Приборы для измерения оптических параметров и характеристик светодиодов. Оптический измерительный прибор Приборы для измерения оптики


С помощью оптических приборов, дающих действительное изображение предмета и имеющих в плоскости изображений пластинки с делениями или перекрестием можно производить измерения двояким путем.

1. Оптическая система вместе с жестко связанной с ней штриховой пластинкой может перемещаться относительно предмета. Точность визирования в основном обуславливается увеличением, даваемым микроскопом. Величина перемещения является измеряемой величиной размера. Погрешность при измерении входит целиком в результат измерения.

2. Оптическая система неподвижна. Штриховая система либо перемещается в плоскости изображения предмета относительно самого изображения, либо имеет шкалу. Средством измерения является оптическая система. Точность визирования (контакта) с измеряемой поверхностью та же, что и в первом случае. Величина перемещения штриховой пластинки соответствует размерам действительного изображения. Следовательно, в результат измерения входит погрешность масштаба изображения, поэтому она должна быть точно известна, а изображение строго подобно предмету.

Оптические приборы подразделяют на три разновидности:

1) приборы с оптическим способом визирования с измеряемой поверхностью и механическим измерением перемещения точки визирования;

2) приборы с механическим соприкосновением с контролируемым изделием и оптическим измерением перемещения точки соприкосновения;

3) приборы с оптическим устройством для наблюдения контролируемого изделия и оптическим измерением перемещения точки визирования.

К приборам первой разновидности относят инструментальные микроскопы и проекторы.

Микроскопы инструментальные предназначены для измерения наружных и внутренних линейных и угловых размеров изделий в прямоугольных и полярных координатах. Они состоят из головки главного микроскопа и приспособления, с помощью которого либо сама головка, либо контролируемое изделие могут перемещаться в одном или двух взаимно перпендикулярных направлениях. Во многих конструкциях микроскопов окулярная штриховая пластинка может вращаться, что позволяет производить как линейные, так и угловые измерения. Величина перемещения измерительного стола определяется с помощью окулярного микрометра, концевых мер или штриховой меры. Отсчеты по шкалам производят чаще всего с помощью отчетных окуляров с неподвижными делениями. Наиболее часто на инструментальных микроскопах проводят измерения параметров резьбы.

Инструментальный микроскоп малой модели (ММИ) имеет диапазон измерений в продольном направлении 75 мм, в поперечном – 25 мм. Цена деления резьбовой микропары перемещения – 0,01 мм, При размере свыше 25 мм используют концевые меры длины.

Инструментальный микроскоп большой модели (БМИ) имеет диапазон измерения в продольном направлении 150 мм, в поперечном – 50 мм. Цена деления резьбовой микропары – 0,005 мм, что достигается за счет увеличения диаметра барабана. Появились микроскопы, у которых микропара снабжается импульсным устройством с цифровым отсчетом.

Проектором в машиностроении называется оптический прибор, в котором оптическое устройство формирует изображение измеряемого объекта на рассеивающей поверхности, служащей экраном. Проектор служит для контроля и измерения изделий сложного профиля, например профильных шаблонов. Можно измерять контуры заточек, канавок, расстояние между центрами отверстий.

Различают:

Контроль увеличенного действительного изображения, спроектированного на экран или матовое стекло;

Измерение с помощью координатного измерительного стола и измерительного перекрытия на экране.

Приборы второй разновидности основаны на получении автоколлимационного изображения. Автоколлимацией называется ход световых лучей, при котором они, выйдя из одной части оптической системы параллельным пучком, отражаются от плоского качающегося зеркала и проходят систему в обратном направлении. К этим приборам относятся: оптиметр вертикальный и горизонтальный; оптический длинномер вертикальный и горизонтальный; интерферометр; измерительная машина; гониометр.

Оптиметр – прибор для измерения линейных размеров сравнением с мерой, калибром или деталью-образцом, преобразовательным элементом в котором является рычажно-оптический механизм. Измерительной головкой служит трубка оптиметра окулярного или проекционного (экранного) типа. В трубке окулярного типа отсчитываются значения размеров по шкале, наблюдаемой в окуляре, в трубке проекционного типа отсчет производится на экране.

Оптиметры изготавливают в двух вариантах – вертикальные с таким же расположением линии измерения и горизонтальные – с горизонтальной линией измерения. Вертикальный оптиметр служит для контактных измерений при контроле наружных линейных размеров, а горизонтальный – для наружных и внутренних размеров.

Оптический длинномер – прибор для измерения линейных размеров сравнением со значением по шкале, встроенной в этот прибор и перемещающейся вместе с измерительным стержнем. Дробные значения отсчитываются по шкале с помощью нониуса, встроенного в специальный окулярный или проекционный микроскоп. В зависимости от конструкции стоек, в которых устанавливают длинномеры, они, как и оптиметры, бывают вертикальные и горизонтальные.

Длинномеры на горизонтальных стойках типа ИЗВ предназначены для тех же целей, что и горизонтальные оптиметры, но измерения здесь ведут прямым методом без применения установочных мер длины. Горизонтальный длинномер типа ИКУ предназначен для измерения наружных и внутренних линейных и угловых размеров в прямоугольных и полярных координатах.

Длинномеры и измерительные машины предназначены для измерения больших длин по одной оси координат. Погрешность измерения длинномером при рекомендуемых условиях, в том числе температурных, составляет от 0,001 до 0,003 мм.

Гониометры служат для измерения углов бесконтактным методом с помощью автоколлиматора непосредственно по лимбу. Выпускают гониометры типов ГС-1, ГС-2, ГС-5, ГС-10 и ГС-30 с ценой деления соответственно 1, 2, 5, 10 и 30".

Прибор имеет ось вращения, установленную на опорах в основании. К оси прибора крепится лимб, алиада и предметный столик. Лимб может вращаться совместно со столиком или совместно с алиадой. Алиада имеет отсчетное устройство и колонку со зрительной трубой, к которой прилагаются автоколлимационные окуляры.

Интерферометр – измерительный прибор, основанный на интерференции света. Контактные интерферометры предназначены для измерения наружных диаметров с использованием стеклянных пластин. Диапазон измерения вертикального интерферометра до 150 мм, горизонтального – до 500 мм.

Погрешность измерения вертикальным интерферометром при использовании концевых мер длины второго разряда составлят от 0,25 до 0,40 мкм. Эти интерферометры чаще всего используют для аттестации концевых мер длины на третий разряд.

