Формулы по физики тема электростатика. Основные формулы электростатики


Электростатика – это учение о покоящихся электрических зарядах и связанных с ними электростатических полях.

1.1. Электрические заряды

Основным понятием электростатики является понятие электрического заряда.

Электрический заряд – это физическая величина, определяющая интенсивность электромагнитного взаимодействия.

Единица электрического заряда – кулон (Кл) – электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 ампер за 1 секунду.

Свойства электрического заряда:

    существуют положительные и отрицательные заряды;

    электрический заряд не изменяется при движении его носителя, т.е. является инвариантной величиной;

    электрический заряд обладает свойством аддитивности: заряд системы равен сумме зарядов составляющих систему частиц;

    все электрические заряды кратны элементарному:

Где e = 1,6 10 -19 Кл;

    суммарный заряд изолированной системы сохраняется – закон сохранения заряда.

В электростатике используется физическая модель – точечный электрический заряд – заряженное тело, форма и размеры которого несущественны в данной задаче.

1.2. Закон Кулона. Электрическое поле

Взаимодействие точечных зарядов, т.е. таких, размерами которых можно пренебречь по сравнению с расстояниями между ними, определяется законом Кулона : сила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна величине каждого из них, обратно пропорциональна квадрату расстояния между ними и направлена по линии, соединяющей заряды:

где
- единичный вектор, направленный по линии, соединяющей заряды.

Направление векторов силы Кулона показано на рис. 1.

Рис.1. Взаимодействие точечных зарядов

В системе СИ

где 0 = 8,85 10 -12 Ф/м – электрическая постоянная

Если взаимодействующие заряды находятся в изотропной среде, то кулоновская сила:

где  - диэлектрическая проницаемость среды – безразмерная величина, показывающая во сколько раз сила взаимодействия F между зарядами в данной среде меньше их силы взаимодействия в вакууме F 0 :

Тогда закон Кулона в системе СИ:

Сила направлена по прямой, соединяющей взаимодействующие заряды, т.е. является центральной, и соответствует притяжению (F <0 ) в случае разноименных зарядов и отталкиванию (F >0 ) в случае одноименных зарядов.

Таким образом, пространство, где находятся электрические заряды, обладает определенными физическими свойствами: на любой заряд, помещенный в это пространство, действуют электрические силы.

Пространство, в котором действуют электрические силы, называется электрическим полем.

Источником электростатического поля являются покоящиеся электрические заряды. Любое заряженное тело создает в окружающем пространстве электрическое поле. Это поле действует с определенной силой на внесенный в него заряд. Следовательно, взаимодействие заряженных тел осуществляется по схеме:

заряд поле заряд.

Итак, электрическое поле – это одна из форм материи, основное свойство которой – передавать действие одних заряженных тел на другие.

Электростатика - раздел физики изучающий электростатическое поле и электрические заряды.

Между одноимённо заряженными телами возникает электростатическое (или кулоновское) отталкивание, а между разноимённо заряженными - электростатическое притяжение. Явление отталкивания одноименных зарядов лежит в основе создания электроскопа - прибора для обнаружения электрических зарядов.

В основе электростатики лежит закон Кулона. Этот закон описывает взаимодействие точечных электрических зарядов.

Основание электростатики положили работы Кулона (хотя за десять лет до него такие же результаты, даже с ещё большей точностью, получил Кавендиш. Результаты работ Кавендиша хранились в семейном архиве и были опубликованы только спустя сто лет); найденный последним закон электрических взаимодействий дал возможность Грину, Гауссу и Пуассону создать изящную в математическом отношении теорию. Самую существенную часть электростатики составляет теория потенциала, созданная Грином и Гауссом. Очень много опытных исследований по электростатике было произведено Рисом книги которого составляли в прежнее время главное пособие при изучении этих явлений.

Опыты Фарадея, произведенные еще в первую половину тридцатых годов XIX века, должны были повлечь за собой коренное изменение в основных положениях учения об электрических явлениях. Эти опыты указали, что то, что считалось совершенно пассивно относящимся к электричеству, а именно, изолирующие вещества или, как их назвал Фарадей, диэлектрики, имеет определяющее значение во всех электрических процессах и, в частности, в самой электризации проводников. Эти опыты обнаружили, что вещество изолирующего слоя между двумя поверхностями конденсатора играет важную роль в величине электроёмкости этого конденсатора. Замена воздуха, как изолирующего слоя между поверхностями конденсатора, каким-либо другим жидким или твердым изолятором производит на величину электроемкости конденсатора такое же действие, какое оказывает соответствующее уменьшение расстояния между этими поверхностями при сохранении воздуха в качестве изолятора. При замене слоя воздуха слоем другого жидкого или твердого диэлектрика электроемкость конденсатора увеличивается в K раз. Эта величина K названа Фарадеем индуктивной способностью данного диэлектрика. Сегодня величину K называют обыкновенно диэлектрической проницаемось этого изолирующего вещества.

