения. Они вполне работоспособны. Первая приливная электростанция (ПЭС) была сделана во Франции, она до сих пор самая крупная в мире, мощностью 240 МВт. По сравнению с ГЭС не ахти, конечно, но ближайшие сельские районы она обслуживает.

Чем ближе к полюсу, тем скорость приливной волны меньше, поэтому в России побережий, у которых были бы очень мощные приливы, нет. У нас вообще выходов к морю немного, а побережье Северного ледовитого океана для использования приливной энергии не особенно выгодно ещё и потому, что прилив гонит воду с востока на запад. Но всё-таки подходящие для ПЭС места есть, например, губа Кислая.

Дело в том, что в заливах прилив создаёт всегда больший эффект: волна набегает, устремляется в залив, а он сужается, сужается – и амплитуда нарастает. Похожий процесс происходит, как если бы щёлкнули кнутом: сначала длинная волна идёт медленно по кнуту, но потом масса вовлечённой в движение части кнута уменьшается, поэтому скорость увеличивается (импульс mv сохраняется!) и к узкому концу достигает сверхзвуковой, в результате чего мы слышим щелчок.

Создавая экспериментальную Кислогубскую ПЭС небольшой мощности, энергетики пытались понять, насколько эффективно можно использовать приливы на околополярных широтах для производства электроэнергии. Особого экономического смысла она не имеет. Однако сейчас есть проект очень мощной российской ПЭС (Мезенской) – на 8 гигаватт. Для того чтобы достичь этой колоссальной мощности, нужно перегородить большой залив, отделив дамбой Белое море от Баренцева. Правда, весьма сомнительно, что это будет сделано, пока у нас есть нефть и газ.

Прошлое и будущее приливов

Кстати говоря, из чего черпается энергия приливов? Турбина крутится, электроэнергия вырабатывается, а какой объект теряет при этом энергию?

Поскольку источником энергии прилива служит вращение Земли, то раз мы черпаем из него, значит, вращение должно замедляться. Казалось бы, у Земли есть внутренние источники энергии (тепло из недр идёт благодаря геохимическим процессам и распаду радиоактивных элементов), есть чем компенсировать потери кинетической энергии. Это так, но энергетический поток, распространяясь в среднем практически равномерно по всем направлениям, едва ли может существенно повлиять на момент импульса и изменить вращение.

Если бы Земля не вращалась, приливные горбы смотрели бы точно в направлении Луны и ему противоположном. Но, вращаясь, тело Земли сносит их вперёд по направлению своего вращения – и возникает постоянное расхождение приливного пика и подлунной точки в 3-4 градуса. К чему это приводит? Горб, который ближе к Луне, притягивается к ней сильнее. Эта сила притяжения стремится затормозить вращение Земли. А противоположный горб дальше от Луны, он старается ускорить вращение, но притягивается слабее, поэтому равнодействующий момент сил оказывает на вращение Земли тормозящее действие.

Итак, наша планета всё время уменьшает скорость своего вращения (правда, не совсем регулярно, скачками, что связано с особенностями массопереноса в океанах и атмосфере). А какое влияние оказывают земные приливы на Луну? Ближняя приливная выпуклость тянет Луну за собой, дальняя – напротив, замедляет. Первая сила больше, в результате Луна ускоряется. Теперь вспомните из предыдущей лекции, что происходит со спутником, который принудительно тянут вперёд по движению? Поскольку его энергия увеличивается, он отдаляется от планеты и его угловая скорость при этом падает, потому что растёт радиус орбиты. Кстати, увеличение периода обращения Луны вокруг Земли было замечено ещё во времена Ньютона.

Если говорить в цифрах, то Луна отдаляется от нас примерно на 3,5 см в год, а длительность земных суток каждые сто лет возрастает на сотую доли секунды. Вроде бы ерунда, но вспомните, что Земля существует миллиарды лет. Легко подсчитать, что во времена динозавров в сутках было около 18 часов (нынешних часов, разумеется).

Поскольку Луна отдаляется, приливные силы становятся меньше. Но ведь она всегда удалялась, и если мы обратим взгляд в прошлое, то увидим, что раньше Луна была ближе к Земле, а значит, и приливы были выше. Можете оценить, например, что в архейскую эру, 3 млрд лет назад приливы были километровой высоты.

