Параметры стержневых и тросовых молниеотводов. Стержневые и тросовые молниеотводы


Здания и сооружения защищают от прямых ударов молнии различными по конструкции молниеотводами. Но любой из молниеотводов включает в себя четыре основные части: молниеприем-ник, непосредственно воспринимающий удар молнии; токоотвод, соединяющий молниеприемник с заземлителем; заземлитель, через который ток молнии стекает в землю; несущую часть (опору или опоры), предназначенную для закрепления молниеприемника и токоотвода.

В зависимости от конструкции молниеприемника различают стержневые, тросовые, сетчатые и комбинированные молниеотводы. По числу совместно действующих молниеприемников их делят на одиночные, двойные и многократные. Кроме того, по месту расположения молниеотводы бывают отдельно стоящие, изолированные и не изолированные от защищаемого здания.

Защитное действие молниеотвода основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения. Благодаря этому свойству более низкое по высоте защищаемое здание практически не поражается молнией, если оно входит в зону защиты молниеотвода. Зоной защиты молниеотвода называется часть пространства, примыкающая к нему и с достаточной степенью надежности (не менее 95 %) обеспечивающая защиту сооружений от прямых ударов молнии.

Наиболее часто для защиты зданий и сооружений применяют стержневые молниеотводы. Молниеприемник стержневого молниеотвода представляет собой вертикально расположенный стальной стержень любого профиля длиной 2... 15 м и площадью поперечного сечения не менее 100 мм2, укрепленный на опоре, расположенной, как правило, не ближе 5 м от защищаемого объекта. Молниеприемник соединяют с заземлителем токоотводом, выполненным из стальной проволоки диаметром не менее 6 мм, а в случае прокладки токоотвода в земле — не менее 10 мм. При устройстве молниеприемников непосредственно на крыше здания выполняют как минимум два токоотвода, а при ширине крыши более 12м — четыре. Если длина защищаемого объекта более 20 м, то на каждые последующие 20 м длины требуется устанавливать дополнительные токоотводы; при ширине здания до 12м —на обеих сторонах здания. Все соединения (молниеприемник — токоотвод, токоотвод — заземлитель) следует сваривать.

В качестве стержневых молниеотводов необходимо максимально использовать существующие вблизи защищаемого объекта высокие сооружения: водонапорные башни, вытяжные трубы и т. п. Деревья, растущие на расстоянии не более 5 м от зданий III...V степеней огнестойкости, также можно использовать в качестве опоры молниеотвода, если на стене здания напротив дерева на всю высоту стены проложить токоотвод, приварив его к заземлителю молниеотвода.

Тросовые молниеотводы чаще всего применяют для защиты зданий большой длины и высоковольтных линий. Эти молниеотводы изготовляют в виде горизонтальных тросов, закрепленных на опорах, по каждой из которых прокладывают токоотвод. Молниеприемники тросовых молниеотводов выполняют из стального многопроволочного оцинкованного троса сечением не менее 35 мм2.

Следует отметить, что стержневые и тросовые молниеотводы обеспечивают одинаковую степень надежности защиты.

В качестве молниеприемников можно использовать металлическую крышу, заземленную по углам и по периметру не реже чем через каждые 25 м, или наложенную на неметаллическую крышу сетку из стальной проволоки диаметром не менее 6 мм, имеющую площадь ячеек до 150мм2, с узлами, закрепленными сваркой, и заземленную так же, как металлическая крыша. К сетке или токопроводящей кровле присоединяют металлические колпаки над дымовыми и вентиляционными трубами, а в случае отсутствия колпаков — специально наложенные на трубы проволочные кольца.

Защитное действие молниеотвода основано на "свойстве молнии с большей вероятностью поражать более высокие и хорошо заземленные предметы по сравнению с расположенными рядом объектами меньшей высоты. Поэтому на молниеотвод, возвышающийся над защищаемым объектом, возлагается функция перехвата молний, которые в отсутствие молниеотвода поразили бы объект. Количественно защитное действие молниеотвода определяется через вероятность прорыва - отношение числа ударов молнии в защищенный объект (числа прорывов) к общему числу ударов в молниеотвод и объект.