Такое же изменение электрической ёмкости происходит и в каждом отдельном проводящем теле, когда это тело из воздуха переносится в другую изолирующую среду. Но изменение электроемкости тела влечет за собой изменение величины заряда на этом теле при данном потенциале на нём, а также и обратно, изменение потенциала тела при данном заряде его. Вместе с этим оно изменяет и электрическую энергию тела. Итак, значение изолирующей среды, в которой помещены электризуемые тела или которая отделяет собой поверхности конденсатора, является крайне существенным. Изолирующее вещество не только удерживает электрический заряд на поверхности тела, оно влияет на само электрическое состояние последнего. Таково заключение, к какому привели Фарадея его опыты. Это заключение вполне соответствовало основному взгляду Фарадея на электрические действия.

Согласно гипотезе Кулона, электрические действия между телами рассматривались, как действия, которые происходят на расстоянии. Принималось, что два заряда q и q", мысленно сосредоточенные в двух точках, отстоящих друг от друга на расстояние r, отталкивают или притягивают один другого по направлению линии, соединяющей эти две точки, с силой, которая определяется формулой

Причем коэффициент C является зависящим исключительно только от единиц, служащих для измерения величин q, r и f. Природа среды, внутри которой находятся данные две точки с зарядами q и q", предполагалось, не имеет никакого значения, не влияет на величину f. Фарадей держался совершенно иного взгляда на это. По его мнению, наэлектризованное тело только кажущимся образом действует на другое тело, находящееся в некотором расстоянии от него; на самом деле электризуемое тело лишь вызывает особые изменения в соприкасающейся с ним изолирующей среде, которые передаются в этой среде от слоя к слою, достигают, наконец, слоя, непосредственно прилегающего к другому рассматриваемому телу и производят там то, что представляется непосредственным действием первого тела на второе через отделяющую их среду. При таком воззрении на электрические действия закон Кулона, выражающийся вышепривёденной формулой, может служить только для описания того, что даёт наблюдение, и нисколько не выражает истинного процесса, происходящего при этом. Тогда становится понятным, что вообще электрические действия меняются при перемене изолирующей среды, поскольку в этом случае должны изменяться и те деформации, какие возникают в пространстве между двумя, по-видимому, действующими друг на друга наэлектризованными телами. Закон Кулона, так сказать, описывающий внешним образом явление, должен быть заменен другим, в который входит характеристика природы изолирующей среды. Для изотропной и однородной среды закон Кулона, как показали дальнейшие исследования, может быть выражен следующей формулой:

Здесь K обозначает то, что выше названо диэлектрической постоянной данной изолирующей среды. Величина K для воздуха равна единице, т. е. для воздуха взаимодействие между двумя точками с зарядами q и q" выражается так, как принял это Кулон.

Согласно основной идее Фарадея, окружающая изолирующая среда или, лучше, те изменения (поляризация среды), какие под влиянием процесса, приводящего тела в электрическое состояние, являются в наполняющем эту среду эфире, представляют собою причину всех наблюдаемых нами электрических действий. По Фарадею самая электризация проводников на их поверхности - лишь следствие влияния на них поляризованной окружающей среды. Изолирующая среда при этом находится в напряженном состоянии. На основании весьма простых опытов Фарадей пришел к заключению, что при возбуждении электрической поляризации в какой-либо среде, при возбуждении, как говорят теперь, электрического поля, в этой среде должно существовать натяжение вдоль силовых линий (силовая линия - это линия, касательные к которой совпадают с направлениями электрических сил, испытываемых положительным электричеством, воображенным в точках, находящихся на этой линии) и должно существовать давление по направлениям, перпендикулярным к силовым линиям. Такое напряженное состояние может вызываться только в изоляторах. Проводники не способны испытывать подобное изменение своего состояния, в них не происходит никакого возмущения; и только на поверхности таких проводящих тел, т. е. на границе между проводником и изолятором, поляризованное состояние изолирующей среды становится заметным, оно выражается в кажущемся распределении электричества на поверхности проводников. Итак, наэлектризованный проводник как бы связан с окружающей изолирующей средой. С поверхности этого наэлектризованного проводника как бы распространяются силовые линии, и эти линии заканчиваются на поверхности другого проводника, который видимым образом представляется покрытым противоположным по знаку электричеством. Вот какова картина, которую рисовал себе Фарадей для разъяснения явлений электризации.

Учение Фарадея не скоро было принято физиками. Опыты Фарадея рассматривались даже в шестидесятых годах, как не дающие права на допущением какого-либо существенного значения изоляторов в процессах электризации проводников. Только позднее, после появления замечательных работ Максвелла, идеи Фарадея стали все более и более распространяться между учеными и, наконец,были признаны вполне отвечающими фактам.