Приливные явления на других планетах

Разумеется, в системах других планет со спутниками происходят такие же явления. Юпитер, например, – очень массивная планета, у которой большое число спутников. Четыре его крупнейших спутника (их называют галилеевыми, потому что Галилей их обнаружил) подвергаются влиянию со стороны Юпитера вполне ощутимо. Ближайший из них, Ио, весь покрыт вулканами, среди которых более полусотни действующих, причём они выбрасывают «лишнее» вещество на 250-300 км вверх. Это открытие было весьма неожиданным: на Земле таких мощных вулканов нет, а тут маленькое тело размером с Луну, которое должно бы остыть уже давно, а вместо этого оно пышет жаром во все стороны. Где источник этой энергии?

Вулканическая активность Ио была сюрпризом не для всех: за полгода до того, как первый зонд подлетел к Юпитеру, два американских геофизика опубликовали работу, в которой они рассчитали приливное влияние Юпитера на этот спутник. Оно оказалось настолько велико, что способно деформировать тело спутника. А при деформации всегда выделяется тепло. Когда мы берём кусок холодного пластилина и начинаем мять его в руках, он становится после нескольких сжатий мягким, податливым. Это происходит не потому, что рука нагрела его своим теплом (точно так же получится, если его плющить в холодных тисках), а потому что деформация вложила в него механическую энергию, которая преобразовалась в тепловую.

Но с какой стати форма спутника меняется под действием приливов со стороны Юпитера? Казалось бы, двигаясь по круговой орбите и синхронно вращаясь, как наша Луна, стал один раз эллипсоидом – и нет повода для последующих искажений формы? Однако рядом с Ио ещё и другие спутники есть; все они заставляют немножко смещаться туда-сюда его (Ио) орбиту: она то приближается к Юпитеру, то удаляется. Значит, приливное влияние то ослабевает, то усиливается, и форма тела всё время меняется. Кстати, я ещё не говорил про приливы в твёрдом теле Земли: они, конечно, тоже есть, они не такие высокие, порядка дециметра. Если вы посидите часов шесть на своих местах, то благодаря приливам сантиметров на двадцать «погуляете» относительно центра Земли. Это колебание для человека неощутимо, конечно, но геофизические приборы его регистрируют.

В отличие от земной тверди, поверхность Ио за каждый орбитальный период колеблется с многокилометровой амплитудой. Большое количество энергии деформации рассеивается в виде тепла и нагревает недра. На ней, кстати, не видно метеоритных кратеров, потому что вулканы постоянно забрасывают всю поверхность свежим веществом. Стоит ударному кратеру образоваться, как лет через сто его засыпают продукты извержения соседних вулканов. Работают они непрерывно и очень мощно, к этому добавляются разломы в коре планеты, через которые из недр вытекает расплав разных минералов, в основном сера. При высокой температуре она темнеет, поэтому струя из кратера выглядит чёрной. А светлый ободок вулкана – остывшее вещество, которое опадает вокруг вулкана. На нашей планете выброшенное из вулкана вещество обычно тормозится воздухом и падает близко к жерлу, образуя конус, а на Ио атмосферы нет, и оно летит по баллистической траектории далеко во все стороны. Пожалуй, это пример самого мощного приливного эффекта в Солнечной системе.


Второй спутник Юпитера, Европа вся выглядит, как наша Антарктида, она покрыта сплошной ледяной коркой, кое-где потрескавшейся, поскольку её тоже что-то постоянно деформирует. Поскольку этот спутник подальше от Юпитера, приливный эффект здесь не так силён, но тоже вполне ощутим. Под этой ледяной корой жидкий океан: на снимках видно, как из некоторых разошедшихся трещин бьют фонтаны. Под действием приливных сил океан бурлит, а на его поверхности плавают и сталкиваются ледяные поля, почти как у нас в Северном ледовитом океане и у берегов Антарктиды. Измеренная электропроводность жидкости океана Европы свидетельствует о том, что это солёная вода. Почему бы там не быть жизни? Заманчиво было бы опустить в одну из трещин прибор и посмотреть, кто там живёт.

На самом деле не для всех планет концы с концами сходятся. Например, у Энцелада, спутника Сатурна, тоже есть ледяная кора и океан под ней. Но расчёты показывают, что энергии приливов недостаточно, чтобы поддерживать подлёдный океан в жидком состоянии. Конечно, кроме приливов у любого небесного тела есть и другие источники энергии – например, распадающиеся радиоактивные элементы (уран, торий, калий), но на малых планетах они едва ли могут играть значимую роль. Значит, чего-то мы пока не понимаем.

Приливный эффект чрезвычайно важен для звёзд. Почему – об этом на следующей лекции.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...