Измерительная машина – прибор для измерения линейных размеров сравнением со шкалой, встроенной неподвижно в этот прибор, с отсчетом дробных значений с помощью дополнительной шкалы, перемещающейся с одним измерительным наконечником и по трубке оптиметра. В машине имеется шкала с большим интервалом, который делится с помощью дополнительной шкалы, и устройство для отсчета значений с ценой деления 0,0001 мм. Измерительные машины предназначены в основном для измерения больших размеров (более 1000 мм) и относятся к горизонтальному типу. Измерения на машине производятся непосредственным методом или методом сравнения с мерой. В последнем случае отсчитывается отклонение от настроенного размера с использованием шкалы трубки оптиметра.

Применяют измерительные машины в основном для больших концевых мер длины и очень часто для определения размера микрометрических нутромеров после их сборки. Погрешность измерения методом сравнения с мерой до 500 мм составляет от 0,0004 до 0,002 мм. При измерении методом непосредственной оценки, т. е. с использованием всех шкал, погрешность измерения при рекомендуемых условиях составляет от 0,001 до 0,020 мкм.

Основными представителями третьей разновидности оптических приборов являются универсальный микроскоп и универсальный измерительный микроскоп.

Универсальный микроскоп (УИМ) используется для измерения линейных и угловых размеров в плоскости с визированием измеряемых точек или линий с помощью микроскопа и отсчетом значений по оптическим шкалам. УИМ представляет собой двухкоординатную измерительную машину. Положение продольных и поперечных салазок определяется по стеклянным шкалам с помощью отсчетных микроскопов, снабженных окулярами со спиральным нониусом. При измерении резьб для повышения точности часто используют измерительные ножи.

УИМ имеет диапазон измерений в продольном направлении 200 мм, в поперечном – 100 мм. Цена деления отсчетных линейных устройств 0,001 мм, угломерного устройства – 1".

Изготавливают микроскопы с диапазоном измерений 500х200 мм. В некоторых микроскопах имеется проекционное устройство и цифровой отсчет размера. Микроскопы снабжаются различной оснасткой для проведения разнообразных измерений, поэтому они называются универсальными.

Применение лазеров для линейных измерений. Использование лазеров, особенно газовых лазеров видимого диапазона, чрезвычайно расширило область применения оптических методов измерений расстояний и углов. Пространственная погрешность лазерного света позволяет коллимировать пучки с расходимостью, вызванной только дифракцией. Благодаря этому приборы с применением лазера обеспечивают угловую точность около 1 мкрад при работе на расстоянии порядка сотен метров.

Благодаря высокой интенсивности лазерного излучения твизирование можно выполнять путем непосредственной посылки пучка света в заданном направлении, а интерферометрические измерения проводить в нормально освещенном помещении и даже на открытом воздухе.

Одним из наиболее простых способов применения лазеров является техника визирования. Установив лазер, можно идти вдоль его условной «оптической струны, выверяя положение различных элементов контролируемой конструкции. Технику визирования широко применяют при сборке и монтаже самолетов, нефтехимического оборудования, кораблей, при нивелировании, проходке тоннелей, при строительстве больших сооружений.

Наиболее распространенным методом измерения с помощью лазера является измерение длины с использованием обычной оптической интерференции для коротких дистанций и техники модулированного света – для длинных дистанций. Точность лазерных приборов определяется главным образом степенью стабилизации частоты применяемого лазера и реально может быть порядка 10 -9 – 10 -10 мм.

С помощью лазеров можно осуществлять непрерывный интероферометрический контроль размеров деталей в производственном процессе. Лазерные интерферометры и цифровая техника сделали доступным контроль крупногабаритных изделий по отклонениям размеров, формы и расположения поверхностей.

Одним из перспективных направлений развития техники линейных измерений является голографическая интерферометрия с использованием лазера.

В лазерных интероферометах цехового назначения применяют лазерный измеритель перемещений ТПЛ-ЭОК1 с устройствами автоматического управления и ЭВМ. Прибор имеет кнопку установки нулевого положения, что дает возможность реализации измерений по методу сравнения с мерой. Прибор имеет стойку и измерительный столик, что позволяет проводить измерения как в вертикальной, так и в горизонтальной плоскости.

6 СТАНДАРТИЗАЦИЯ ОСНОВНЫХ НОРМ ВЗАИМОЗАМЕНЕМОСТИ

Оптический измерительный прибор в машиностроении, средство измерения, в котором визирование (совмещение границ контролируемого размера с визирной линией, перекрестием и т.п.) или определение размера осуществляется с помощью устройства с оптическим принципом действия. Различают три группы оптических измерительных приборов: приборы с оптическим способом визирования и механическим (или др., но не оптическим) способом отсчёта перемещения; приборы с оптическим способом визирования и отсчёта перемещения; приборы, имеющие механический контакт с измеряемым объектом, с оптическим способом определения перемещения точек контакта. Рентгеновский аппарат Арина-1.

Из приборов первой группы распространение получили проекторы для измерения и контроля деталей, имеющих сложный контур, небольшие размеры (например, шаблоны, детали часового механизма и т.п.). В машиностроении применяются проекторы с увеличением 10, 20, 50, 100 и 200, имеющие размер экрана от 350 до 800 мм по диаметру или по одной из сторон. Проекционные насадки устанавливают на микроскопах, металлообрабатывающих станках, различных приборах. Инструментальные микроскопы наиболее часто используют для измерения параметров резьбы. Большие модели инструментальных микроскопов обычно снабжаются проекционным экраном или бинокулярной головкой для удобства визирования.

Наиболее распространённый прибор второй группы - универсальный измерительный микроскоп УИМ, в котором измеряемая деталь перемещается на продольной каретке, а головной микроскоп - на поперечной. Визирование границ проверяемых поверхностей осуществляется с помощью головного микроскопа, контролируемый размер (величина перемещения детали) определяется по шкале обычно с помощью отсчётных микроскопов. В некоторых моделях УИМ применено проекционно-отсчётное устройство. К этой же группе приборов относится компаратор интерференционный.