Согласно принятой расчетной модели невозможно создать идеальную защиту от прямых ударов молнии, полностью исключающую прорывы на защищаемый объект. Однако на практике осуществимо взаимное расположение объекта и молниеотвода, обеспечивающее низкую вероятность прорыва, например 0,1 и 0,01, что соответствует уменьшению числа поражений объекта примерно в 10 и 100 раз по сравнению с объектом, где отсутствует молниеотвод. Для большинства современных объектов при таких уровнях защиты обеспечивается малое количество прорывов за весь срок их службы.

Рис. 11.22. Устройство молниеотвода.

Опоры воздушных ЛС защищают от разрушений при прямых ударах молнии стержневыми молниеотводами, которые устанавливают на вводных, кабельных, контрольных, разрезных, переходных опорах, а также на опорах, заменяемых вследствие повреждения грозовыми разрядами. Для молниеотвода ис­пользуют стальную линейную проволоку диаметром 4 ... 5 мм, нижний конец которой отводится. Этот отвод называют заземлителем. Длина отвода проволоки заземлителя (рис. 11.22) зависит от характера грунта и может быть равна 1 ... 12 м. Глубина залегания заземлителя равна 0,10 м. Чем больше удельное сопротивление грунта, тем больше должна быть длина отвода заземлителя. На промежуточных и угловых опорах обычно не делают отвода, а доводят проволоки до комля столба.

Опоры, на которых установлены искровые или газонаполненные разрядники, также защищаются молниеотводами. По условиям техники безопасности на опорах, имеющих пересечение или сближение с ВВЛ, на высоте 30 см от земли на молниеотводе делается разрыв, создающий искровой промежуток длиной 50 мм.



Эффективность молниеотвода тем больше, чем выше он рас­положен. Зона защитного действия молниеотвода определяется примерно по формуле S=πh2, где h - высота молниеотвода.

Грозозащи́тный трос - заземлённый протяжённый молниеотвод, натянутый вдоль воздушной линии электропередачи над проводами.

В зависимости от расположения, количества проводов на опорах ВЛ, сопротивления грунта, класса напряжения ВЛ, необходимой степени грозозащиты монтируют один или несколько тросов. Высота подвеса грозозащитных тросов определяется в зависимости от угла защиты, то есть угла между вертикалью, проходящей через трос, и линией, соединяющей трос с крайним проводом, который может изменяться в широких пределах и даже быть отрицательным.

На ВЛ напряжением до 20 кВ грозозащитные тросы обычно не применяются. ВЛ 110-220 кВ на деревянных опорах и ВЛ 35 кВ (независимо от материала опор) чаще всего защищают тросом только подходы к подстанциям. Линии 110 кВ и выше на металлических и железобетонных опорах защищают тросом на всём протяжении.

В качестве грозозащитных тросов применяются стальные канаты или иногда - сталеалюминиевые провода со стальным сердечником увеличенного сечения. Стальные канаты условно обозначают буквой С и цифрами, указывающими площадь их сечения (например, С-35).

Рис. 21.Определение на модели зоны защиты стержневого молниеотвода

Рис. 22. Зона 100%-ного поражения стержневого молниеотвода

Рис. 23. Зона защиты одиночного стержневого молниеотвода высотой до 60 м :
А - высота молниеотвода; hx - высота точки на границе защищаемой зоны: h& -h-hx - активная высота молниеотвода

Эта зона получила название зоны 100%-ного поражения стержневого молниеотвода. Во-вторых, вокруг молниеотвода высотой h имеется зона, не поражаемая разрядами. Эта зона защищается молниеотводом h. Минимальное расстояние от вертикали ВС, равное г0=3,5/г, и является радиусом зоны защиты молниеотвода на уровне земли.
Радиус зоны защиты на любой высоте молниеотводом h определяется также опытами в лаборатории с помощью стержня высотой hx (см. рис. 21), имитирующего защищаемый объект и находящегося в одной плоскости с электродом А и молниеотводом h. Они перемещаются относительно друг друга. При различных их расположениях производится определенное количество разрядов.
Затем находится максимальное расстояние гх между стержнем высотой hx и молниеотводом высотой h, при котором стержень не поражается разрядом. Это расстояние гх является радиусом зоны защиты молниеотвода на высоте hx.
Определенная таким образом зона защиты молниеотвода высотой h представляет собой «шатер» (рис. 23), радиус гх, м, которого «Руководящие указания по расчету зон защиты стержневых и тросовых молниеотводов» для молниеотводов высотой до 60 м рекомендуют рассчитывать
по формуле

