Системы квадратных неравенств примеры. Квадратные неравенства


Определение квадратного неравенства

Замечание 1

Квадратным неравенство называется т.к. переменная возведена в квадрат. Также квадратные неравенства называют неравенствами второй степени .

Пример 1

Пример .

$7x^2-18x+3 0$, $11z^2+8 \le 0$ – квадратные неравенства.

Как видно из примера, не все элементы неравенства вида $ax^2+bx+c > 0$ присутствуют.

Например, в неравенстве $\frac{5}{11} y^2+\sqrt{11} y>0$ нет свободного члена (слагаемое $с$), а в неравенстве $11z^2+8 \le 0$ нет слагаемого с коэффициентом $b$. Такие неравенства также являются квадратными, но их еще называют неполными квадратными неравенствами . Это лишь означает, что коэффициенты $b$ или $с$ равны нулю.

Методы решения квадратных неравенств

При решении квадратных неравенств используют такие основные методы:

  • графический;
  • метод интервалов;
  • выделения квадрата двучлена.

Графический способ

Замечание 2

Графический способ решения квадратных неравенств $ax^2+bx+c > 0$ (или со знаком $

Данные промежутки и являются решением квадратного неравенства .

Метод интервалов

Замечание 3

Метод интервалов решения квадратных неравенств вида $ax^2+bx+c > 0$ (знак неравенства может быть также $

Решениями квадратного неравенства со знаком $«»$ – положительные промежутки, со знаками $«≤»$ и $«≥»$ – отрицательные и положительные промежутки (соответственно), включая точки, которые отвечают нулям трехчлена.

Выделение квадрата двучлена

Метод решения квадратного неравенства выделением квадрата двучлена заключается в переходе к равносильному неравенству вида $(x-n)^2 > m$ (или со знаком $

Неравенства, которые сводятся к квадратным

Замечание 4

Зачастую при решении неравенств их нужно привести к квадратным неравенствам вида $ax^2+bx+c > 0$ (знак неравенства может быть также $ неравенствами, которые сводятся к квадратным.

Замечание 5

Самым простым способом приведения неравенств к квадратным может быть перестановка в исходном неравенстве слагаемых или перенос их, например, из правой части в левую.

Например, при переносе всех слагаемых неравенства $7x > 6-3x^2$ из правой части в левую получается квадратное неравенство вида $3x^2+7x-6 > 0$.

Если переставить в левой части неравенства $1,5y-2+5,3x^2 \ge 0$ слагаемые в порядке убывания степени переменной $у$, то это приведет к равносильному квадратному неравенству вида $5,3x^2+1,5y-2 \ge 0$.

При решении рациональных неравенств часто используют приведение их к квадратным неравенствам. При этом необходимо перенести все слагаемые в левую часть и преобразовать получившееся выражение к виду квадратного трехчлена.

Пример 2

Пример .

Привести неравенство $7 \cdot (x+0,5) \cdot x > (3+4x)^2-10x^2+10$ к квадратному.

Решение .

Перенесем все слагаемые в левую часть неравенства:

$7 \cdot (x+0,5) \cdot x-(3+4x)^2+10x^2-10 > 0$.

Используя формулы сокращенного умножения и раскрывая скобки, упростим выражение в левой части неравенства:

$7x^2+3,5x-9-24x-16x^2+10x^2-10 > 0$;

$x^2-21,5x-19 > 0$.

Ответ : $x^2-21,5x-19 > 0$.

Квадратными неравенствами называют , которые можно привести к виду \(ax^2+bx+c\) \(⋁\) \(0\), где \(a\),\(b\) и \(с\) - любые числа (причем \(a≠0\)), \(x\) – неизвестная , а \(⋁\) – любой из знаков сравнения (\(>\),\(<\),\(≤\),\(≥\)).

Проще говоря, такие неравенства выглядят как , но со вместо знака равно.
Примеры:

\(x^2+2x-3>0\)
\(3x^2-x≥0\)
\((2x+5)(x-1)≤5\)

Как решать квадратные неравенства?