Здесь уместно отметить, что еще в шестидесятых годах проф. Ф. H. Шведов, на основании произведенных им опытов, весьма горячо и убедительно доказывал верность основных положений Фарадея относительно роли изоляторов . На самом деле, однако, за много лет до работ Фарадея уже было открыто влияние изоляторов на электрические процессы. Еще в начале 70-х годов XVIII столетия Кавендиш наблюдал и весьма тщательно изучил значение природы изолирующего слоя в конденсаторе. Опыты Кэвендиша, как и впоследствии опыты Фарадея, показали увеличение электроемкости конденсатора, когда слой воздуха в этом конденсаторе заменяется такой же толщины слоем какого-либо твердого диэлектрика. Эти опыты дают даже возможность определить численные величины диэлектрических постоянных некоторых изолирующих веществ, причем эти величины получаются сравнительно немного отличающимися от тех, какие найдены в последнее время при употреблении более совершенных измерительных приборов. Но эта работа Кавендиша, как и другие его исследования по электричеству, приведшие его к установлению закона электрических взаимодействий, тождественного с законом, опубликованным в 1785 г. Кулоном, оставались неизвестными вплоть до 1879 г. Только в этом году мемуары Кавендиша были обнародованы Максвеллом , повторившим почти все опыты Кавендиша и сделавшим по поводу их многие, весьма ценные указания.

Потенциал

Как уже выше упомянуто, в основание электростатики, вплоть до появления работ Максвелла, был положен закон Кулона:

При допущении С = 1, т. е. при выражении количества электричества в так называемой абсолютной электростатической единице системы СГС, этот закон Кулона получает выражение:

Отсюда потенциальная функция или, проще, потенциал в точке, координаты которой (x, у, z), определяется формулой:

В которой интеграл распространяется на все электрические заряды в данном пространстве, а r обозначает расстояние элемента заряда dq до точки (x, у, z). Обозначая поверхностную плотность электричества на наэлектризованных телах через σ, а объемную плотность электричества в них через ρ, мы имеем

Здесь dS обозначает элемент поверхности тела, (ζ, η, ξ) - координаты элемента объема тела. Проекции на оси координат электрической силы F, испытываемой единицей положительного электричества в точке (x, у, z) находятся по формулам:

Поверхности, во всех точках которых V = пост., носят название эквипотенциальных поверхностей или, проще, поверхностей уровня. Линии, ортогональные к этим поверхностям, суть электрические силовые линии. Пространство, в котором могут быть обнаружены электрические силы, т. е. в котором могут быть построены силовые линии, носят название электрического поля. Сила, испытываемая единицей электричества в какой-либо точке этого поля, называется напряжением электрического поля в этой точке. Функция V обладает следующими свойствами: она однозначна, конечна, непрерывна. Её также можно задать так, чтобы она обращаалась в 0 в точках, отстоящих от данного распределения электричества на бесконечное расстояние. Потенциал сохраняет одну и ту же величину во всех точках какого-либо проводящего тела. Для всех точек земного шара, а также для всех проводников, металлически соединенных с землей, функция V равна 0 (при этом не обращается внимания на явление Вольты, о котором сообщено в статье Электризация). Обозначая через F величину электрической силы, испытываемой единицей положительного электричества в какой-нибудь точке на поверхности S, замыкающей собой часть пространства, и через ε - угол, образуемый направлением этой силы с внешней нормалью к поверхности S в той же точке, мы имеем

В этой формуле интеграл распространяется на всю поверхность S, a Q обозначает алгебраическую сумму количества электричества, заключающихся внутри замкнутой поверхности S. Равенство (4) выражает собой теорему, известную под названием теоремы Гаусса. Одновременно с Гауссом такое же равенство было получено Грином, почему некоторые авторы эту теорему называют теоремой Грина. Из теоремы Гаусса могут быть выведены как следствия,

здесь ρ обозначает объемную плотность электричества в точке (x, у, z);

такое уравнение относится ко всем точкам, в которых не имеется электричества

Здесь Δ - оператор Лапласа, n1 и n2 обозначают нормали в точке какой-либо поверхности, в которой поверхностная плотность электричества σ, нормали, проведенные в ту и в другую сторону от поверхности. Из теоремы Пуассона следует, что для проводящего тела, в котором во всех точках V = пост., должно быть ρ = 0. Поэтому выражение потенциала принимает вид

Из формулы, выражающей граничное условие, т. е. из формулы (7), следует, что на поверхности проводника

Причем n обозначает нормаль к этой поверхности, направленную от проводника внутрь изолирующей среды, прилегающей к этому проводнику. Из этой же формулы вывыводится

Здесь Fn обозначает силу, испытываемую единицей положительного электричества, находящегося в точке, бесконечно близко лежащей к поверхности проводника, имеющей в этом месте поверхностную плотность электричества, равную σ. Сила Fn направлена по нормали к поверхности в этом месте. Сила, испытываемая единицей положительного электричества, находящегося в самом электрическом слое на поверхности проводника и направленная по внешней нормали к этой поверхности, выражается через

Отсюда электрическое давление, испытываемое по направлению внешней нормали каждой единицей поверхности наэлектризованного проводника, выражается формулой

Приведенные уравнения и формулы дают возможность делать немало выводов, относящихся к вопросам, рассматриваемым в Э. Но все они могут быть заменены еще более общими, если воспользоваться тем, что содержится в теории электростатики, данной Максвеллом.

