Что изучает теория систем. Общая теория систем людвига фон берталанфи и другие науки


  • 1986 Энтони Уилдэн разрабатывает теорию контекста
  • 1988 Учреждение Международного общества по наук о системах (ISSS)
  • 1990 Начало исследования сложных адаптивных систем (в частности, Мюррей Гелл-Манн)
  • Предыстория

    Как и всякая научная концепция, общая теория систем базируется на результатах предыдущих исследований. Исторически «зачатки исследования систем и структур в общем виде возникли достаточно давно. С конца XIX века эти исследования приняли систематический характер (А.Эспинас, Н. А. Белов, А. А. Богданов, Т.Котарбиньский, М.Петрович и др.)» . Так, Л. фон Берталанфи указывал на глубинную связь теории систем с философией Г. В. Лейбница и Николая Кузанского : «Конечно, как и любое другое научное понятие, понятие системы имеет свою долгую историю… В этой связи необходимо упомянуть „натуральную философию“ Лейбница, Николая Кузанского с его совпадением противоположностей, мистическую медицину Парацельса, предложенную Вико и Ибн-Халдуном версию истории последовательности культурных сущностей, или „систем“, диалектику Маркса и Гегеля…» . Одним из непосредственных предшественников Берталанфи является «Тектология » А. А. Богданова , не утратившая теоретической ценности и значимости и в настоящее время. Предпринятая А. А. Богдановым попытка найти и обобщить общеорганизационные законы, проявления которых прослеживаются на неорганическом, органическом, психическом, социальном, культурном и пр. уровнях, привела его к весьма значительным методологическим обобщениям, открывшим путь к революционным открытиям в области философии, медицины, экономики и социологии. Истоки идей самого Богданова также имеют развитую предысторию, уходящую в труды Г. Спенсера , К. Маркса и других ученых. Идеи Л. фон Берталанфи, как правило, являются дополнительными по отношению к идеям А. А. Богданова (например, если Богданов описывает «дегрессию» как эффект, Берталанфи исследует «механизацию» как процесс).

    Непосредственные предшественники и параллельные проекты

    Малоизвестным и поныне остаётся факт, что уже в самом начале XX века русский физиолог Владимир Бехтерев , совершенно независимо от Александра Богданова, обосновал 23 универсальных закона и распространил их на сферы психических и социальных процессов . Впоследствии ученик академика Павлова Пётр Анохин строит «теорию функциональных систем», близкую по уровню обобщённости к теории Берталанфи . Нередко в роли одного из основателей теории систем фигурирует основатель холизма Ян Христиан Смэтс . Кроме того, во многих исследованиях по праксеологии и научной организации труда нередко можно встретить указания на Тадеуша Котарбинского , Алексея Гастева и Платона Керженцева , причисляемых к основоположникам системно-организационного мышления.

    Деятельность Л. фон Берталанфи и International Society for the General Systems Sciences

    Общая теория систем была предложена Л. фон Берталанфи в 1930-е годы . Идея наличия общих закономерностей при взаимодействии большого, но не бесконечного числа физических, биологических и социальных объектов была впервые высказана Берталанфи в 1937 году на семинаре по философии в Чикагском университете . Однако первые его публикации на эту тему появились только после Второй мировой войны . Основной идеей Общей теории систем, предложенной Берталанфи, является признание изоморфизма законов, управляющих функционированием системных объектов. Фон Берталанфи также ввёл понятие и исследовал «открытые системы » - системы, постоянно обменивающиеся веществом и энергией с внешней средой.

    Общая теория систем и Вторая мировая война

    Интеграция этих научно-технических направлений в основной состав общей теории систем обогатила и разнообразила её содержание.

    Послевоенный этап развития теории систем

    В 50-70-е годы XX века был предложен ряд новых подходов к построению общей теории систем учеными, принадлежащими к следующим областям научного знания:

    Синергетика в контексте теории систем

    Нетривиальные подходы к изучению сложных системных образований выдвигает такое направление современной науки, как синергетика , предлагающая современную интерпретацию таких феноменов, как самоорганизация , автоколебания и коэволюция . Такие учёные, как Илья Пригожин и Герман Хакен , обращаются в своих исследования к динамике неравновесных систем , диссипативных структур и производства энтропии в открытых системах. Известный советский и российский философ Вадим Садовский комментирует ситуацию следующим образом:

    Общесистемные принципы и законы

    Как в трудах Людвига фон Берталанфи и в сочинениях Александра Богданова, так и в трудах менее значительных авторов, рассматриваются некоторые общесистемные закономерности и принципы функционирования и развития сложных систем. Среди таковых традиционно принято выделять:

    • «гипотеза семиотической непрерывности». «Онтологическая ценность системных исследований, как можно думать, определяется гипотезой, которую можно условно назвать „гипотезой семиотической непрерывности“. Согласно этой гипотезе, система есть образ её среды. Это следует понимать в том смысле, что система как элемент универсума отражает некоторые существенные свойства последнего»: :93 . «Семиотическая» непрерывность системы и среды распространяется и за пределы структурных особенностей систем. «Изменение системы есть одновременно и изменение её окружения, причём источники изменения могут корениться как в изменениях самой системы, так и в изменениях окружения. Тем самым исследование системы позволило бы вскрыть кардинальные диахронические трансформации окружения» :94 ;
    • «принцип обратной связи». Положение, согласно которому устойчивость в сложных динамических формах достигается за счёт замыкания петель обратной связи: «если действие между частями динамической системы имеет этот круговой характер, то мы говорим, что в ней имеется обратная связь» :82 . Принцип обратной афферентации, сформулированный академиком Анохиным П. К., являющийся в свою очередь конкретизацией принципа обратной связи, фиксирует что регулирование осуществляется «на основе непрерывной обратной информации о приспособительном результате» ;
    • «принцип организационной непрерывности» (А. А. Богданов) утверждает, что любая возможная система обнаруживает бесконечные «различия» на её внутренних границах, и, как следствие, любая возможная система принципиально разомкнута относительно своего внутреннего состава, и тем самым она связана в тех или иных цепях опосредования со всем универсумом - со своей средой, со средой среды и т. д. Данное следствие эксплицирует принципиальную невозможность «порочных кругов», понятых в онтологической модальности. «Мировая ингрессия в современной науке выражается как принцип непрерывности . Он определяется различно; тектологическая же его формулировка проста и очевидна: между всякими двумя комплексами вселенной, при достаточном исследовании устанавливаются промежуточные звенья, вводящие их в одну цепь ингрессии » :122 ;
    • «принцип совместимости» (М. И. Сетров), фиксирует, что «условием взаимодействия между объектами является наличие у них относительного свойства совместимости» , то есть относительной качественной и организационной однородности;
    • «принцип взаимно-дополнительных соотношений» (сформулировал А. А. Богданов), дополняет закон расхождения, фиксируя, что «системное расхождение заключает в себе тенденцию развития, направленную к дополнительным связям » :198 . При этом смысл дополнительных соотношений целиком «сводится к обменной связи : в ней устойчивость целого, системы, повышается тем, что одна часть усваивает то, что дезассимилируется другой, и обратно. Эту формулировку можно обобщить и на все и всякие дополнительные соотношения» :196 . Дополнительные соотношения являются характерной иллюстрацией конституирующей роли замкнутых контуров обратных связей в определении целостности системы. Необходимой «основой всякой устойчивой системной дифференциации является развитие взаимно-дополнительных связей между её элементами» . Данный принцип применим по отношению ко всем деривативам сложно организованных систем;
    • «эакон необходимого разнообразия» (У. Р. Эшби). Весьма образная формулировка этого принципа фиксирует, что «только разнообразие может уничтожить разнообразие» :294 . Очевидно, что рост разнообразия элементов систем как целых может приводить как к повышению устойчивости (за счёт формирования обилия межэлементных связей и обусловливаемых ими компенсаторных эффектов), так и к её снижению (связи могут и не носить межэлементного характера в случае отсутствия совместимости или слабой механизации, напр., и приводить к диверсификации);
    • «закон иерархических компенсаций» (Е. А. Седов) фиксирует, что «действительный рост разнообразия на высшем уровне обеспечивается его эффективным ограничением на предыдущих уровнях» . «Этот закон, предложенный российским кибернетиком и философом Е.Седовым, развивает и уточняет известный кибернетический закон Эшби о необходимом разнообразии» . Из данного положения следует очевидный вывод: поскольку в реальных системах (в собственном смысле этого слова) первичный материал однороден, следовательно, сложность и разнообразие воздействий регуляторов достигается лишь относительным повышением уровня его организации. Ещё А. А. Богданов неоднократно указывал, что системные центры в реальных системах оказываются более организованными, чем периферические элементы: закон Седова лишь фиксирует, что уровень организации системного центра с необходимость должен быть выше по отношению к периферическим элементам. Одной из тенденций развития систем является тенденция прямого понижения уровня организации периферических элементов, приводящая к непосредственному ограничению их разнообразия: «только при условии ограничения разнообразия нижележащего уровня можно формировать разнообразные функции и структуры находящихся на более высоких уровнях» , т.о. «рост разнообразия на нижнем уровне [иерархии] разрушает верхний уровень организации» . В структурном смысле закон означает, что «отсутствие ограничений… приводит к деструктурализации системы как целого» , что приводит к общей диверсификации системы в контексте объемлющей её среды;