Квадратные неравенства обычно решают . Ниже приведен алгоритм, как решать квадратные неравенства с дискриминантом больше нуля. Решение квадратных неравенств с дискриминантом равным нулю или меньше нуля – разобраны отдельно.

Пример. Решите квадратное неравенство \(≥\) \(\frac{8}{15}\)
Решение:

\(\frac{x^2}{5}+\frac{2x}{3}\) \(≥\) \(\frac{8}{15}\)

\(D=100+4⋅3⋅8=196=14^2\)
\(x_1=\frac{-10-14}{6}=-4\) \(x_2=\frac{-10+14}{6}=\frac{2}{3}\)

Когда корни найдены, запишем неравенство в виде.

\(3(x+4)(x-\frac{2}{3})≥0\)

Теперь начертим числовую ось, отметим на ней корни и расставим знаки на интервалах.

Выпишем в ответ интересующие нас интервалы. Так как знак неравенства \(≥\), то нам нужны интервалы со знаком \(+\), при этом сами корни мы включаем в ответ (скобки на этих точках – квадратные).

Ответ : \(x∈(-∞;-4]∪[ \frac{2}{3};∞)\)

Квадратные неравенства с отрицательным и равным нулю дискриминантом

Алгоритм выше работает, когда дискриминант больше нуля, то есть имеет \(2\) корня. Что делать в остальных случаях? Например, таких:

\(1) x^2+2x+9>0\)

\(2) x^2+6x+9≤0\)

\(3)-x^2-4x-4>0\)

\(4) -x^2-64<0\)

\(D=4-36=-32<0\)

\(D=-4 \cdot 64<0\)


Если \(D<0\), то квадратный трехчлен имеет постоянный знак, совпадающий со знаком коэффициента \(a\) (тем, что стоит перед \(x^2\)).

То есть, выражение:
\(x^2+2x+9\) – положительно при любых \(x\), т.к. \(a=1>0\)
\(-x^2-64\) - отрицательно при любых \(x\), т.к. \(a=-1<0\)


Если \(D=0\), то квадратный трехчлен при одном значении \(x\) равен нулю, а при всех остальных имеет постоянный знак, который совпадает со знаком коэффициента \(a\).

То есть, выражение:
\(x^2+6x+9\) - равно нулю при \(x=-3\) и положительно при всех остальных иксах, т.к. \(a=1>0\)
\(-x^2-4x-4\) - равно нулю при \(x=-2\) и отрицательно при всех остальных, т.к. \(a=-1<0\).


Как найти икс, при котором квадратный трехчлен равен нулю? Нужно решить соответствующее квадратное уравнение.

С учетом этой информации давайте решим квадратные неравенства:

1) \(x^2+2x+9>0\)
\(D=4-36=-32<0\)

Неравенство, можно сказать, задает нам вопрос: «при каких \(x\) выражение слева больше нуля?». Выше мы уже выяснили, что при любых. В ответе можно так и написать: «при любых \(x\)», но лучше туже самую мысль, выразить на языке математики.

Ответ: \(x∈(-∞;∞)\)

2) \(x^2+6x+9≤0\)
\(D=36-36=0\)

Вопрос от неравенства: «при каких \(x\) выражение слева меньше или равно нулю?» Меньше нуля оно быть не может, а вот равно нулю – вполне. И чтобы выяснить при каком иске это произойдет, решим соответствующие квадратное уравнение.

Давайте соберем наше выражение по \(a^2+2ab+b^2=(a+b)^2\).

Сейчас нам мешает только квадрат. Давайте вместе подумаем - какое число в квадрате равно нулю? Ноль! Значит, квадрат выражения равен нулю только если само выражение равно нулю.

\(x+3=0\)
\(x=-3\)

Это число и будет ответом.

Ответ: \(-3\)

3)\(-x^2-4x-4>0\)
\(D=16-16=0\)

Когда выражение слева больше нуля?