Электростатика Максвелла

Как уже упомянуто выше, Максвелл явился истолкователем идей Фарадея. Он облек эти идеи в математическую форму. Основание теории Максвелла заключается не в законе Кулона, а в принятии гипотезы, которая выражается в следующем равенстве:

Здесь интеграл распространяется по какой угодно замкнутой поверхности S, F обозначает величину электрической силы, которую испытывает единица электричества в центре элемента этой поверхности dS, ε обозначает угол, образуемый этой силой с внешней нормалью к элементу поверхности dS, К обозначает диэлектрический коэффициент среды, прилегающей к элементу dS, и Q обозначает алгебраическую сумму количеств электричества, заключающихся внутри поверхности S. Следствиями выражения (13) являются нижеследующие уравнения:

Эти уравнения более общи, чем уравнения (5) и (7). Они относятся к случаю каких угодно изотропных изолирующих сред. Функция V, являющаяся общим интегралом уравнения (14) и удовлетворяющая вместе с этим уравнению (15) для всякой поверхности, которая отделяет собой две диэлектрические среды с диэлектрическими коэффициентами K 1 и K 2 , а также условию V = пост. для каждого, находящегося в рассматриваемом электрическом поле проводника, представляет собой потенциал в точке (x, у, z). Из выражения (13) также следует, что кажущееся взаимодействие двух зарядов q и q 1 , находящихся в двух точках, расположенных в однородной изотропной диэлектрической среде на расстоянии r друг от друга, может быть представлено формулой

Т. е. это взаимодействие обратно пропорционально квадрату расстояния, как это должно быть согласно закону Кулона. Из уравнения (15) мы получаем для проводника:

Формулы эти более общие, чем вышеприведенные (9), (10) и (12).

представляет собой выражение потока электрической индукции через элемент dS. Проведя через все точки контура элемента dS линии, совпадающие с направлениями F в этих точках, мы получаем (для изотропной диэлектрической среды) трубку индукции. Для всех сечений такой трубки индукции, не заключающей внутри себя электричества, должно быть, как это следует из уравнения (14),

KFCos ε dS = пост.

Не трудно доказать, что если в какой-либо системе тел электрические заряды находятся в равновесии, когда плотности электричества соответственно суть σ1 и ρ1 или σ 2 и ρ 2 , то заряды будут в равновесии и тогда, когда плотности будут σ = σ 1 + σ 2 и ρ = ρ 1 + ρ 2  (принцип сложения зарядов, находящихся в равновесии). Равным образом легко доказать, что при данных условиях может быть только одно распределение электричества в телах, составляющих собой какую-либо систему.

Весьма важным оказывается свойство проводящей замкнутой поверхности, находящейся в соединении с землей. Такая замкнутая поверхность является экраном, защитой для всего пространства, заключенного внympu неё, от влияния каких угодно электрических зарядов, расположенных с внешней стороны поверхности. Вследствие этого электрометры и другие измерительные электрические приборы окружаются обыкновенно металлическими футлярами, соединяемыми с землей. Опыты показывают, что для таких электрич. экранов нет надобности употреблять сплошного металла, вполне достаточно эти экраны устраивать из металлических сеток или даже металлических решеток.

Система наэлектризованных тел обладает энергией, т. е. обладает способностью совершить определенную работу при полной потере своего электрического состояния. B электростатике выводится следующее выражение для энергии системы наэлектризованных тел:

В этой формуле Q и V обозначают соответственно какое-либо количество электричества в данной системе и потенциал в том месте, где находится это количество; знак ∑ указывает, что надо взять сумму произведений VQ для всех количеств Q данной системы. Если система тел представляет собой систему проводников, то для каждого такого проводника потенциал имеет одну и ту же величину во всех точках этого проводника, а потому в данном случае выражение для энергии получает вид:

Здесь 1, 2.. n суть значки разных проводников, входящих в состав системы. Это выражение может быть заменено другими, а именно, электрическая энергия системы проводящих тел может быть представлена или в зависимости от зарядов этих тел, или же в зависимости от потенциалов их, т. е. для этой энергии могут быть применены выражения:

В этих выражениях различные коэффициенты α и β зависят от параметров, определяющих собой положения проводящих тел в данной системе, а также формы и размеры их. При этом коэффициенты β с двумя одинаковыми значками, как то β11, β22, β33 и т. д. представляют собой электроемкости (см. Электроемкость) тел, отмеченных этими значками, коэффициенты β с двумя различными значками, как то β12, β23, β24, и т. д., представляют собой коэффициенты взаимной индукции двух тел, значки которых стоят у данного коэффициента. Имея выражение электрической энергии, мы получаем выражение для силы, какую испытывает какое-либо тело, значок которого i, и от действия которой параметр si, служащий для определения положения этого тела, получает приращение. Выражение этой силы будет