Сначала разберемся в сути понятия. Молниеотвод обозначает одно и тоже, что Грозозащита или Молниезащита и отличается от Громоотвода , которым называют чаще только молниеприемную часть системы защиты зданий и сооружений. То есть молниеотвод - это «молниеприемник + токоотвод + заземление», или внешняя составляющая системы. Если посмотреть на схему любой комплексной молниезащиты, будь то частный дом или здание промышленного, офисно-административного назначения, то это ее часть, которая предназначена именно для защиты от прямых ударов молнии.

Конструкции (виды) молниеотводов

Всего существует 3-и базовые схемы: стержневой (рисунки а, б), тросовый (в) и молниеотвод в виде молниеприемной сетки (или сетчатый) (г). Комбинированная схема предполагает сочетание базовых вариантов.

По количеству одинаковых молниеприемных частей - одиночный, двойной и т.д.

По характеру и месту установки стержневые делятся на молниеприемные стержни, сборные стержневые, которые могут устанавливаться на фланцах, кронштейнах, специальных опорах или быть отдельно стоящими. Молниеприемные мачты как правило имеют телескопическую конструкцию и метод установки на или в грунт.

Тросовый - это трос, натянутый между опорами. Контур может быть любым, в том числе замкнутым. К нему по сути относится и самый простой и дешевый вариант молниеотвода для частного дома или дачи, когда вместо троса на небольшом расстоянии от конька кровли натягивают проводник радиусом 8-10 мм (алюминиевый, стальной или медный в зависимости от материала и цвета кровли) на расстоянии не менее 20 мм от самого конька, выводят его концы за крайние точки на расстояние примерно 30 мм и загибают немного вверх.


Молниеприемная сетка используется на плоских или крышах с незначительным уклоном.

Итак, как мы сказали, система внешней молниезащиты может быть изолирована от сооружения (отдельно стоящие молниеотводы - стержневые или тросовые, а также соседние сооружения, выполняющие роль естественных молниеотводов), или может быть установлена на защищаемом здании и даже быть его частью.

Расчет молниеотвода

Выбор молниеотводов рекомендуют производить при помощи специальных компьютерных программ, способных на основании габаритов зданий, планов кровли и конструктивных элементов на ней вычислять вероятности прорыва молнии и зоны защиты. Вот почему надежнее обращаться в специализированные организации, которые быстро выдадут Вам различные варианты и конфигурации молниеотводов.

Хотя, если конфигурация защищаемого объекта позволяет обойтись простейшими молниеотводами (одиночным стержневым, одиночным тросовым, двойным стержневым, двойным тросовым, замкнутым тросовым), размеры их можно определить самостоятельно, пользуясь заданными в Инструкциях СО 153-343.21.122-2003 и РД 34.21.122-87 зонами защиты.

Объект считается защищенным, если он целиком попадет в зону защиты молниеприемного устройства, которой присвоен требуемый уровень надежности.

Зона защиты одиночного стержневого молниеприемника (согласно СО 153-34.21.122-2003)

Стандартной зоной защиты в этом случае является круговой конус с вершиной, которая совпадает с вертикальной осью молниеотвода. Размеры зоны в этом случае определены 2-мя параметрами: высотой конуса h 0 и радиусом его основания r 0 .

В таблице ниже указаны их значения в зависимости от требуемой надежности защиты для молниеотводов высотой до 150 м от уровня земли. Для больших высот необходимо применение специальных программ и методик расчета.

Для других типов и комбинаций молниеотводов вариации расчета зон защиты смотрите в главе 3.3.2 СО 153-343.21.122-2003 и Приложении 3 РД 34.21.122-87.

Теперь, чтобы определить попадает ли ваш объект Х в зону защиты рассчитываем радиус горизонтального сечения r x на высоте h x и откладываем его от оси молниеприемника до крайней точки объекта.