Как выше уже было сказано выражение слева либо отрицательно, либо равно нулю, положительным оно быть не может. Значит ответ – никогда. Запишем «никогда» на языке математике, с помощью символа «пустое множество» - \(∅\).

Ответ: \(x∈∅\)

4) \(-x^2-64<0\)
\(D=-4 \cdot 64<0\)

Когда выражение слева меньше нуля?

Всегда. Значит неравенство выполняется при любых \(x\).

Ответ: \(x∈(-∞;∞)\)

Сравнивать величины и количества при решении практических задач приходилось ещё с древних времён. Тогда же появились и такие слова, как больше и меньше, выше и ниже, легче и тяжелее, тише и громче, дешевле и дороже и т.д., обозначающие результаты сравнения однородных величин.

Понятия больше и меньше возникли в связи со счётом предметов, измерением и сравнением величин. Например, математики Древней Греции знали, что сторона любого треугольника меньше суммы двух других сторон и что против большего угла в треугольнике лежит большая сторона. Архимед, занимаясь вычислением длины окружности, установил, что периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых диаметра.

Символически записывать соотношения между числами и величинами с помощью знаков > и b. Записи, в которых два числа соединены одним из знаков: > (больше), С числовыми неравенствами вы встречались и в младших классах. Знаете, что неравенства могут быть верными, а могут быть и неверными. Например, \(\frac{1}{2} > \frac{1}{3} \) верное числовое неравенство, 0,23 > 0,235 - неверное числовое неравенство.

Неравенства, в которые входят неизвестные, могут быть верными при одних значениях неизвестных и неверными при других. Например, неравенство 2x+1>5 верное при х = 3, а при х = -3 - неверное. Для неравенства с одним неизвестным можно поставить задачу: решить неравенство. Задачи решения неравенств на практике ставятся и решаются не реже, чем задачи решения уравнений. Например, многие экономические проблемы сводятся к исследованию и решению систем линейных неравенств. Во многих разделах математики неравенства встречаются чаще, чем уравнения.

Некоторые неравенства служат единственным вспомогательным средством, позволяющим доказать или опровергнуть существование определённого объекта, например, корня уравнения.

Числовые неравенства

Вы умеете сравнивать целые числа, десятичные дроби. Знаете правила сравнения обыкновенных дробей с одинаковыми знаменателями, но разными числителями; с одинаковыми числителями, но разными знаменателями. Здесь вы научитесь сравнивать любые два числа с помощью нахождения знака их разности.

Сравнение чисел широко применяется на практике. Например, экономист сравнивает плановые показатели с фактическими, врач сравнивает температуру больного с нормальной, токарь сравнивает размеры вытачиваемой детали с эталоном. Во всех таких случаях сравниваются некоторые числа. В результате сравнения чисел возникают числовые неравенства.

Определение. Число а больше числа b, если разность а-b положительна. Число а меньше числа b, если разность а-b отрицательна.

Если а больше b, то пишут: а > b; если а меньше b, то пишут: а Таким образом, неравенство а > b означает, что разность а - b положительна, т.е. а - b > 0. Неравенство а Для любых двух чисел а и b из следующих трёх соотношений a > b, a = b, a Сравнить числа а и b - значит выяснить, какой из знаков >, = или Теорема. Если a > b и Ь > с, то а > с.

Теорема. Если к обеим частям неравенства прибавить одно и то же число, то знак неравенства не изменится.
Следствие. Любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Теорема. Если обе части неравенства умножить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.
Следствие. Если обе части неравенства разделить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства разделить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.

Вы знаете, что числовые равенства можно почленно складывать и умножать. Далее вы научитесь выполнять аналогичные действия с неравенствами. Умения почленно складывать и умножать неравенства часто применяются на практике. Эти действия помогают решать задачи оценивания и сравнения значений выражений.