Приборы третьей группы применяют для сравнения измеряемых линейных величин с мерами или шкалами. Их объединяют обычно под общим названием компараторы. К этой группе приборов относятся оптиметр, оптикатор, измерительная машина, контактный интерферометр, оптический длиномер и др. В контактном интерферометре (разработан впервые И. Т. Уверским в 1947 на заводе "Калибр" в Москве) используется интерферометр Майкельсона, подвижное зеркало которого жестко связано с измерительным стержнем. Перемещение стержня при измерении вызывает пропорциональное перемещение интерференционные полос, которое отсчитывается по шкале. Эти приборы (горизонтального и вертикального типа) наиболее часто применяют для относительных измерений длин концевых мер при их аттестации. В оптическом длиномере (длиномер Аббе) вместе с измерительным стержнем перемещается отсчётная шкала. При измерении абсолютным методом размер, равный перемещению шкалы, определяется через окуляр или на проекционном устройстве с помощью нониуса.

Перспективным направлением в разработке новых типов оптических измерительных приборов является оснащение их электронными отсчитывающими устройствами, позволяющими упростить отсчёт показаний и визирование, получать показания, усреднённые или обработанные по определённым зависимостям, и т.п.

В способе бесконтактного оптического измерения размещают объект между источником лазерного излучения и фотоприемником, измеряют мощность лазерного излучения Р, сравнивают ее с заданным уровнем Р 0 , осуществляют оптическую развертку лазерного излучения в пучок параллельных лучей в зоне нахождения объекта и определяют размер объекта по величине тени от объекта на фотоприемнике, корректируя время экспозиции фотоприемника по величине разности (Р 0 -Р). Устройство для осуществления способа включает лазер, светоделительную пластину, короткофокусную цилиндрическую линзу, выходную цилиндрическую линзу, коллимирующую линзу, ПЗС, блок обработки информации, фотоприемное пороговое устройство. Технический результат - повышение точности измерений. 2 н. и 2 з.п. ф-лы, 1 ил.

Рисунки к патенту РФ 2262660

Изобретение относится к измерительной технике, в частности к бесконтактным оптическим средствам измерения геометрических размеров различных объектов.

Известен способ бесконтактного оптического измерения размеров объектов, называемый также теневым, который заключается в размещении исследуемого объекта между лазером и многоэлементным фотоприемником, развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта и определении размера объекта по величине тени, отбрасываемой им на фотоприемник. Устройства, реализующие известный способ, - лазерные теневые измерители - состоят из источника лазерного излучения, системы линз, формирующей из первоначального луча путем оптической развертки пучок параллельных лучей, и многоэлементного фотоприемника, подключенного к блоку обработки информации. Количество незасвеченных пикселов на фотоприемнике на линейке ПЗС определяет размер объекта (1, 2).

Использование оптической развертки позволяет применить для непрерывного считывания информации многоэлементный фотоприемник на линейке ПЗС и осуществить съем информации в течение одного кадра, длительность которого регулируется в широких пределах, вплоть до 0,1 мкс. Это обстоятельство дает возможность использовать лазерные теневые измерители для измерения параметров объектов, движущихся с большой скоростью.

В качестве прототипа заявляемого технического решения выбран способ бесконтактного оптического измерения размеров объектов, заключающийся в размещении исследуемого объекта между лазером и фотоприемником, оптической развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта и определении размера объекта по величине тени от объекта на фотоприемнике. Устройство, реализующее известный способ, состоит из источника лазерного излучения, линзовой системы оптической развертки, многоэлементной фотодиодной линейки, схемы обработки информации и компьютера (3).

Недостатки известного способа и устройства, с помощью которого реализуется способ, обусловлены следующим. Точность измерения при использовании известного способа зависит, прежде всего, от точности определения границ контура исследуемого объекта. Дифракционные эффекты приводят к тому, что переход от света к тени на поверхности фотоприемника характеризуется определенной протяженностью, которая для используемых на практике фотоприемников на линейке ПЗС составляет, как правило, несколько пикселов. Размытость границы между светом и тенью снижает точность определения размеров объекта, причем влияние этого фактора будет тем больше, чем меньше размер объекта.

Как было показано выше, размер объекта определяется количеством незасвеченных (затемненных) пикселов на линейке ПЗС. Затемненным считается пиксел, видеосигнал с которого меньше определенного порога.

Можно показать, что размер детали будет определяться количеством пикселов, на которых напряжение U t больше порогового U пор

где Е max - максимальная мощность лазерного излучения;

r - текущий радиус лазерного пучка на линейке ПЗС;

r о - радиус лазерного пучка в точке с плотностью мощности излучения в е 2 раз меньшей, по сравнению с интенсивностью в центре;

Т экс - время экспозиции;

RC - параметр, характерный для конкретной линейки ПЗС.

Из выражения (1) следует, что размер объекта зависит как от мощности лазерного излучения, так и от времени экспозиции.

За время экспозиции число пикселов, на которых U t U пор, будет определяться мощностью лазерного излучения, так как освещенность каждого пиксела и, следовательно, скорость нарастания заряда на нем зависит от мощности лазерного излучения. Как следствие, определяемый размер объекта будет зависеть от величины мощности лазерного излучения. Поэтому в известном лазерном измерителе при флуктуациях мощности точность определения размера объекта снижается.

Задача, решаемая изобретением, - повышение точности измерений.

Указанная задача решается тем, что в способе бесконтактного оптического измерения размеров объектов, заключающемся в размещении объекта между источником лазерного излучения и фотоприемником, оптической развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта и определении размера объекта по величине тени от объекта на фотоприемнике, измеряют мощность лазерного излучения Р, сравнивают ее с заданным уровнем Р о и по величине (Р о -Р) осуществляют корректировку времени экспозиции фотоприемника. Устройство для осуществления способа, содержащее источник лазерного луча, средства оптической развертки лазерного луча, фотоприемник, подключенный к первому входу блока обработки информации, и объект, расположенный между источником лазерного луча и фотоприемником, снабжено светоделителем, размещенным между источником лазерного луча и средствами оптической развертки, и фотоприемным пороговым устройством, выход которого подсоединен ко второму входу блока обработки информации. Средства оптической развертки лазерного луча выполнены в виде цилиндрических линз, а светоделитель - в виде полупрозрачной пластины.