Правила определения зон защиты для объектов высотой до 60 м (согласно МЭК 1024-1-1)

В Инструкции СО есть методика проектирования молниеотводов для обычных сооружений по стандарту МЭК 1024-1-1, которая может быть принята только, если расчеты по ней получаются более «жесткие», чем требования указанной Инструкции.

По ней могут быть применены следующие 3-и способа для разных случаев:

  • метод защитного угла для простых по форме или маленьких частей больших сооружений
  • метод фиктивной сферы для сооружений сложной формы
  • защитная сетка в общем случае и в особенности для защиты поверхностей

В таблице для разных категорий (уровней) молниезащиты (подробнее о категориях или классах здесь) приведены соответствующие значения параметров каждого из методов (радиус фиктивной сферы, предельно допустимые угол защиты и шаг ячейки сетки).

Метод угла защиты для кровельных надстроек

Величина угла выбирается по графику на диаграмме для соответствующей высоты молниеотвода, которая отсчитывается от защищаемой поверхности, и класса молниезащиты здания.

Зона защиты, как уже было сказано выше, - это круговой конус с вершиной в верхней точке стержня молниепремника.

Метод фиктивной сферы

Применяется, когда сложно определить размеры зоны защиты для отдельных конструкций или частей здания по методу защитного угла. Ее границей является воображаемая поверхность, которую очерчивает сфера выбранного радиуса r (см. таблицу выше), если бы ее прокатили по вершине сооружения, обходя молниеотводы. Соответственно объект считается защищенным, если эта поверхность не имеет с ним общих точек пересечения или касания.

Молниеприемная сетка

Это проводник, уложенный сверху на кровлю с выбранным в зависимости от класса молниезащиты здания шагом ячейки. При этом все металлические элементы на крыше (зенитные фонари, вентиляционные шахты, воздухозаборники, трубы и т.п.) обязательно должны быть соединены с сеткой. Иначе для них необходимо смонтировать дополнительные молниеприемники. Более подробно о конструктивных особенностях и вариантах монтажа можно прочитать в материале «Молниезащита на плоской кровле» .

Шаг ячейки по российским нормам выбирают исходя из категории молниезащиты здания (может быть меньше, но никак не больше).

Молниеприемная сетка монтируется с соблюдением ряда условий:

  • проводники прокладывают наикратчайшими путями
  • при ударе молнии у тока для отвода к заземлению должна быть возможность выбора хотя бы 2-х разных путей
  • при наличии конька и наклоне кровли более, чем 1 к 10, проводник нужно обязательно проложить по нему
  • никакие части и элементы, выполненные из металла, не должны выступать за внешний контур сетки
  • обязателен внешний контур сетки из проводника, смонтированный по краю периметра крыши, а край крыши должен выступать за габариты здания

Материалы и сечения проводников молниеотвода

В качестве материалов, используемых для производства молниеприемного оборудования и токоотводов используются оцинкованная и нержавеющая сталь, медь и алюминий. К ним предъявляются требования коррозионной стойкости и механической прочности, если используется защитное покрытие, то оно должно иметь хорошую адгезию с основным материалом.

В таблице указаны требования к профилю проводников и стержней по минимальной площади сечения и диаметра (согласно ГОСТ 62561.2-2014)

Монтаж молниеотвода для частного дома и промышленного здания

Рассмотрим какие же элементы монтажа включают в себя обычно система внешней молниезащиты. На рисунках ниже показаны примеры молниеотвода частного дома и промышленного здания.

Соответсвующими номерами здесь обозначены следующие изделия и их наименования:

Круглые и плоские проводники, тросы

Компоненты молниезащиты на плоских кровлях, перемычки и компенсаторы

Компоненты молниезащиты на скатных кровлях, кровельные держатели проводника

Компоненты молниезащиты на металлических кровлях, кровельные держатели проводника

Токоотводы, держатели токоотводов

Стержни земляного ввода, соединительные проводники, смотровые колодцы, держатели проводников

Клеммы для водосточных желобов, клеммы, соединительные компоненты

Молниеприемники, компоненты

Изолированная молниезащита

Монтаж можно разделить на три этапа: устройство молниеприемной части внешней молниезащитной системы (молниеприемники и их элементы крепления), прокладка токоотводов (кровельная и фасадная часть здания) и земляные работы по устройству заземления. Как правило у всех компаний стоимость работ составляет некоторый процент от цены материалов.