При решении различных задач часто приходится складывать или умножать почленно левые и правые части неравенств. При этом иногда говорят, что неравенства складываются или умножаются. Например, если турист прошёл в первый день более 20 км, а во второй - более 25 км, то можно утверждать, что за два дня он прошёл более 45 км. Точно так же если длина прямоугольника меньше 13 см, а ширина меньше 5 см, то можно утверждать, что площадь этого прямоугольника меньше 65 см2.

При рассмотрении этих примеров применялись следующие теоремы о сложении и умножении неравенств:

Теорема. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то a + c > b + d.

Теорема. При умножении неравенств одинакового знака, у которых левые и правые части положительны, получается неравенство того же знака: если а > b, c > d и а, b, с, d - положительные числа, то ac > bd.

Неравенства со знаком > (больше) и 1/2, 3/4 b, c Наряду со знаками строгих неравенств > и Точно так же неравенство \(a \geq b \) означает, что число а больше или равно b, т. е. а не меньше b.

Неравенства, содержащие знак \(\geq \) или знак \(\leq \), называют нестрогими. Например, \(18 \geq 12 , \; 11 \leq 12 \) - нестрогие неравенства.

Все свойства строгих неравенств справедливы и для нестрогих неравенств. При этом если для строгих неравенств противоположными считались знаки > и Вы знаете, что для решения ряда прикладных задач приходится составлять математическую модель в виде уравнения или системы уравнений. Далее вы узнаете, что математическими моделями для решения многих задач являются неравенства с неизвестными. Будет введено понятие решения неравенства и показано, как проверить, является ли данное число решением конкретного неравенства.

Неравенства вида
\(ax > b, \quad ax в которых а и b - заданные числа, а x - неизвестное, называют линейными неравенствами с одним неизвестным .

Определение. Решением неравенства с одним неизвестным называется то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство. Решить неравенство - это значит найти все его решения или установить, что их нет.

Решение уравнений вы осуществляли путём приведения их к простейшим уравнениям. Аналогично при решении неравенств их стремятся с помощью свойств привести к виду простейших неравенств.

Решение неравенств второй степени с одной переменной

Неравенства вида
\(ax^2+bx+c >0 \) и \(ax^2+bx+c где x - переменная, a, b и c - некоторые числа и \(a \neq 0 \), называют неравенствами второй степени с одной переменной .

Решение неравенства
\(ax^2+bx+c >0 \) или \(ax^2+bx+c можно рассматривать как нахождение промежутков, в которых функция \(y= ax^2+bx+c \) принимает положительные или отрицательные значения. Для этого достаточно проанализировать, как расположен график функции \(y= ax^2+bx+c \) в координатной плоскости: куда направлены ветви параболы - вверх или вниз, пересекает ли парабола ось x и если пересекает, то в каких точках.

Алгоритм решения неравенств второй степени с одной переменной:
1) находят дискриминант квадратного трехчлена \(ax^2+bx+c \) и выясняют, имеет ли трехчлен корни;
2) если трехчлен имеет корни, то отмечают их на оси x и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при a > 0 или вниз при a 0 или в нижней при a 3) находят на оси x промежутки, для которых точки параболы расположены выше оси x (если решают неравенство \(ax^2+bx+c >0 \)) или ниже оси x (если решают неравенство
\(ax^2+bx+c Решение неравенств методом интервалов

Рассмотрим функцию
f(x) = (х + 2)(х - 3)(х - 5)

Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки \((-\infty; -2), \; (-2; 3), \; (3; 5) \) и \((5; +\infty) \)

Выясним, каковы знаки этой функции в каждом из указанных промежутков.

Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:

Вообще пусть функция задана формулой
f(x) = (x-x 1)(x-x 2) ... (x-x n),
где x–переменная, а x 1 , x 2 , ..., x n – не равные друг другу числа. Числа x 1 , x 2 , ..., x n являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.