Изобретение иллюстрируется чертежом, где схематически изображено устройство, с помощью которого реализуется заявляемый способ. Оно включает лазер 1, светоделительную полупрозрачную пластину 2, средства оптической развертки лазерного луча, состоящие из короткофокусной цилиндрической линзы 3 и выходной цилиндрической линзы 4, коллимирующую линзу 5, фотоприемник на линейке ПЗС 6, соединенный с первым входом блока обработки информации 7, и фотоприемное пороговое устройство 8, подключенное ко второму входу блока 7 и представляющее собой фотоприемник со схемой сравнения. Светоделительная пластина 2 и фотоприемное пороговое устройство 8 образуют канал корректировки времени экспозиции. Светоделительная пластина 2 расположена под углом к траектории луча лазера 1 для того, чтобы обеспечить отвод части мощности излучения на фотоприемное пороговое устройство 8. Измеряемый объект 9 размещается между линзами 4 и 5.

Заявляемый способ осуществляется следующим образом. Излучение лазера 1 попадает на светоделительную пластину 2. Часть излучения отклоняется пластиной 2 на фотоприемное пороговое устройство 8, а остальная часть проходит в оптическую систему линз 3 и 4, осуществляющих развертку излучения в пучок параллельных лучей. В результате исследуемый объект 9 засвечивается плоским лучом и на фотоприемнике 6 формируется изображение объекта, соответствующее тени, отбрасываемой объектом 9 на поверхность фотоприемника 6. В блоке 7 происходит обработка сигнала изображения и определение размера объекта 9. В пороговом устройстве 8 осуществляется сравнение части мощности лазерного излучения, поступившей на устройство 8, с пороговой величиной, соответствующей заданной мощности излучения. Если величина мощности отлична от заданной, на выходе порогового устройства 8 будет формироваться разностный сигнал, поступающий на второй вход блока 7. В соответствии с величиной поступившего сигнала блок 7 осуществляет корректировку времени экспозиции фотоприемника 6. Если фактическая мощность лазерного излучения больше заданной, блок 7 уменьшает время экспозиции, если меньше - увеличивает.

Как следствие, регулировка времени заряда пикселов даже в условиях флуктуации мощности лазерного излучения обеспечивает высокую точность измерений.

Таким образом, заявляемые способ и устройство за счет корректировки времени экспозиции в зависимости от мощности лазерного излучения обеспечивают - по сравнению с устройством-прототипом - повышение точности измерения размеров объектов.

ЛИТЕРАТУРА

1. А.З.Венедиктов, В.Н.Демкин, Д.С.Доков, А.В.Комаров. Применение лазерных методов для контроля параметров автосцепки и пружин. Новые технологии - железнодорожному транспорту. Сборник научных статей с международным участием, часть 4. Омск 2000, с.232-233.

2. V.N.Demrin, D.S.Dokov, V.N.Tereshkin, A.Z.Venediktov. Optical control of geometrical dimensions for railway cars automatic coupling. Third Internat. Workshop on New Approaches to High-Tech: Nondestructive Testing and Computer Simulations in Science and Engineering. Proceedings of SPAS, Vol. 3. 7-11 June 1999, St. Petersburg, p. А17.

3. В.В.Анциферов, М.В.Муравьев. Бесконтактный лазерный измеритель геометрических размеров роликов подшипников. Новые технологии - железнодорожному транспорту. Сборник научных статей с международным участием, часть 4. Омск 2000, с.210-213 (прототип).

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ бесконтактного измерения размеров объектов, заключающийся в размещении объекта между источником лазерного излучения и фотоприемником, оптической развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта, и определении размера объекта по величине тени от объекта на фотоприемнике, отличающийся тем, что измеряют мощность лазерного излучения Р, сравнивают ее с заданным уровнем Р о и по величине (Р о -Р) осуществляют корректировку времени экспозиции фотоприемника.

2. Устройство для бесконтактного оптического измерения размеров объектов, содержащее источник лазерного луча, средства оптической развертки лазерного луча, фотоприемник, подключенный к первому входу блока обработки информации, и объект, расположенный между средствами оптической развертки лазерного луча и фотоприемником, отличающееся тем, что оно снабжено светоделителем, размещенным между источником оптического излучения и средствами оптической развертки и оптически связанным с фотоприемным пороговым устройством, выход которого подсоединен ко второму входу блока обработки информации.

3. Устройство по п.2, отличающееся тем, что средства оптической развертки лазерного луча выполнены в виде цилиндрических линз.

4. Устройство по п.2, отличающееся тем, что светоделитель выполнен в виде полупрозрачной пластины.

Для объективной оценки качества строительных работ и успешной последующей эксплуатации ВОЛС строительные и обслуживающие организации должны располагать современным измерительным оборудованием, позволяющим проводить измерения с достоверными результатами.

Парк контрольно-измерительного оборудования многообразен и представлен отечественным и импортным оборудованием. Выбор требуемого измерительного оборудования зависит от конкретной задачи с учетом стоимости прибора (табл. 5).

Таблица 5. Сопоставление диагностических процедур и измерительных приборов.

ИСТОЧНИК ИЗЛУЧЕНИЯ

Используется вместе с оптическим ваттметром или идентификатором волокон для проверки целостности сварных швов, определения общих оптических потерь и идентификации волокон. Примерная цена: 500-2500 $.

ИЗМЕРИТЕЛЬ ОПТИЧЕСКОЙ МОЩНОСТИ

Оптические измерители мощности (Optical Power Meter - ОРМ) используются для измерения оптической мощности сигнала, а также для измерения затухания в кабеле (рис.22). Эти измерители являются столь же распространенным прибором для инженеров, связанных с оптоволоконными системами, как мультиметр для инженеров-электронщиков.

Рис. 22. Оптический измеритель мощности "GN 6000"

Оптические измерители мощности обеспечивают как измерение кабельных линий, так и анализ работы терминального оборудования, передающего сигнал в оптическую линию.

В паре со стабилизированным источником сигнала OPM обеспечивает измерение затухания - основного параметра качества оптической линии. Особенно важным классом измерений для OPM является измерение параметров узлов оптической линии (участков кабеля, интерфейсов, сварочных узлов, аттенюаторов и т.д.).

Основными параметрами OPM являются:

Тип детектора;

Линейность усилителя;

Точность и график необходимой калибровки;

Динамический диапазон;

Точность и линейность работы;

Возможность поддержки различных оптических интерфейсов;

Примерная цена 400-1200 $.