Электрическая энергия может быть представлена еще иначе, а именно, через

В этой формуле интегрирование распространяется по всему беспредельному пространству, F обозначает величину электрической силы, испытываемой единицей положительного электричества в точке (x, у, z), т. е. напряжение электрического поля в этой точке, а K обозначает диэлектрический коэффициент в этой же точке. При таком выражении электрической энергии системы проводящих тел эту энергию можно рассматривать распределенной только в изолирующих средах, причем на долю элемента dxdyds диэлектрика приходится энергий

Выражение (26) вполне соответствует взглядам на электрические процессы, которые были развиваемы Фарадеем и Максвеллом.

Чрезвычайно важной формулой в электростатике является формула Грина, а именно:

В этой формуле оба тройные интеграла распространяются на весь объем какого-либо пространства А, двойные - на все поверхности, ограничивающие это пространство, ∆V и ∆U обозначают суммы вторых производных от функций V и U по x, у, z; n - нормаль к элементу dS ограничивающей поверхности, направленную внутрь пространства A.

Примеры

Пример 1

Как частный случай формулы Грина получается формула, выражающая вышеприведенную теорему Гаусса. В Энциклопедическом Словаре не уместно касаться вопросов о законах распределения электричества на различных телах. Эти вопросы представляют собой весьма трудные задачи математической физики и для решения таких задач употребляются различные способы. Приведем здесь только для одного тела, а именно, для эллипсоида с полуосями а, b, с, выражение поверхностной плотности электричества σ в точке (x, у, z). Мы находим:

Здесь Q обозначает все количество электричества, находящееся на поверхности этого эллипсоида. Потенциал такого эллипсоида в какой-нибудь точке его поверхности, когда вокруг эллипсоида находится однородная изотропная изолирующая среда с диэлектрическим коэффициентом K, выражается через

Электроемкость эллипсоида получится из формулы

Пример 2

Пользуясь уравнением (14), полагая только в нем ρ = 0 и K = пост., и формулой (17), мы можем найти выражение для электроемкости плоского конденсатора с охранным кольцом и охранной коробкой, изолирующей слой в котором имеет диэлектрический коэффициент K. Это выражение имеет вид

Здесь S обозначает величину собирательной поверхности конденсатора, D - толщину изолирующего слоя его. Для конденсатора без охранного кольца и охранной коробки формула (28) будет давать только приближенное выражение электроемкости. Для электроемкости такого конденсатора дана формула Кирхгофом. И даже для конденсатора с охранными кольцом и коробкой формула (29) не представляет вполне строгого выражения электроемкости. Максвелл указал ту поправку, какую надо сделать в этой формуле, чтобы получить более строгий результат.

Энергия плоского конденсатора (с охранными кольцом и коробкой) выражается через

Здесь V1 и V2 суть потенциалы проводящих поверхностей конденсатора.

Пример 3

Для сферического конденсатора получается выражение электроемкости:

В котором R 1 и R 2 обозначают соответственно радиусы внутренней и внешней проводящей поверхности конденсатора. При помощи выражения для электрической энергии (формула 22) нетрудно устанавливается теория абсолютного и квадрантного электрометров

Нахождение величины диэлектрического коэффициента K какого-либо вещества, коэффициента, входящего почти во все формулы, с которыми приходится иметь дело в электростатике, может быть произведено весьма различными способами. Наиболее употребительные способы суть нижеследующие.

1) Сравнение электро емкостей двух конденсаторов, имеющих одинаковые размеры и форму, но у которых у одного изолирующим слоем является слой воздуха, у другого - слой испытуемого диэлектрика.

2) Сравнение притяжений между поверхностями конденсатора, когда этим поверхностям сообщается определенная разность потенциалов, но в одном случае между ними находится воздух (сила притяжения = F 0), в другом случае - испытуемый жидкий изолятор (сила притяжения = F). Диэлектрический коэффициент находится по формуле:

3) Наблюдения электрических волн (см. Электрические колебания), распространяющихся вдоль проволок. По теория Максвелла скорость распространения электрических волн вдоль проволок выражается формулой

В которой K обозначает диэлектрический коэффициент среды, окружающей собой проволоку, μ обозначает магнитную проницаемость этой среды. Можно положить для огромного большинства тел μ = 1, а потому получается

Обыкновенно сравнивают длины стоячих электрических волн, возникающих в частях одной и той же проволоки, находящихся в воздухе и в испытуемом диэлектрике (жидком). Определив эти длины λ 0 и λ, получают K = λ 0 2 / λ 2. По теории Максвелла следует, что при возбуждении электрического поля в каком-либо изолирующем веществе внутри этого вещества возникают особые деформации. Вдоль трубок индукции изолирующая среда является поляризованной. В ней возникают электрические смещения, которые можно уподобить перемещениям положительного электричества по направлению осей этих трубок, причем через каждое поперечное сечение трубки проходит количество электричества, равное

Теория Максвелла дает возможность найти выражения тех внутренних сил (сил натяжения и давления), которые являются в диэлектриках при возбуждении в них электрического поля. Этот вопрос был впервые рассмотрен самим Максвеллом, а позже и более обстоятельно Гельмгольцем . Дальнейшее развитие теории этого вопроса и тесно соединенной с этим теории электрострикции (т. е. теории, рассматривающей явления, зависящие от возникновения особых напряжений в диэлектриках при возбуждении в них электрического поля) принадлежит работам Лорберга, Кирхгофа, Дюгема, Н. Н. Шиллера и некоторых др.