Это свойство используется для решения неравенств вида
(x-x 1)(x-x 2) ... (x-x n) > 0,
(x-x 1)(x-x 2) ... (x-x n) где x 1 , x 2 , ..., x n - не равные друг другу числа

Рассмотренный способ решения неравенств называют методом интервалов.

Приведем примеры решения неравенств методом интервалов.

Решить неравенство:

\(x(0,5-x)(x+4) Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки \(x=0, \; x=\frac{1}{2} , \; x=-4 \)

Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:

Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.

Ответ:
\(x \in \left(-\infty; \; 1 \right) \cup \left[ 4; \; +\infty \right) \)

Квадратное неравенство – «ОТ и ДО». В этой статье мы с вами рассмотрим решение квадратных неравенств что называется до тонкостей. Изучать материал статьи рекомендую внимательно ничего не пропуская. Осилить статью сразу не получится, рекомендую сделать это за несколько подходов, информации много.

Содержание:

Вступление. Важно!


Вступление. Важно!

Квадратное неравенство – это неравенство вида:

Если взять квадратное уравнение и заменить знак равенства на любой из указанных выше, то получится квадратное неравенство. Решить неравенство - это значит ответить на вопрос, при каких значениях х данное неравенство будет верно. Примеры:

10 x 2 – 6 x +12 ≤ 0

2 x 2 + 5 x –500 > 0

– 15 x 2 – 2 x +13 > 0

8 x 2 – 15 x +45≠ 0

Квадратное неравенство может быть задано в неявном виде, например:

10 x 2 – 6 x +14 x 2 –5 x +2≤ 56

2 x 2 > 36

8 x 2 <–15 x 2 – 2 x +13

0> – 15 x 2 – 2 x +13

В этом случае необходимо выполнить алгебраические преобразования и привести его к стандартному виду (1).

*Коэффициенты могут быть и дробными и иррациональными, но в школьной программе такие примеры редкость, а в заданиях ЕГЭ не встречаются вообще. Но вы не пугайтесь, если, например, встретите:

Это тоже квадратное неравенство.

Сначала рассмотрим простой алгоритм решения, не требующий понимания того, что такое квадратичная функция и как её график выглядит на координатной плоскости относительно осей координат. Если вы способны запоминать информацию крепко и надолго, при этом регулярно подкрепляете её практикой, то алгоритм вам поможет. Так же если вам, как говорится, нужно решить такое неравенство «наразок», то алгоритм вам в помощь. Следуя ему вы без труда осуществите решение.

Если же вы учитесь в школе, то настоятельно рекомендую вам начать изучение статьи со второй части, где рассказывается весь смысл решения (смотрите ниже с пункта – ). Если будет понимание сути, то не учить, не запоминать указанный алгоритм будет не нужно, вы без труда быстро решите любое квадратное неравенство.

Конечно, следовало бы сразу начать разъяснение именно с графика квадратичной функции и oбъяснения самого смысла, но решил «построить» статью именно так.

Ещё один теоретический момент! Посмотрите формулу разложения квадратного трёхчлена на множители:

где х 1 и х 2 — корни квадратного уравнения ax 2 + bx +c=0

*Для того, чтобы решить квадратное неравенство, необходимо будет квадратный трёхчлен разложить на множители.

Представленный ниже алгоритм называют ещё методом интервалов. Он подходит для решения неравенств вида f (x )>0, f (x )<0 , f (x )≥0 и f (x )≤0 . Обратите внимание, что множителей может более двух, например:

(х–10)(х+5)(х–1)(х+104)(х+6)(х–1)<0

Алгоритм решения. Метод интервалов. Примеры.

Дано неравенство ax 2 + bx + с > 0 (знак любой).

1. Записываем квадратное уравнение ax 2 + bx + с = 0 и решаем его. Получаем х 1 и х 2 – корни квадратного уравнения.

2. Подставляем в формулу (2) коэффициент a и корни. :

a (x x 1 )(x x 2)>0

3. Определяем интервалы на числовой прямой (корни уравнения делят числовую ось на интервалы):

4. Определяем «знаки» на интервалах (+ или –) путём подстановки произвольного значения «х» из каждого полученного интервала в выражение:

a (x x 1 )(x x 2)

и отмечаем их.