Компания МЗК-Электро предлагает отличные цены на молниеотводы и комплектующие. Ассортимент изделий на нашем складе составляет более 1.500 позиций, закупка осуществляется напрямую по дилерским контрактам у прямых производителей, что предполагает обязательную сертификацию и гарантию. Все изделия имеют необходимые сертификаты качества и гарантию. Мы также занимаемся проектированием и монтажом любых систем молниезащиты зданий и сооружений, как для частных домовладельцев, так и промышленных предприятий. Познакомиться с нашими ценами можно в соответствующем разделе .

Расчет стоимости

Выберете размер... 10х15 15х15 20х15 20х20 20х30 30х30 30х40

Выберете размер... 10 12 14 16 18 20 22

Наши объекты

    АО "Мосводоканал", Физкультурно-оздоровительный комплекс дома отдыха «Пялово»

    Адрес объекта: Московская область, Мытищинский район, дер. Пруссы, д. 25

    Вид работ: Проектирование и монтаж системы внешней молниезащиты.

    Состав молниезащиты: По плоской кровле защищаемого сооружения уложена молниеприемная сетка. Две дымоходные трубы защищены посредством установки на них молниеприемных стержней длиной 2000 мм и диаметром 16 мм. В качестве молниеприемного проводника использована сталь горячего цинкования диаметром 8 мм (сечение 50 кв.мм в соответствии с РД 34.21.122-87). Токоотводы проложены за водосточными трубами на хомутах с зажимными клеммами. Для токоотводов использован проводник из стали горячего цинкования диаметром 8 мм.

    ГТЭС Терешково

    Адрес объекта: г. Москва. Боровское ш., коммунальная зона «Терешково».

    Вид работ: монтаж системы внешней молниезащиты (молниеприемная часть и токоотводы).

    Комплектующие: производства фирмы OBO Bettermann.

    Исполнение: Общее количество проводника из стали горячего цинкования для 13 сооружений в составе объекта составило 21.5000 метров. По кровлям прокладывается молниеприемная сетка с шагом ячейки 5х5 м, по углам зданий монтируются по 2 токоотвода. В качестве элементов крепления использованы стеновые держатели, промежуточные соединители, держатели для плоской кровли с бетоном, скоростные соединительные клеммы.

Читайте также:
  1. Активные и пассивные меры, используемые для защиты от пожара.
  2. АНАЛИЗ И ПРИЧИНЫ ПРОИЗВОДСТВЕННОГО ТРАВМАТИЗМА. ОПАСНЫЕ ЗОНЫ И СРЕДСТВА ЗАЩИТЫ.
  3. Ассоциативная память. Структура ассоциативного запоминающего устройства. Классификация.
  4. Билет 10. Роль и место междунар.законодательства в росс.системе защиты детства
  5. Билет 15. Внутренняя политика Александра I.Попытки реформирования государственного устройства России.
  6. Блок 20. Основные правовые нормативные акты в области социально-правовой защиты граждан.
  7. Бункерные загрузочные устройства. Схемы. Область применения.

МОЛНИЕОТВОД - устройство для защиты зданий и сооружений от прямых ударов молнии. М. включает в себя четыре основные части: молниеприемник, непосредственно воспринимающий удар молнии; токоотвод, соединяющий молниеприемник с заземлителем; заземлитель, через который ток молнии стекает в землю; несущую часть (опору или опоры), предназначенную для закрепления молниеприемника и токоотвода.

В зависимости от конструкции молниеприемника различают стержневые, тросовые, сетчатые и комбинированные М.

По числу совместно действующих молниеприемников их делят на одиночные, двойные и многократные.

Кроме того, по месту расположения М. бывают отдельно стоящие, изолированные и не изолированные от защищаемого здания. Защитное действие М. основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения. Благодаря этому свойству более низкое по высоте защищаемое здание практически не поражается молнией, если оно входит в зону защиты М. Зоной защиты М. называется часть пространства, примыкающая к нему и с достаточной степенью надежности (не менее 95%) обеспечивающая защиту сооружений от прямых ударов молнии. Наиболее часто для защиты зданий и сооружений применяют стержневые М.