    • «принцип моноцентризма» (А. А. Богданов), фиксирует, что устойчивая система «характеризуется одним центром, а если она сложная, цепная, то у неё есть один высший, общий центр» :273 . Полицентрические системы характеризуются дисфункцией процессов координации, дезорганизованностью, неустойчивостью и т. д. Подобного рода эффекты возникают при наложении одних координационных процессов (пульсов) на другие, чем обусловлена утрата целостности;
    • «закон минимума» (А. А. Богданов), обобщающий принципы Либиха и Митчерлиха, фиксирует: «устойчивость целого зависит от наименьших относительных сопротивлений всех его частей во всякий момент » :146 . «Во всех тех случаях, когда есть хоть какие-нибудь реальные различия в устойчивости разных элементов системы по отношению к внешним воздействиям, общая устойчивость системы определяется наименьшей её частичной устойчивостью» . Именуемое также «законом наименьших относительных сопротивлений», данное положение является фиксацией проявления принципа лимитирующего фактора: темпы восстановления устойчивости комплекса после нарушающего её воздействия определяются наименьшими частичными, а так как процессы локализуются в конкретных элементах, устойчивость систем и комплексов определены устойчивостью слабейшего её звена (элемента);
    • «принцип внешнего дополнения» (выведен С. Т. Биром) «сводится к тому, что в силу теоремы неполноты Гёделя любой язык управления в конечном счёте недостаточен для выполнения перед ним задач, но этот недостаток может быть устранён благодаря включению „чёрного ящика“ в цепь управления» . Непрерывность контуров координации достигается лишь посредством специфического устройства гиперструктуры, древовидность которой отражает восходящую линию суммации воздействий. Каждый координатор встроен в гиперструктуру так, что передаёт по восходящей лишь частичные воздействия от координируемых элементов (например, сенсоров). Восходящие воздействия к системному центру подвергаются своеобразному «обобщению» при суммации их в сводящих узлах ветвей гиперструктуры. Нисходящие по ветвям гиперструктуры координационные воздействия (например, к эффекторам) асимметрично восходящим подвергаются «разобобщению» локальными координаторами: дополняются воздействиями, поступающими по обратным связям от локальных процессов. Иными словами, нисходящие от системного центра координационные импульсы непрерывно специфицируются в зависимости от характера локальных процессов за счёт обратных связей от этих процессов.
    • «теорема о рекурсивных структурах» (С. Т. Бир) предполагает, что в случае, «если жизнеспособная система содержит в себе жизнеспособную систему, тогда их организационные структуры должны быть рекурсивны» ;
    • «закон расхождения» (Г.Спенсер), также известный как принцип цепной реакции: активность двух тождественных систем имеет тенденцию к прогрессирующему накоплению различий. При этом «расхождение исходных форм идёт „лавинообразно“, вроде того как растут величины в геометрических прогрессиях, - вообще, по типу ряда, прогрессивно восходящего» :186 . Закон имеет и весьма продолжительную историю: «как говорит Г. Спенсер, „различные части однородной агрегации неизбежно подвержены действиям разнородных сил, разнородных по качеству или по напряжённости, вследствие чего и изменяются различно“. Этот спенсеровский принцип неизбежно возникающей разнородности внутри любых систем… имеет первостепенное значение для тектологии» . Ключевая ценность данного закона заключается в понимании характера накопления «различий», резко непропорционального периодам действия экзогенных факторов среды.
    • «закон опыта» (У. Р. Эшби) охватывает действие особого эффекта, частным выражением которого является то, что «информация, связанная с изменением параметра, имеет тенденцию разрушать и замещать информацию о начальном состоянии системы» :198 . Общесистемная формулировка закона, не связывающая его действие с понятием информации, утверждает, что постоянное «единообразное изменение входов некоторого множества преобразователей имеет тенденцию уменьшать разнообразие этого множества » :196 - в виде множества преобразователей может выступать как реальное множество элементов, где воздействия на вход синхронизированы, так и один элемент, воздействия на который рассредоточены в диахроническом горизонте (если линия его поведения обнаруживает тенденцию возврата к исходному состоянию, и т.