5. Остаётся лишь выписать интересующие нас интервалы, они отмечены:

— знаком «+», если в неравенстве стояло «>0» или «≥0».

— знаком «–», если в неравенстве было «<0» или «≤0».

ОБРАТИТЕ ВНИМАНИЕ!!! Сами знаки в неравенстве могут быть:

строгими – это «>», «<» и нестрогими – это «≥», «≤».

Как это влияет на результат решения?

При строгих знаках неравенства границы интервала НЕ ВХОДЯТ в решение, при этом в ответе сам интервал записывается в виде (x 1 ; x 2 ) – скобки круглые.

При нестрогих знаках неравенства границы интервала ВХОДЯТ в решение, и ответ записывается в виде [x 1 ; x 2 ] – скобки квадратные.

*Это касается не только квадратных неравенств. Квадратная скобка означает, что сама граница интервала включена в решение.

На примерах вы это увидите. Давайте разберём несколько, чтобы снять все вопросы по этому поводу. В теории алгоритм может показаться несколько сложным, на самом деле всё просто.

ПРИМЕР 1: Решить x 2 – 60 x +500 ≤ 0

Решаем квадратное уравнение x 2 –60 x +500=0

D = b 2 –4 ac = (–60) 2 –4∙1∙500 = 3600–2000 = 1600

Находим корни:


Подставляем коэффициент a

x 2 –60 x +500 = (х–50)(х–10)

Записываем неравенство в виде (х–50)(х–10) ≤ 0

Корни уравнения делят числовую ось на интервалы. Покажем их на числовой прямой:

Мы получили три интервала (–∞;10), (10;50) и (50;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение (х–50)(х–10) произвольных значений их каждого полученного интервала и смотрим соответствие полученного «знака» знаку в неравенстве (х–50)(х–10) ≤ 0 :

при х=2 (х–50)(х–10) = 384 > 0 неверно

при х=20 (х–50)(х–10) = –300 < 0 верно

при х=60 (х–50)(х–10) = 500 > 0 неверно

Решением будет являться интервал .

При всех значениях х из этого интервала неравенство будет верным.

*Обратите внимание, что мы поставили квадратные скобки.

При х = 10 и х = 50 неравенство также будет верно, то есть границы входят в решение.

Ответ: x∊

Ещё раз:

— Границы интервала ВХОДЯТ в решение неравенства тогда, когда в условии стоит знак ≤ или ≥ (нестрогое неравенство). При этом на эскизе принято полученные корни отображать ЗАШТРИШОВАННЫМ кружком.

— Границы интервала НЕ ВХОДЯТ в решение неравенства тогда, когда в условии стоит знак < или > (строгое неравенство). При этом на эскизе принято корень отображать НЕЗАШТРИХОВАННЫМ кружком.

ПРИМЕР 2: Решить x 2 + 4 x –21 > 0

Решаем квадратное уравнение x 2 + 4 x –21 = 0

D = b 2 –4 ac = 4 2 –4∙1∙(–21) =16+84 = 100

Находим корни:

Подставляем коэффициент a и корни в формулу (2), получаем:

x 2 + 4 x –21 = (х–3)(х+7)

Записываем неравенство в виде (х–3)(х+7) > 0.

Корни уравнения делят числовую ось на интервалы. Отметим их на числовой прямой:

*Неравенство нестрогое, поэтому обозначения корней НЕзаштрихованы. Получили три интервала (–∞;–7), (–7;3) и (3;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение (х–3)(х+7) произвольных значений их этих интервалов и смотрим соответствие неравенству (х–3)(х+7)> 0 :

при х= –10 (–10–3)(–10 +7) = 39 > 0 верно

при х= 0 (0–3)(0 +7) = –21 < 0 неверно

при х=10 (10–3)(10 +7) = 119 > 0 верно


Решением будут являться два интервала (–∞;–7) и (3;+∞). При всех значениях х из этих интервалов неравенство будет верным.