АНАЛИЗАТОР ЗАТУХАНИЯ

Анализатор затухания, вносимого оптическим кабелем (Optical Loss Test Set - OLTS), представляет собой комбинацию оптического измерителя мощности и источника оптического сигнала (рис.23). Различают интегрированные и раздельные измерители потерь.

Рис. 23.

Интегрированные имеют источник сигнала и измеритель мощности в одном устройстве, а разделенные измерители представляют собой набор из источника сигнала и ОРМ. Соответственно, технические параметры анализаторов потерь содержат все перечисленные параметры для источников сигнала и оптических измерителей мощности.

Анализаторы потерь оптической мощности обеспечивают пошаговый анализ оптической линии передачи, включая участки кабеля, места соединений и сварок. Это в первую очередь касается раздельных эксплуатационных анализаторов потерь оптической мощности. В то же время интегрированные анализаторы потерь, которые обычно применяются для промышленного анализа, обладают повышенной функциональностью и точностью измерений. Например, многие двух-частотные анализаторы могут выполнять измерения на длинах волн 1310 и 1550 нм автоматически.

ДЕТЕКТОР ПОВРЕЖДЕНИЙ ВОЛОКНА

В сочетании с источником света используется для проверки целостности волокна и других задач. Легкий, ручной. Примерная цена: 600 $.

ИДЕНТИФИКАТОР ВОЛОКОН

Используется для определения прохождения излучения через оптическое волокно. Легкий, компактный, размером в три спичечных коробка, полевой прибор. С помощью этих приборов можно тестировать целостность волокна, проверять маркировку кабеля или подтверждать наличие или отсутствие сигнала перед изменением маршрута или техническим обслуживанием, вводить и выводить оптический сигнал через изгиб оптического волокна. Примерная цена: 1000-1200 $

ОПТИЧЕСКИЙ РЕГУЛИРУЕМЫЙ АТТЕНЮАТОР

Незаменим при определении коэффициента ошибок в цифровых системах. Используется совместно с оптическим ваттметром и измерителем КО. Легкий, ручной.

Примерная цена: 1000-3000 $.

ОПРЕДЕЛИТЕЛЬ ОПО

Специально разработан для определения оптических потерь на отражение. В состав прибора входят калиброванный источник света, оптический ваттметр и другие специальные составные части. Прибор определяет ОПО более точно, чем обычный оптический рефлектометр. Примерная цена: 1500 - 5000$

ВОЛОКОННЫЙ ЛОКАТОР

Прибор обладает всеми возможностями оптического рефлектометра в части определения расстояния до места повреждения, отличается легкостью, компактностью, простотой в работе и предназначен для использования в полевых условиях.

Примерная цена: 2500-5000 $.

ОПТИЧЕСКИЙ РЕФЛЕКТОМЕТР

Оптические рефлектометры (Optical Time Domain Reflectometer - OTDR) являются наиболее полнофункциональным прибором для эксплуатационного анализа оптических кабельных сетей.

Рефлектометр представляет собой комбинацию импульсного генератора, разветвителя и измерителя сигнала и обеспечивает измерение отраженной мощности при организации измерений с одного конца. Рефлектометры действуют по принципу радара: в линию посылается импульс малой длительности, который распространяется по оптическому кабелю в соответствии с релеевским рассеянием и френелевским отражением на неоднородностях в оптическом кабеле (дефекты материала, сварки, соединители и т.д.). Управляющий процессор обеспечивает согласованную работу лазерного диода и электронного осциллографа, создавая возможность наблюдения потока обратного рассеяния полностью или по частям. Для ввода импульсов в волокно используются направленный ответвитель и оптический соединитель. Поток обратного рассеяния через оптический соединитель и направленный ответвитель поступает на высокочувствительный фотоприемник, где преобразуется в электрическое напряжение. Это напряжение подается на вход Y электронного осциллографа, вызывая соответствующее мощности потока обратного рассеяния отклонение луча осциллографа. Ось X осциллографа градуируется в единицах расстояния, а ось Y - в децибелах.

Оптический импульсный рефлектометр (OTDR) - это устройство, которое, на основе использования явления рассеяния света широко используется для измерения затухания в ОВ и их соединениях, длины ОВ или волоконно-оптических линий и расстояния до любого их участка.

Блок-схема типичного импульсного рефлектометра приведена на рис. 24.


Рис. 24.

Работа прибора основана на измерении мощности светового сигнала, рассеянного различными участками волоконно-оптической линии.

Световые импульсы относительно большой мощности от встроенного в импульсный оптический рефлектометр источника вводятся в волокно, а высокочувствительный приемник измеряет временную зависимость мощности светового сигнала, возвращающегося из тестируемого волокна обратно в рефлектометр.

Временная задержка сигнала равна удвоенному расстоянию до тестируемой области, деленному на групповую скорость света в волокне.

Мощность принимаемого сигнала определяется коэффициентом обратного рассеяния, мощностью тестирующего светового импульса, уменьшающейся по мере распространения света вперед, и затуханием рассеянного сигнала на своем пути назад. Следовательно, принимаемая мощность - это функция потерь на проход импульса до тестируемого участка волокна и обратно и коэффициента обратного рассеяния или отражения.

На участках однородного волокна, для которых вполне оправдано предположение о постоянстве коэффициента обратного рассеяния, импульсный рефлектометр можно использовать для измерения коэффициента затухания волокна и потерь на неоднородностях или элементах линии, а также для определения местоположения обрывов и соединений волокна и места установки разъемов. Кроме того? рефлектометр выдает графическое представление состояния тестируемого волокна. У него имеется и еще одно преимущество по сравнению с сочетанием источника света и ваттметра? или тестера для определения потерь: при использовании рефлектометра требуется доступ только к одному концу волокна.

В большинстве случаев рефлектометры используются для обнаружения повреждений в установленных кабелях и для оптимизации соединений. Однако они весьма полезны и при проверке оптических волокон и поиска в них производственных дефектов. В настоящее время ведется работа по улучшению разрешающей способности рефлектометров при работе на короткие расстояния (в сетях LAN) и выполнении новых задач? таких? как оценка значения потерь при отражении от разъемов.

Работа оптических рефлектометров.