Тросовые М. чаще всего применяют для защиты зданий большой длины и высоковольтных линий. Эти М. изготавливают в виде горизонтальных тросов, закрепленных на опорах, по каждой из которых прокладывают токоотвод. Стержневые и тросовые М. обеспечивают одинаковую степень надежности защиты.

В качестве молниеприемников можно использовать металлическую крышу, заземленную по углам и по периметру не реже чем через каждые 25 м, или наложенную на неметаллическую крышу сетку из стальной проволоки диаметром не менее 6 мм, имеющую площадь ячеек до 150 мм2, с узлами, закрепленными сваркой, и заземленную так же, как металлическая крыша. К сетке или токопроводяшей кровле присоединяют металлические колпаки над дымовыми и вентиляционными трубами, а в случае отсутствия колпаков - специально наложенные на трубы проволочные кольца.

М. стержневой - М. с вертикальным расположением молниеприемника.

М. тросовый (протяженный) - М. с горизонтальным расположением молниеприемника, закрепленного на двух заземленных опорах.



ЗОНЫ ЗАЩИТЫ МОЛНИЕОТВОДОВ

Обычно зону защиты обозначают по максимальной вероятности прорыва, соответствующей ее внешней границе, хотя в глубине зоны вероятность прорыва существенно уменьшается.

Расчетный метод позволяет построить для стержневых и тросовых молниеотводов зону защиты с произвольным значением вероятности прорыва, т.е. для любого молниеотвода (одиночного или двойного) можно построить произвольное количество зон защиты. Однако для большинства народнохозяйственных зданий достаточный уровень защиты можно обеспечить, пользуясь двумя зонами, с вероятностью прорыва 0,1 и 0,01.

В терминах теории надежности вероятность прорыва - это параметр, характеризующий отказ молниеотвода как защитного устройства. При таком подходе двум принятым зонам защиты соответствует степень надежности 0,9 и 0,99. Эта оценка надежности справедлива при расположении объекта вблизи границы зоны защиты, например объекта в виде кольца, соосного со стержневым молниеотводом. У реальных же объектов (обычных зданий) на границе зоны защиты, как правило, расположены лишь верхние элементы, а большая часть объекта помещается в глубине зоны. Оценка надежности зоны защиты по ее внешней границе приводит к чрезмерно заниженным значениям. Поэтому, чтобы учесть существующее на практике взаимное расположение молниеотводов и объектов, зонам защиты А и Б приписана в РД 34.21.122-87 ориентировочная степень надежности 0,995 и 0,95 соответственно.



Одиночный стержневой молниеотвод.

Зона защиты одиночного стержневого молниеотвода высотой h представляет собой круговой конус (рис. П3.1), вершина которого находится на высоте h0

1.1. Зоны защиты одиночных стержневых молниеотводов высотой h? 150 м имеют следующие габаритные размеры.

Зона A: h0 = 0,85h,

r0 = (1,1 - 0,002h)h,

rx = (1,1 - 0,002h)(h - hx/0,85).

Зона Б: h0 = 0,92h;

rx =1,5(h - hx/0,92).

Для зоны Б высота одиночного стержневого молниеотвода при известных значениях h и может быть определена по формуле

h = (rx + 1,63hx)/1,5.

Рис. П3.1. Зона защиты одиночного стержневого молниеотвода:

I - граница зоны защиты на уровне hx, 2 -то же на уровне земли

Одиночный тросовый молниеотвод.

Зона защиты одиночного тросового молниеотвода высотой h? 150 м приведена на рис. П3.5, где h - высота троса в середине пролета. С учетом стрелы провеса троса сечением 35-50 мм2 при известной высоте опор hоп и длине пролета а высота троса (в метрах) определяется:

h = hоп - 2 при а < 120 м;

h = hоп - 3 при 120 < а < 15Ом.

Рис. П3.5. Зона защиты одиночного тросового молниеотвода. Обозначения те же, что и на рис. П3.1

Зоны защиты одиночного тросового молниеотвода имеют следующие габаритные размеры.