*Обратите внимание, что мы поставили круглые скобки. При х = 3 и х = –7 неравенство будет неверным – границы не входят в решение.

Ответ: x∊(–∞;–7) U (3;+∞)

ПРИМЕР 3: Решить x 2 –9 x –20 > 0

Решаем квадратное уравнение x 2 –9 x –20 = 0.

a = –1 b = –9 c = –20

D = b 2 –4 ac = (–9) 2 –4∙(–1)∙ (–20) =81–80 = 1.

Находим корни:

Подставляем коэффициент a и корни в формулу (2), получаем:

x 2 –9 x –20 =–(х–(–5))(х–(–4))= –(х+5)(х+4)

Записываем неравенство в виде –(х+5)(х+4) > 0.

Корни уравнения делят числовую ось на интервалы. Отметим на числовой прямой:

*Неравенство строгое, поэтому обозначения корней незаштрихованы. Получили три интервала (–∞;–5), (–5; –4) и (–4;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение –(х+5)(х+4) произвольных значений их этих интервалов и смотрим соответствие неравенству –(х+5)(х+4)>0 :

при х= –10 – (–10+5)(–10 +4) = –30 < 0 неверно

при х= –4,5 – (–4,5+5)(–4,5+4) = 0,25 > 0 верно

при х= 0 – (0+5)(0 +4) = –20 < 0 неверно

Решением будут являться интервал (–5;–4). При всех значениях «х» принадлежащих ему неравенство будет верным.

*Обратите внимание, что границы не входят в решение. При х = –5 и х = –4 неравенство будет неверным.

ЗАМЕЧАНИЕ!

При решении квадратного уравнения у нас может получится один корень или корней не будет вовсе, тогда при использовании данного метода вслепую могут возникнуть затруднения в определении решения.

Небольшой итог! Метод хорош и использовать его удобно, особенно если вы знакомы с квадратичной функцией и знаете свойства её графика. Если нет, то прошу ознакомиться, приступим к следующему разделу.

Использование графика квадратичной функции. Рекомендую!

Квадратичная это функция вида:

Её графиком является парабола, ветви параболы направлены вверх, либо вниз:


График может быть расположен следующим образом: может пересекать ось х в двух точках, может касаться её в одной точке (вершиной), может не пересекать. Об этом подробнее в дальнейшем.

Теперь рассмотрим этот подход на примере. Весь процесс решения состоит из трёх этапов. Решим неравенство x 2 +2 x –8 >0.

Первый этап

Решаем уравнение x 2 +2 x –8=0.

D = b 2 –4 ac = 2 2 –4∙1∙(–8) = 4+32 = 36

Находим корни:

Получили х 1 =2 и х 2 = – 4.

Второй этап

Строим параболу у= x 2 +2 x –8 по точкам:


Точки – 4 и 2 это точки пересечения параболы и оси ох. Всё просто! Что сделали? Мы решили квадратное уравнение x 2 +2 x –8=0. Посмотрите его запись в таком виде:

0 = x 2 +2x – 8

Ноль у нас это значение «у». При у = 0, мы получаем абсциссы точек пересечения параболы с осью ох. Можно сказать, что нулевое значение «у» это есть ось ох.

Теперь посмотрите при каких значениях х выражение x 2 +2 x – 8 больше (или меньше) нуля? По графику параболы это определить несложно, как говорится, всё на виду:

1. При х < – 4 ветвь параболы лежит выше оси ох. То есть при указанных х трёхчлен x 2 +2 x –8 будет положительным.

2. При –4 < х < 2 график ниже оси ох. При этих х трёхчлен x 2 +2 x –8 будет отрицательным.

3. При х > 2 ветвь параболы лежит выше оси ох. При указанных х трёхчлен x 2 +2 x –8 будет положительным.