с. он описывается как множество). При этом вторичное, дополнительное «изменение значения параметра делает возможным уменьшение разнообразия до нового, более низкого уровня » :196 ; более того: сокращение разнообразия при каждом изменении обнаруживает прямую зависимость от длины цепи изменений значений входного параметра. Данный эффект в рассмотрении по контрасту позволяет более полным образом осмыслить закон расхождения А. А. Богданова - а именно положение, согласно которому «расхождение исходных форм идёт „лавинообразно“» :197 , то есть в прямой прогрессирующей тенденции: поскольку в случае единообразных воздействий на множество элементов (то есть «преобразователей») не происходит увеличения разнообразия проявляемых ими состояний (и оно сокращается при каждой смене входного параметра, то есть силы воздействия, качественных сторон, интенсивности и т. д.), то к первоначальным различиям уже не «присоединяются несходные изменения» :186 . В этом контексте становится понятным, почему процессы, протекающие в агрегате однородных единиц имеют силу к сокращению разнообразия состояний последних: элементы подобного агрегата «находятся в непрерывной связи и взаимодействии, в постоянной конъюгации, в обменном слиянии активностей. Именно постольку же и происходит, очевидно выравнивание развивающихся различий между частями комплекса» :187 : однородность и однотипность взаимодействий единиц поглощают какие-либо внешние возмущающие воздействия и распределяют неравномерность по площади всего агрегата.
    • «принцип прогрессирующей сегрегации» (Л. фон Берталанфи ) означает прогрессирующий характер потери взаимодействий между элементами в ходе дифференциации, однако к оригинальной версии принципа следует добавить тщательно замалчиваемый Л. Фон Берталанфи момент: в ходе дифференциации происходит становление опосредованных системным центром каналов взаимодействий между элементами. Понятно, что происходит потеря лишь непосредственных взаимодействий между элементами, что существенным образом трансформирует принцип. Данный эффект оказывается потерей «совместимости» . Является немаловажным то обстоятельство, что сам процесс дифференциации в принципе нереализуем вне централистически регулируемых процессов (в противном случае координация развивающихся частей оказалась бы невозможной): «расхождение частей» с необходимость не может быть простой потерей взаимодействий, и комплекс не может превращаться в некое множество «независимых каузальных цепей» , где каждая такая цепь развивается самостоятельно вне зависимости от остальных. Непосредственные взаимодействия между элементами в ходе дифференциации действительно ослабевают, однако не иначе как по причине их опосредования центром.
    • «принцип прогрессирующей механизации» (Л. фон Берталанфи) является важнейшим концептуальным моментом. В развитии систем «части становятся фиксированными по отношению к определённым механизмам» . Первичные регуляции элементов в исходном агрегате «обусловлены динамическим взаимодействием внутри единой открытой системы, которая восстанавливает свое подвижное равновесие. На них накладываются в результате прогрессирующей механизации вторичные механизмы регуляции, управляемые фиксированными структурами преимущественно типа обратной связи» . Существо этих фиксированных структур было обстоятельно рассмотрено Богдановым А. А. и наименовано «дегрессией»: в ходе развития систем формируются особые «дегрессивные комплексы», фиксирующие процессы в связанных с ними элементах (то есть ограничивающие разнообразие изменчивости, состояний и процессов). Таким образом, если закон Седова фиксирует ограничение разнообразия элементов нижних функционально-иерархических уровней системы, то принцип прогрессирующей механизации обозначает пути ограничения этого разнообразия - образование устойчивых дегрессивных комплексов: «„скелет“, связывая пластичную часть системы, стремится удержать её в рамках своей формы, а тем самым задержать её рост, ограничить её развитие» , снижение интенсивности обменных процессов, относительная дегенерация локальных системных центров и т. д. Следует заметить, что функции дегрессивных комплексов не исчерпываются механизацией (как ограничением разнообразия собственных процессов систем и комплексов), но также распространяются на ограничение разнообразия внешних процессов.
    • «принцип актуализации функций» (впервые сформулировал М. И. Сетров) также фиксирует весьма нетривиальное положение. «Согласно этому принципу объект выступает как организованный лишь в том случае, если свойства его частей (элементов) проявляются как функции сохранения и развития этого объекта» , или: «подход к организации как непрерывному процессу становления функций её элементов может быть назван принципом актуализации функций» .Таким образом, принцип актуализации функций фиксирует, что тенденция развития систем есть тенденция к поступательной функционализации их элементов; само существование систем и обусловлено непрерывным становлением функций их элементов.