Главной целью измерений, проводимых с использованием оптических рефлектометров, является определение импульсной характеристики тестируемого волокна. Как известно, импульсную передаточную характеристику исследуемого устройства можно получить в том случае, если на его вход подать бесконечно короткий импульс. Тестирующий импульс оптического рефлектометра имеет конечную длительность и, по этому, реальный временной отклик - рефлектограмма представляет собой свертку импульсной передаточной функции волокна с тестирующим импульсом.

Типичная рефлектограмма импульсного рефлектометра приведена на рис.25.


Рис. 25.

Вертикальная шкала определяет уровень рассеянного (отраженного) сигнала в логарифмических единицах. Горизонтальная ось соответствует расстоянию от рефлектометра до тестируемой области волокна.

По формуле Рэлея интенсивность рассеяния света обратно пропорционально четвертой степени длины волны. Суммарные потери на Рэлеевское рассеяние количественно могут быть оценены по формуле:

ДБ/км, (61)

где К р - коэффициент рассеяния, для кварца равный 0,8 [(мкм4? дБ)/км];

Длина волны, мкм.

В ОВ рассеяние на частицах примеси может быть уменьшено практически до нуля, но рассеяние на «вмороженных» неоднородностях принципиально уменьшить нельзя, именно они определяют минимальную величину потерь на рассеяние.

На рис. 25 показаны, также, сигналы от разъемов, сварных соединений, механических соединений, потери на изгибах и трещинах и отражения от них.

Разъемы. Наличие разъема в волоконно-оптической линии приводит к появлению пика на рефлектограмме, обусловленного френелевским отражением на торцах соединяемых волокон? и снижением величины рассеянного сигнала сразу за ним из-за вносимых им потерь.

Сварные соединения. На сварных соединениях френелевское отражение отсутствует? так как сколотые торцы волокон сплавляются друг с другом. Однако на сварных соединениях потери все-таки есть. Хорошо сваренное соединение трудно "засечь"? так как потери на нем невелики и появляющаяся «ступенька» на рефлектограме очень мала. Наличие даже небольших признаков Френелевского отражения (пика на рефлектограмме) - верный признак того? что сварное соединение - очень низкого качества.

Потери на изгибах. Это просто потери в месте изгиба. Если такие потери локализованы? то их трудно отличить от потерь на сварные или механические соединения.

Повышение чувствительности импульсных оптических рефлектометров.

Измерение параметров волоконно-оптической линии возможно только в том случае, если мощность рассеянного сигнала, попадающего на детектор, превышает мощность шума, т.е. отношение сигнал/шум должно быть больше единицы. Мощность детектируемого сигнала определяется мощностью и энергией лазерного импульса, вводимого в волокно, и коэффициентом обратного рассеяния. Отметим,? что энергия светового импульса прямо пропорциональна его длительности. Поэтому? для увеличения дальности действия рефлектометра увеличивают длительность световых импульсов. Однако? чем больше длина импульса?, тем больший отрезок волокна он заполняет. При увеличении длины импульса увеличиваются и те участки волокна? которые попадают внутрь импульса и "просматривание" которых становится невозможным. Тем самым снижается разрешающая способность? рефлектометра. Для увеличения отношения "сигнал-шум" принимаемого сигнала? рефлектометр посылает множество импульсов? а затем усредняет данные об отраженных сигналах.

Мертвые зоны.

Считается, что мертвые зоны, обнаруживаемые на рефлектограмме, зависят от одного основного фактора - длительности импульса, проходящего по волокну. Так как она может быть выбрана, то каждому ее значению соответствует определенная мертвая зона. Следовательно, чем больше длина импульса, тем больше мертвая зона. Однако после установления определенной длительности импульса (для определенного волокна) становятся очевидны другие факторы. В частности, при конкретной длительности импульса мы можем столкнуться с различными мертвыми зонами для отражающих неоднородностей, зависящих от расстояния до точки отражения и интенсивности отраженного сигнала. Дело в том, что для того чтобы принимать отраженный сигнал, детектор рефлектометра должен обладать большой чувствительностью. При этом, когда на детектор приходит сильный сигнал (от точки с высокой отражательной способностью) происходит перегрузка детектора. Мертвые зоны всегда связаны с наличием отражений и вызваны насыщением детектора рефлектометра. В этом случае детектору потребуется определенное время для восстановления чувствительности после перегрузки, что приводит к потере информации. Как результат, определенный участок волокна исключается из процесса тестирования. При этом следует различать два типа мертвых зон (рис. 27):

1. Мертвая зона отражения - определяется расстоянием между началом отражения и точкой с уровнем - 1.5 дБ от вершины понижающегося отрезка кривой отражения, после чего следующие события легко идентифицировать.

2. Мертвая зона затухания - определяется расстоянием от начала отражения до точки, в которой произошло восстановление чувствительности приемника с погрешностью 0.5 дБ от установившейся рефлектограммы обратного рассеяния и зависит от длительности импульса, длины волны, коэффициента обратного рассеяния, коэффициента отражения и полосы пропускания.

Таким образом, понятие «мертвой зоны» заключается в количественном определении расстояния, на котором после сильного отражения происходит потеря данных.

Мертвая зона ослабления, как правило, указывается для наиболее коротких импульсов.

Рис. 26.

Рис. 27.

Лучшие оптические рефлектометры характеризуются большим динамическим диапазоном, кратным определением затухания, однокнопочным интерфейсом, упрощенной панелью управления, наличием дисплея, использованием “дальнобойной” оптики с высокой степенью разрешения, применением специального программного обеспечения, оборудованы дисководом для сохранения данных и принтером, для их распечатки, а также имеют возможность определения ОПО и сопоставления нескольких рефлектограмм. Выбирая рефлектометр, следует убедиться, что он может работать с одномодовоми или многомодовыми волокнами. Модульные оптические рефлектометры обладают большей гибкостью и могут быть сконфигурированы по-разному. Примерная цена: 10000-40000 $.

ИЗМЕРИТЕЛЬ ХРОМАТИЧЕСКОЙ ДИСПЕРСИИ.

Этот прибор, как следует из его названия, предназначен для измерений хроматической дисперсии волоконных световодов. Как правило, выполнен в лабораторном варианте для использования в закрытых помещениях. Различные методы измерения хроматической дисперсии подробно описаны в ITU.

Примерная цена, в зависимости от метода: 25000 - 120000$.

ИЗМЕРИТЕЛЬ ПМД.