Третий этап

По параболе нам сразу видно, при каких х выражение x 2 +2 x –8 больше нуля, равно нулю, меньше нуля. В этом заключается суть третьего этапа решения, а именно увидеть и определить положительные и отрицательные области на рисунке. Сопоставляем полученный результат с исходным неравенством и записываем ответ. В нашем примере необходимо определить все значения х при которых выражение x 2 +2 x –8 больше нуля. Мы это сделали во втором этапе.

Остаётся записать ответ.

Ответ: x∊(–∞;–4) U (2;∞).

Подведём итог: вычислив в первом шаге корни уравнения, мы можем отметить полученные точки на оси ох (это точки пересечения параболы с осью ох). Далее схематично строим параболу и уже можем увидеть решение. Почему схематично? Математически точный график нам не нужен. Да и представьте, например, если корни получатся 10 и 1500, попробуй-ка построй точный график на листе в клетку с таким разбегом значений. Возникает вопрос! Ну получили мы корни, ну отметили их на оси ох, а зарисовать расположение самой парабола – ветвями вверх или вниз? Тут всё просто! Коэффициент при х 2 вам подскажет:

— если он больше нуля, то ветви параболы направлены вверх.

— если меньше нуля, то ветви параболы направлены вниз.

В нашем примере он равен единице, то есть положителен.

*Примечание! Если в неравенстве будет стоять знак нестрогий, то есть ≤ или ≥, то корни на числовой прямой следует заштриховать, этим условно обозначается, что сама граница интервала входит в решение неравенства. В данном случае корни не заштрихованы (выколоты), так как неравенство у нас строгое (стоит знак «>»). При чем в ответе, в данном случае, ставятся круглые скобки, а не квадратные (границы не входят в решение).

Написано много, кого-то запутал, наверное. Но если вы решите минимум 5 неравенств с использованием парабол, то восхищению вашему предела не будет. Всё просто!

Итак, кратко:

1. Записываем неравенство, приводим к стандартному.

2. Записываем квадратное уравнение и решаем его.

3. Рисуем ось ох, отмечаем полученные корни, схематично рисуем параболу, ветвями вверх, если коэффициент при х 2 положителен, или ветвями вниз, если он отрицателен.

4. Определяем визуально положительные или отрицательные области и записываем ответ по исходному неравенству.

Рассмотрим примеры.

ПРИМЕР 1: Решить x 2 –15 x +50 > 0

Первый этап.

Решаем квадратное уравнение x 2 –15 x +50=0

D = b 2 –4 ac = (–15) 2 –4∙1∙50 = 225–200 = 25

Находим корни:

Второй этап.

Строим ось ох. Отмечем полученные корни. Так как неравенство у нас строгое, то заштриховывать их не будем. Схематично строим параболу, расположена она ветвями вверх, так как коэффициент при х 2 положительный:

Третий этап.

Определяем визуально положительные и отрицательные области, здесь мы их отметили разными цветами для наглядности, можно этого и не делать.

Записываем ответ.

Ответ: x∊(–∞;5) U (10;∞).

*Знак U обозначает объёдинение решение. Образно можно выразиться так, решением является «этот» И « ещё этот» интервал.

ПРИМЕР 2: Решить x 2 + x +20 ≤ 0

Первый этап.

Решаем квадратное уравнение x 2 + x +20=0

D = b 2 –4 ac = 1 2 –4∙(–1)∙20 = 1+80 = 81

Находим корни:

Второй этап.

Строим ось ох. Отмечем полученные корни. Так как неравенство у нас нестрогое, то заштрихуем обозначения корней. Схематично строим параболу, расположена она ветвями вниз, так как коэффициент при х 2 отрицательный (он равен –1):

Третий этап.

Определяем визуально положительные и отрицательные области. Сопоставляем с исходным неравенством (знак у нас ≤ 0). Неравенство будет верно при х ≤ – 4 и х ≥ 5.

Записываем ответ.

Ответ: x∊(–∞;–4] U }

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...