    Общая теория систем и другие науки о системах

    История развития

    Общая теория систем была предложена Л. фон Берталанфи в 30-е годы XX века. Идея наличия общих закономерностей при взаимодействиях большого, но не бесконечного числа физических, биологических и социальных объектов была впервые высказана Берталанфи в 1937 году на семинаре по философии в Чикагском университете . Однако первые его публикации на эту тему появились только после войны. Основной идеей Общей теории систем, предложенной Берталанфи, является признание изоморфизма законов, управляющих функционированием системных объектов.

    В 50-70-е годы XX века был предложен ряд новых подходов к построению Общей теории систем такими учеными как, М. Месарович, Л. Заде , Р. Акофф , Дж. Клир , А. И. Уемов, Ю. А. Урманцев, Р. Калман, С. Бир , Э. Ласло, Г. П. Мельников и др. Общей чертой этих подходов была разработка логико-концептуального и математического аппарата системных исследований. Системно-мыследеятельностная методология , разрабатывавшаяся в Московском Методологическом Кружке Г. П. Щедровицким , его учениками и сотрудниками, является дальнейшим развитием и расширением Общей теории систем.

    Фон Берталанфи также ввел понятие и исследовал открытые системы - системы, постоянно обменивающиеся веществом и энергией с внешней средой.

    Предыстория

    Л. фон Берталанфи возводил концепцию теории систем к философии Г.В. Лейбница и Николая Кузанского . Предшественником Берталанфи был, в частности, А. А. Богданов со своей тектологией .

    А. А. Богданов сделал попытку найти и обобщить организационные законы, проявления которых прослеживаются на неорганическом, органическом, психическом, социальном, культурном и пр. уровнях. Истоки идей самого Богданова также имеют развитую предысторию, уводящую в труды Г. Спенсера , К. Маркса и т. д. Идеи Л. фон Берталанфи в подавляющей массе случаев выступают дополнительными по отношению к идеям А. А. Богданова (например, если Богданов описывает «дегрессию» как эффект, Берталанфи исследует «механизацию» как процесс).

    Общая теория систем и другие науки о системах

    Сам фон Берталанфи считал , что следующие научные дисциплины имеют (отчасти) общие цели или методы с теорией систем:

    1. Кибернетика , базирующаяся на принципе обратной связи.
    2. Теория информации , вводящая понятие информации как некоторого измеряемого количества и развивающая принципы передачи информации.
    3. Теория игр , анализирующая в рамках особого математического аппарата рациональную конкуренцию двух или более противодействующих сил с целью достижения максимального выигрыша и минимального проигрыша.
    4. Теория принятия решений , анализирующая рациональные выборы внутри человеческих организаций.
    5. Топология , включающая неметрические области, такие, как теория сетей и теория графов .
    6. Факторный анализ , то есть процедуры выделения факторов в многопеременных явлениях в социологии и других научных областях.
    7. Общая теория систем в узком смысле, пытающаяся вывести из общих определений понятия «система», ряд понятий, характерных для организованных целых, таких как взаимодействие, сумма, механизация, централизация, конкуренция, финальность и т. д., и применяющая их к конкретным явлениям.

    Прикладные науки о системах

    Также выделяется коррелят теории систем в прикладной науке, которые иногда называют наукой о системах, или системной наукой (англ. Systems Science). Это направление связано с автоматикой. В прикладной науке о системах выделяются следующие области:

    1. Системотехника (англ. Systems Engineering), то есть научное планирование, проектирование, оценку и конструирование систем «человек - машина».
    2. Исследование операций (англ. Operations research), то есть научное управление существующими системами людей, машин, материалов, денег и т. д.
    3. Инженерная психология (англ. Human Engineering).
    4. На основе систем Берталанфи основана Теория интегральной индивидуальности (Вольф Соломонович Мерлин).

    Примечания

    См. также

    • Метасистематика

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Теория систем" в других словарях:

      Концепция, в соответствии с которой менеджеры должны рассматривать организацию как открытую систему взаимосвязанных частей, которая пытается достигнуть разнообразных целей в изменяющейся внешней среде … Словарь терминов антикризисного управления

      См. в ст. Система, Системный подход. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

      теория систем - Концепция, в соответствии с которой менеджеры должны рассматривать организацию как открытую систему взаимосвязанных частей, которая пытается достигнуть разнообразных целей в изменяющейся внешней среде. }

    Выбор редакции
    Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

    Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

    Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

    Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
    О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
    Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
    Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
    Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
    Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...