Поляризационная модовая дисперсия волоконных световодов, как и хроматическая, ограничивает широкополосность волоконных световодов. Как правило, измеритель ПМД выполнен в лабораторном варианте для использования в закрытых помещениях. Различные методы измерения ПМД подробно описаны в ITU.

Примерная цена, в зависимости от метода: 40000 - 200000$.

СИСТЕМА КОНТРОЛЯ РАБОТОСПОСОБНОСТИ

Данная компьютеризированная система идеально подходит для автоматического управления работой целой волоконно-оптической сетью. Все задачи: монтаж, текущий уход, разрешение проблем, ремонт, могут быть быстро отслежены и проконтролированы с центральной станции. Любые обрывы и прочие неисправности в считанные минуты локализуются с точностью до нескольких метров. Примерная цена: свыше 100000 $.

БРИЛЛЮЭНОВСКИЙ ОПТИЧЕСКИЙ РЕФЛЕКТОМЕТР.

Этот прибор производит измерения не только рэлеевского рассеяния и френелевского отражения, как оптический рефлектометр, но и способен измерить сдвинутую по частоте относительно центральной волны излучения компоненту рассеяния Мандельштама-Бриллюэна. Способен различать напряженные участки волокна и оценивать степень их нагрузки. Может использоваться и как обычный рефлектометр. Примерная цена: 200000$

Важным достоинством волоконно-оптических линий связи является их потенциальная долговечность. Однако для обеспечения долголетней работы необходимы соответствующие условия и главное из них - отсутствие механических напряжений в волокне, которые могут возникать при нарушении технологий производства кабеля, его прокладки, при мерзлотных деформациях грунта, при ветровых нагрузках и обледенении подвесного кабеля, просадке грунта (особенно вблизи высотных зданий и мостов), при вибрациях кабеля, проложенного вблизи автомагистралей, при землетрясениях, прочих техногенных вмешательствах. Повышенное натяжение волокна в кабеле вызывает деградацию его прочностных характеристик, что в конце концов приводит к разрыву волокна. Даже незначительное увеличение натяжения волокна может привести к многократному уменьшению его срока службы. Время жизни волокна в нормальных условиях эксплуатации (при относительном удлинении волокна меньше 0,35 %) составляет 25 лет и более, в то время, как уже при относительном удлинении 0,5% разрыв волокна произойдет в течение 1 (одного)!!! года (рис. 28).


Рис. 28

Поэтому надежность волоконно-оптических линий связи невозможно оценить, не имея достоверной информации о натяжении волокна в кабеле. Обычные оптические рефлектометры не в состоянии определить степень натяжения волокна, поскольку величина оптических потерь при возникновении напряжений в волокне, как правило, остается в пределах нормы вплоть до момента наступления необратимых изменений в волокне. Бриллюэновский рефлектометр незаменим на предприятиях по производству оптического кабеля и для крупных операторов связи, масштабы сетей и объемы передачи данных которых делают вопросы качества и надежности связи определяющими.

К рычажно-оптическим приборам относятся оптиметры и измерительные пружинно-оптические головки.

Оптиметры . Оптиметры разделяются на вертикальные (ОВО – с окуляром и ОВЭ с проекционным экраном) и горизонтальные (ОГО и ОГЭ). Последние применяются для измерения как наружных, так и внутренних размеров. Наиболее распространены вертикальные оптиметры (рис. 23,а ) с ценой деления 0,001 мм и погрешностью показаний ±0,0002 мм , применяемые для измерения наружных размеров (концевых мер, калибров-пробок и особо точных изделий).

Рис. 23. Вертикальный оптиметр(а), принцип действия

трубки оптиметр (б)

Основной отсчетной частью прибора является трубка оптиметра, построенная по рычажно-оптической схеме. Принцип действия трубки оптиметра показан на рис. 23, б. Лучи света 1 направляются зеркалом 2 в щель трубки и, преломляясь трехгранной призмой 3 , проходят через шкалу, нанесенную на пластинке 4 . Затем пучок лучей проходит через призму полного отражения 5 и, отразившись от нее под прямым углом, попадает в объектив 6 , а потом на зеркальце 7 . Зеркальце 7 пружиной 8 прижимается к измерительному стержню 9 , а при перемещении измерительного стержня зеркальце поворачивается вокруг оси, проходящей через центр шарика 10 . Угол поворота зеркальца зависит от наклона зеркальца 7 . На рис. 23, б показан ход одного падающего луча (сплошной линией) и отраженного (штрих - пунктирной линией). Угол между этими лучами равен 2 .

Отраженный пучок лучей объективом превращается в сходящийся пучок лучей, который дает изображение шкалы. Установка трубки прибора по блоку концевых мер заключается в совмещении нулевого штриха шкалы с неподвижным указателем. При перемещении из измерительного стержня на 1 мкм изображение шкалы смещается в поле зрения на 1 деление по отношению к неподвижному указателю.

Измерительные пружинно-оптический головки . Эти приборы имеют сокращенное название – оптикаторы. В них используется пружинный принцип действия микрокатора, только к завитой спиральной пружине прикреплена не стрелка, а зеркальце, на которое падает луч света и отражается на стеклянную шкалу, где появляется изображение указательного штриха. Выпускаемые пружинно-оптические головки, обозначаемые ОП, имеют присоединительный диаметр 28 мм и предназначены для точных линейных измерений при закреплении в стойках тяжелого тина. Измерительные головки имеют поворот шкалы для точной настройки на размер и указатели поля допуска в виде цветных шторок на пути светового луча (зайчика) окрашивающих его в зеленый или красный цвет. Пружинно-оптические головки выпускаются долемикронные (модели 01П, 02П и 05П) и микронные (П1, П2 и П5) с увеличенным интервалом между делениями шкалы для облегчения отсчета.

Пневматические длиномеры низкого и высокого давления .

Работа пневматических измерительных приборов – длиномеров основана на свойстве истечения воздуха с постоянным давлением из небольшого отверстия, называемого соплом. Шкалы пневматических приборов градуируют не в единицах давления, а в линейных единицах (например, в мкм ). Такая градуировка позволяет непосредственно отсчитывать отклонения размеров проверяемых деталей от размера образцовой детали или меры, по которым настроен прибор и определять отклонения от правильной геометрической формы изделий. На заводах применяют два вида приборов: приборы низкого давления, основанные на изменении давления воздуха (рис. 24,а ), и поплавковые (ротаметры), основанные на изменении расхода воздуха (рис. 24,б ).