ВВЕДЕНИЕ

Распределительные электрические сети (PC) напряжением 0,4-10 кВ в последние годы оснащаются электрооборудованием, аппаратами, устройствами, изоляторами и проводами, изготовленными на новой современной технической базе. Эксплуатация таких сетевых объектов требует надежной системы защиты от грозовых перенапряжений с использованием современных технических средств. Разработка технических средств и методов защиты от перенапряжений PC связана с количественной оценкой параметров молнии и вероятного числа грозовых повреждений. Для расчетов плотности прямых ударов молнии на землю используется информация об интенсивности грозовой деятельности. При этом необходимо учитывать экранирование сетевых объектов зданиями, сооружениями, деревьями и т.п. Экранирование в отдельных случаях может снизить количество прямых ударов в сетевые объекты на ~ 70%.

Надежная защита достигается, если оборудование и конструкции будут иметь достаточно высокую прочность изоляции или в PC установлены эффективные аппараты защиты от грозовых перенапряжений. Для защиты PC напряжением 0,4-10 кВ от грозовых перенапряжений применяются ограничители перенапряжений нелинейные (ОПН), разрядники длинно-искровые (РДИ), разрядники вентильные (РВ) и трубчатые (РТ), защитные искровые промежутки (ИП). Тип, количество и место установки аппаратов защиты выбирается при проектировании конкретных сетевых объектов. При установке аппаратов защиты требования к значению сопротивления заземления выбирают согласно ПУЭ. Для магистральных линий напряжением 6-10 кВ, выполненных в габаритах ВЛ напряжением 35 кВ, рекомендуется применять тросовые молниеотводы на подходах к подстанциям и распределительным пунктам.

Задачей защиты PC напряжением 0,4 кВ является предотвращение поражения людей, животных и возникновения пожаров вследствие проникновения грозовых перенапряжений во внутренние проводки жилых домов и других строений, а также повреждения электрооборудования подстанций 6-10/0,4 кВ.

ОЦЕНКА ЗАЩИТНОГО ДЕЙСТВИЯ МОЛНИЕОТВОДОВ

Параметры стержневых и тросовых молниеотводов

Параметры стержневых молниеотводов

Стержневым молниеотводом называется конструкция в виде вертикального установленного решетчатого шпиля, трубы или стержня. Стержневой молниеотвод как средство грозозащиты был предложен В.Франклином в 1749 году. Современные молниеотводы стандартных типов имеют высоту до 40 метров. В некоторых случаях для создания нестандартных молниеотводов в качестве несущих конструкций используются заводские трубы, опоры линий электропередачи или металлические порталы открытых распределительных устройств.

Молниеотвод должен иметь надёжную связь с землёй с сопротивлением 5-25 Ом растеканию импульсного тока. Защитное свойство стержневых молниеотводов заключается в том, что они ориентируют на себя лидер формирующегося грозового разряда. Разряд происходит обязательно в вершину молниеотвода, если он формируется в некоторой области, расположенной над молниеотводом. Эта область имеет вид расширяющегося вверх конуса и называется зоной 100%-го поражения. Опытными данными установлено, что высота ориентировки молнии Н зависит от высоты молниеотвода h. Для молниеотводов высотой до 30 метров:

а для молниеотводов высотой более 30 метров Н=600м принято считать, что вершина конуса зоны 100%-го поражения располагается симметрично оси молниеотвода на высоте защищаемого объекта, а радиус его на высоте ориентировки:

где - активная часть молниеотвода, соответствующая его превышению над высотой защищаемого объекта:

Кроме указанной зоны, защитное действие стержневого молниеотвода характеризуется зоной защиты, т.е. пространством, попадание разрядов молний в которое исключается. Зона защиты одиночного стержневого молниеотвода имеет вид шатра, расширяющегося книзу (рис. 1.1). Для расчёта радиуса защиты в любой точке защитной зоны, в том числе и на уровне высоты защищаемого объекта, используется формула:

где р - поправочный коэффициент, равный 1 для молниеотводов высотой меньше 30 метров и равный для более высоких молниеотводов.