Граничные условия

Закончим краткое изложение наиболее существенного из отдела электрострикции рассмотрением вопроса о преломлении трубок индукции. Представим себе в электрическом поле два диэлектрика, отделяющихся друг от друга какой-нибудь поверхностью S, с диэлектрическими коэффициентами К 1 и К 2 . Пусть в точках Р 1 и Р 2 , расположенных бесконечно близко к поверхности S по ту и по другую её сторону, величины потенциалов выражаются через V 1 и V 2 , а величины сил, испытываемых помещенной в этих точках единицей положительного электричества чрез F 1 и F 2 . Тогда для точки Р, лежащей на самой поверхности S, должно быть V 1 = V 2 ,


если ds представляет бесконечно малое перемещение по линии пересечения касательной плоскости к поверхности S в точке Р с плоскостью, проходящей через нормаль к поверхности в этой точке и через направление электрической силы в ней. С другой стороны, должно быть

Обозначим через ε 2 угол, составляемый силой F 2 с нормалью n 2 (внутрь второго диэлектрика), и через ε 1 угол, составляемый силой F 1 с той же нормалью n 2 Тогда, пользуясь формулами (31) и (30), найдем

Итак, на поверхности, отделяющей друг от друга два диэлектрика, электрическая сила претерпевает изменение в своем направлении подобно световому лучу, входящему из одной среды в другую. Это следствие теории оправдывается на опыте.

Материал из Википедии - свободной энциклопедии

Определение 1

Электростатика – обширный раздел электродинамики, исследующий и описывающий покоящиеся в определенной системе электрически заряженные тела.

На практике выделяют два вида электростатических зарядов: положительные (стекло о шелк) и отрицательные (эбонит о шерсть). Элементарный заряд является минимальным зарядом ($e = 1,6 ∙10^{ -19}$ Кл). Заряд любого физического тела кратен целому количеству элементарных зарядов: $q = Ne$.

Электризация материальных тел – перераспределение заряда между телами. Способы электризации: касание, трение и влияние.

Закон сохранения электрического положительного заряда – в замкнутой концепции алгебраическая сумма зарядов всех элементарных частиц остается стабильной и неизменной. $q_1 + q _2 + q _3 + …..+ q_n = const$. Пробный заряд в данном случае представляет собой точечный положительный заряд.

Закон Кулона

Указанный закон был установлен экспериментальным путем в 1785 году. Согласно этой теории, сила взаимодействия двух покоящихся точечных зарядов в среде всегда прямо пропорциональна произведению положительных модулей и обратно пропорционально квадрату общего расстояния между ними.

Электрическое поле представляет собой уникальный вид материи, который осуществляет взаимодействие между стабильными электрическими зарядами, формируется вокруг зарядов, воздействует только на заряды.

Такой процесс точечных неподвижных элементов полностью подчиняются третьему закону Ньютона, и считается результатом отталкивания друг от друга частиц при одинаковых силовых притяжениях друг к другу. Взаимосвязь стабильных электрических зарядов в электростатике называют кулоновским взаимодействием.

Закон Кулона вполне справедлив и точен для заряженных материальных тел, равномерно заряженных шаров и сфер. В этом случае за расстояния в основном берут параметры центров пространств. На практике данный закон хорошо и быстро выполняется, если величины заряженных тел гораздо меньше расстояния между ними.

Замечание 1

В электрическом поле также действуют проводники и диэлектрики.

Первые представляют содержащие свободные носители электромагнитного заряда вещества. Внутри проводника может возникнуть свободное движение электронов. К этим элементам относятся растворы, металлы и различные расплавы электролитов, идеальные газы и плазма.

Диэлектрики являются веществами, в которых не может быть свободных носителей электрического заряда. Свободное движение электронов внутри самих диэлектриков невозможно, так как по ним не протекает электрический ток. Именно эти физические частицы обладают не равной диэлектрической единице проницаемостью.

Силовые линии и электростатика

Силовые линии начальной напряженности электрического поля являются непрерывными линиями, касательные точки к которым в каждой среде, через которые они проходят, полностью совпадают с осью напряженности.