Рис. 24. Пневматические длиномеры:

а – с жидкостным регулятором давления; б – поплавковый прибор;

в – пробка в отверстии (разрез)

Приборы низкого давления выпускаются с двумя и большим количеством шкал для одновременного или раздельного измерения двух и более размеров. На рис. 24,а показан прибор с двумя отсечными шкалами и измерительной пробкой с образцовым кольцом для установки прибора на нуль. Пределы измерения можно менять от 0,02 до 0,20 мм , так как они зависят от размеров сопл, которые применяются в приборе. При пределе измерения 0,02 мм предельная погрешность показаний равна 0,0005 мм , а при наибольшем пределе измерения 0,20 мм погрешность соответственно равна 0,005 мм.

Наиболее распространены поплавковые пневматические длиномеры (рис. 24,б).

Принцип действия этих приборов основан на изменении расхода воздушного потока в конической стеклянной трубке. Воздух от источника питания с давлением 300-600 кПа (3-6 кгс/см 2 ) проходит через отстойник, фильтр и редукционный стабилизатор 1, выравнивающий давление воздуха, затем поступает в коническую стеклянную трубку 2. рабочее давление воздуха может колебаться от 70 до 200 кПа (от 0,7 до 2 кгс/см 2 ). При настройке прибора добиваются, чтобы металлический легкий поплавок 3 (масса менее 1 г ) находился во взвешенном состоянии на отметке 0 шкалы 4 . при измерении деталей в зависимости от изменения зазора (рис. 24, в ) между выходным соплом и поверхностью измеряемого изделия (см. рис. 24,б ) меняется расход воздуха, а следовательно, и положение поплавка устанавливается относительно отметок шкалы 4. при большом зазоре расход воздуха больше, и поплавок 3 поднимается, при меньшем зазоре расход меньше, и поплавок опускается. Цена деления зависит от градуировки и настройки прибора и может быть равна 1-2 мкм и даже долям микрометра.

Перед измерением диаметров отверстий с помощью пневматического прибора пробку специальной конструкции вводят в образцовое кольцо и, регулируя подачу воздуха с помощью винта 5, устанавливают поплавок 3 в трубке 2 в нулевое положение. Если размер отверстия проверяемой детали будет отличаться от размера образцового кольца или блока из плиток, поплавок покажет отклонение от размера.

Повертывая пробку в проверяемом отверстии на 90, 180 и 270° в одном и разных сечениях по оси детали, можно определить отклонения деталей от правильной геометрической формы.

Пневматические приборы особенно незаменимы при определении диаметров и отклонений формы у отверстий, особенно глубоких и несквозных, а также отверстий небольшого диаметра.

Калибры

При массовом выпуске изделий, когда на заводе ежедневно вынуждены измерять детали по одному и тому же размеру, широко применяются инструменты жесткой конструкции – предельные калибры (рис. 25): пробки для контроля отверстий (рис. 25,а,б ) и скобы для контроля валов (рис. 25,в,г ). Калибры не имеют отсчетных устройств для определения размеров, с их помощью можно только установить, выполнен ли действительный размер детали в пределах допуска или нет. Для этого калибры изготавливают по предельным размерам проверяемой детали. Одна сторона пробки (удлиненная) будет иметь номинальный размер и называться проход ной ПР, а другая сторона пробки (укороченная) будет иметь номинальный размер наибольшего отверстия. Эта сторона пробки называется непроходной и обозначается НЕ, она может входить только в деталь, имеющую завышенный размер отверстия. Такие детали бракуются.

Процесс контроля деталей заключается в простой сортировке их с помощью двух предельных калибров на три группы: годные детали, размер которых находится в пределах допускаемого (ПР проходит; а НЕ не проходит); брак исправимый, когда размер вала больше допустимого, а размер отверстия меньше допустимого (ПР не проходит); брак неисправимый, когда размер у вала занижен, а у отверстия завышен (НЕ проходит).

Калибры, которыми пользуются рабочие и контролеры ОТК для проверки деталей, называются рабочими калибрами; их типы, размеры и технические условия стандартизованы.

Рис. 25. Калибры.

а – двухсторонняя пробка, б – односторонняя пробка, в – двухсторонняя скоба,

г – предельная регулируемая скоба


Калибры для отверстий до 50 мм изготавливают в виде полных пробок (рис.25,а ), для отверстий свыше 50 до 100 мм могут применяться как полные пробки, так и неполные (рис. 25,б ), а свыше 100 мм – только неполные. Для больших размеров свыше 360 мм вместо пробок применяют сферические нутромеры.

Калибры-скобы для валов чаще всего применяют односторонние предельные целые или двусторонние листовые (рис. 25,в ). Для валов с размерами от 100 до 360 мм применяют односторонние предельные скобы со вставными губками (рис. 25,г ). На калибры наносятся следующие обозначения (маркировка): номинальный размер контролируемой детали, обозначение поля допуска детали и класса точности (квалитета), цифровые величины предельных отклонений детали в миллиметрах, обозначение сторон калибра – проходная ПР и непроходная НЕ, товарный знак завода-изготовителя. Для проходных калибров в стандартах предусмотрены допуски на изготовление и износ, а на непроходные - только допуски на изготовление. Стандартные отклонения на изготовление и износ калибров отсчитываются от предельных размеров валов и отверстий; для проходных скоб – от наибольшего предельного размера вала, а для проходных пробок от наименьшего предельного размера отверстия; для непроходных калибров, наоборот – от наименьшего размера вала и наибольшего размера отверстия.

СТ СЭВ 157-75, «Калибры гладкие для размеров до 500 мм . Допуски», предусматривает особый порядок определения предельных (исполнительных) размеров проходных калибров, Z и Z 1 – это отклонения середины поля допуска на изготовление проходных калибров (Z для отверстия и Z 1 для вала) относительно наименьшего размера отверстия и наибольшего предельного размера вала ; Н и Н 1 – допуски на изготовление проходных и непроходных калибров (для отверстия Н и вала Н 1 ); Y и Y 1 – допустимые выходы изношенного калибра за границу поля допуска (отверстия Y и вала Y 1 ).

Для калибров с размерами более 180 мм предусмотрены еще величины компенсаций погрешности контроля калибрами, обозначаемые для отверстий и для вала.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...