В том случае, когда для защиты протяжённых объектов используется несколько молниеотводов, целесообразно, чтобы зоны их 100%-го поражения смыкались над объектом или даже перекрывали друг друга, исключая вертикальный прорыв молнии на объект защиты (рис. 1.2). Расстояние (S) между осями молниеотводов должно быть равно или меньше величины, определяемой из зависимости:

Зона защиты двух и четырёх стержневых молниеотводов в плане на уровне высоты защищаемого объекта имеет очертания, приведённые на рис. 1.3, а, б.

Показанный на рисунке радиус защиты определяется так же, как и для одиночного молниеотвода, а наименьшая ширина зоны защиты определяется по специальным кривым. Следует иметь ввиду, что при молниеотводов высотой до 30 метров, расположенных на расстоянии, наименьшая ширина зоны защиты равна нулю.

Рисунок 1.1 - Зона защиты одиночного стержневого молниеотвода:

1 - граница зоны защиты; 2 - сечение зоны защиты на уровне

Рисунок 1.2 - Схема расположения стержневых молниеотводов, обеспечивающая смыкание зон 100%-го поражения

Рисунок 1.3 - Графическое изображение защитной зоны:

а) - для двух молниеотводов; б) - для четырёх молниеотводов

При наличии трёх и четырёх молниеотводов очертания защитной зоны имеют вид, подобный рис. 1.3 б. Радиусы защиты определяются в этом случае так же, как и для одиночных молниеотводов. Размер определяется по кривым для каждой пары молниеотводов. Диагональ четырёхугольника или диаметр окружности, проходящей через вершины треугольника, образованного тремя молниеотводами, по условиям защищённости всей площади должны удовлетворять зависимости для молниеотводов высотой меньше 30 м:

для молниеотводов высотой более 30 м:

При установке отдельно стоящих молниеотводов необходимо соблюдать определённые расстояния по воздуху между молниеотводом и защищаемым объектом. Это требование исходит из того, что в момент поражения молниеотвода молнией на нём создаётся высокий потенциал, который может привести к обратному разряду с молниеотвода на объект. Потенциал на молниеотводе в момент разряда определяется зависимостью:

где - импульсное сопротивление заземления молниеотвода 5 - 25 Ом; - ток молнии в хорошо заземлённом объекте, кА.

Более точно потенциал на молниеотводе можно определить с учётом индук-

тивности молниеотвода:

где а - крутизна фронта волны тока, кА/мкс; - точка молниеотвода на высоте объекта, м; - удельная индуктивность молниеотвода, мкГн/м.

Для расчёта минимального допустимого приближения объекта к молниеотводу можно исходить из зависимости:

где Е в - допустимая импульсная напряжённость электрического поля в воздухе, принимаемая 500 кВ/м.

Руководящие указания по защите от перенапряжений рекомендуют расстояние до молниеотвода принимать равным:

Эта зависимость справедлива при токе молнии, равным 150 кА, крутизне тока 32 кА/мксек и индуктивности молниеотвода 1,5 мкгн/м. Независимо от результатов расчёта, расстояние между объектом и молниеотводом должно быть не менее 5 м.

Тросовый молниеотвод

Одним из наиболее надёжных средств предотвращения прямых поражений молнией проводов линий электропередачи является подвеска над ними заземлённых тросовых молниеотводов. Устройство это дорогое и поэтому применяется только на линиях первого класса напряжением 110 кВ и выше. Когда линия на металлических или деревянных опорах не прикрыта тросами полностью, ими прикрывают только подходы к подстанциям на участке 1-2 км. В зависимости от конструкции опор, могут быть применены один или два троса, наглухо присоединённые к металлической опоре или к заземляющим металлическим спускам деревянных опор. Для предохранения троса от пережога током молнии и контроля заземления опоры крепления троса производится с помощью одного подвесного изолятора, шунтированного искровым промежутком. Эффективность тросовой защиты тем выше, чем меньше угол, образованный вертикалью, проходящей через трос, и линией, соединяющей трос с крайним из проводов. Этот угол называют защитным углом, принимая его величину в пределах 20-30 0 .

Защитная зона для одного троса в сечении перпендикулярном линии, имеет вид, подобный защитной зоне для одиночного стержневого молниеотвода. Ширина защитной зоны, исключающей прямое поражение проводов на уровне высоты их подвеса, определяется зависимостью:

Эта зависимость справедлива для высоты подвеса троса 30 м и ниже.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...