Основные характеристики силовых линий:

  • не пересекаются;
  • не замкнуты;
  • стабильны;
  • конечное направление совпадает с направлением вектора;
  • начало на $+ q$ или в бесконечности, конец на $– q$;
  • формируются вблизи зарядов (где больше напряжённость);
  • перпендикулярны поверхности основного проводника.

Определение 2

Разность электрических потенциалов или напряжение (Ф или $U$) - это величина потенциалов в начальной и конечной точках траектории положительного заряда. Чем меньше изменяется потенциал на отрезке пути, тем меньше в итоге напряженность поля.

Напряженность электрического поля всегда направлена в сторону уменьшения начального потенциала.

Рисунок 2. Потенциальная энергия системы электрических зарядов. Автор24 - интернет-биржа студенческих работ

Электроемкость характеризует способность любого проводника накапливать необходимый электрический заряд на собственной поверхности.

Данный параметр не зависит от электрического заряда, однако на него могут воздействовать геометрические размеры проводников, их формы, расположение и свойств среды между элементами.

Конденсатор является универсальным электротехническим устройством, которое помогает быстро накопить электрический заряд для отдачи его в цепь.

Электрическое поле и его напряженность

По современным представлениям ученых, электрические стабильные заряды не влияют друг на друга непосредственно. Каждое заряженное физическое тело в электростатике создает в окружающей среде электрическое поле. Этот процесс оказывает силовое воздействие на другие заряженные вещества. Главное свойство электрического поля заключается в действии на точечные заряды с некоторой силой. Таким образом, взаимодействие положительно заряженных частиц осуществляется через поля, которые окружают заряженные элементы.

Это явление возможно исследовать посредством, так называемого, пробного заряда – небольшого по размеру электрического заряда, который не вносит существенное перераспределения изучаемого зарядов. Для количественного выявления поля вводится силовая особенность - напряженность электрического поля.

Напряженностью называют физический показатель, который равен отношению силы, с которой поле воздействует на пробный заряд, размещенный в данной точке поля, к величине самого заряда.

Напряженность электрического поля представляет собой векторную физическую величину. Направление вектора в этом случае совпадает в каждой материальной точке окружающего пространства с направлением действующей на положительный заряд силы. Электрическое поле не меняющихся со временем и неподвижных элементов считается электростатическим.

Для понимания электрического поля применяют силовые линии, которые проводятся таким образом, чтобы направление главной оси напряженности в каждой системе совпадало с направлением касательной к точке.

Разность потенциалов в электростатике

Электростатическое поле включает одно важное свойство: работа сил всех движущихся частиц при перемещении точечного заряда из одной точки поля в другую не зависит от направления траектории, а определяется исключительно положением начальной и конечной линий и параметром заряда.

Результатом независимости работы от формы движения зарядов является следующее утверждение: функционал сил электростатического поля при преобразовании заряда по любой замкнутой траектории всегда равен нулю.

Рисунок 4. Потенциальность электростатического поля. Автор24 - интернет-биржа студенческих работ

Свойство потенциальности электростатического поля помогает ввести понятие потенциальной и внутренней энергии заряда. А физический параметр, равный соотношению потенциальной энергии в поле к величине этого заряда, называют постоянным потенциалом электрического поля.

Во многих сложных задачах электростатики при определении потенциалов за опорную материальную точку, где величина потенциальной энергии и самого потенциала обращаются в ноль, удобно использовать бесконечно удаленную точку. В этом случае значимость потенциала определяется так: потенциал электрического поля в любой точке пространства равен работе, которую выполняют внутренние силы при удалении положительного единичного заряда из данной системы в бесконечность.

Федеральное агентство по образованию ГОУ ВПО Тульский государственный педагогический университет

имени Л. Н. Толстого

Ю. В. Бобылев В. А. Панин Р. В. Романов

КУРС ОБЩЕЙ ФИЗИКИ

электродинамика

Краткий курс лекций

Допущено Учебно-методическим объединением

по направлениям педагогического образования Министерства образования и науки РФ в качестве учебного пособия

для студентов высших учебных заведений, обучающихся по направлению 540200 (050200)

«Физико-математическое образование»

Тула Издательство ТГПУ им. Л. Н. Толстого

ББК 22.3я73 Б72

Рецензент –

профессор Ю. Ф. Головнев (ТГПУ им. Л. Н. Толстого)

Бобылев, Ю. В.

Б72 Курс общей физики. Электродинамика: Краткий курс лекций / Ю. В. Бобылев, В. А. Панин, Р. В. Романов.– Тула: Изд-во Тул. гос. пед. унта им. Л. Н. Толстого, 2007.– 107 с.

Данное учебное пособие представляет собой краткий лекционный курс по электромагнетизму и содержит необходимый материал, который полностью соответствует Государственному образовательному стандарту.

Пособие предназначено главным образом для студентов, которые по тем или иным причинам не могут посещать или посещают нерегулярно аудиторные занятия и занимаются самообразованием, в том числе и при дистанционном обучении.

При сокращении математической части пособие может быть позиционировано для студентов нефизических специальностей.

© Ю. В. Бобылев, В. А. Панин, Р. В. Романов,

© Издательство ТГПУ им. Л. Н. Толстого,

Предисловие...........................................................................................

Введение..................................................................................................

Лекция 1. Электрический заряд...........................................................

Лекция 2. Закон Кулона........................................................................

Лекция 4. Теорема Гаусса.....................................................................

Лекция 5. Потенциал электрического поля........................................

Лекция 6. Потенциал электрического поля (продолжение)..............

Лекция 7. Проводники в электрическом поле....................................

Лекция 8. Диэлектрики в электрическом поле...................................

Лекция 9. Электрическая емкость. Конденсаторы.............................

Лекция 10. Электростатическая энергия.............................................

Лекция 11. Постоянный ток. Основные понятия и законы.. ............

Лекция 12. Электрические цепи...........................................................

Лекция 13 Ток в металлах.....................................................................

Лекция 14. Ток в вакууме.....................................................................

Лекция 15. Ток в газах. ..........................................................................

Лекция 16. Ток в электролитах. ...........................................................

Лекция 17. Основные законы магнетизма. .........................................

Лекция 18. Основные законы магнетизма (продолжение)................

Лекция 19. Движение заряженных частиц в магнитном поле..........

Лекция 20 Электромагнитная индукция. ............................................

Лекция 21. Электрический колебательный контур............................

Лекция 22. Переменный ток.................................................................

Лекция 23. Электрическое поле...........................................................

Лекция 24. Уравнения Максвелла.......................................................

Лекция 25. Электромагнитные волны.................................................

Заключение.............................................................................................

Литература..............................................................................................

Предисловие

Авторы данного пособия, работают на факультете математики, физики и информатики Тульского государственного педагогического университета им. Л. Н. Толстого и уже неоднократно читали в рамках курсов общей и теоретической физики различные дисциплины и спецкурсы, связанные с электромагнитными процессами, включая явления в неравновесных материальных средах.

Опыт преподавания, сформированный значительным стажем работы (от 20 до 25 лет) подсказали концепцию создания единого сквозного курса электродинамики. В него должны войти без дублирования и повторений, что достаточно важно, все темы, изучаемые в курсах общей и теоретической физики, такие как «Электричество и магнетизм», «Электродинамика и основы СТО», «Электродинамика сплошных сред» и так далее.

Такой курс позволит выдержать единый стиль изложения и оформления, одинаковые обозначения, единую систему единиц, схожее использование математического аппарата, что, безусловно, упростит восприятие этого непростого материала студентами.

Следует отметить, что научные интересы авторов лежат в областях электродинамики сильнонеравновесной плазмы, нелинейных явлений в электродинамических системах и структурах различной природы, отдельных вопросов плазменной электроники и радиофизики, что, безусловно, делает настоящее пособие максимально приближенным к современным научным достижениям.

Начало реализации указанной концепции было положено в 2002 году выходом учебного пособия по курсу “Электричество и магнетизм: курс лекций. Часть 1. Электростатика», которое было допущено Министерством образования в качестве учебного пособия для студентов физико-математических специальностей.

Преподавание с использованием этого пособия показало его несомненную эффективность и востребованность студентами. В 2004 году вышел сборник задач по курсу «Электричество и магнетизм». Подготовка этих материалов в формате WEB-документа позволила применить не только для студентов дневного отделения, но и при дистанционном обучении.

В настоящем пособии применен более лаконичный “телеграфный” стиль изложения, а язык, вообще говоря, далёк от академического и максимально приближен к разговорному, как, собственно и должно быть, поскольку материал представляет собой запись того, что студент услышал и увидел на лекции.

Использовано большое количество рисунков, которые, однако, схематичны и упрощены. Отдельные сложные формулы приведены с подробными выводами, что особенно будет ценно для студентов – выпускников сельских школ. Кроме того, как считают авторы, в пособии присутствует значительное число примеров решений задач, облегчающих восприятие

теоретического материала и способствующих развитию практических умений и навыков будущего учителя.

В качестве основной использована Международная система единиц (СИ).

В целом материал соответствует минимуму, указанному в Государственном образовательном стандарте высшего профессионального образования и учебному плану.

Авторы считают, что данное учебное пособие по электромагнетизму окажет помощь студентам, которые по тем или иным (будем считать уважительным) причинам не могут посещать или посещают нерегулярно аудиторные занятия и занимаются самообразованием. Таких студентов становится всё больше, но заставить их читать традиционные учебники и скрупулёзно выбирать из них нужные сведения, учитывая реалии настоящего времени, весьма проблематично. Данное же пособие содержит тот необходимый уже отобранный материал, который полностью соответствует Государственному образовательному стандарту, чтобы среднестатистический студент получил положительную оценку на экзамене без привлечения дополнительной литературы.

Для студентов же, которые хотят получить более глубокие знания, которые планируют продолжить обучение в магистратуре, в конце этого пособия приводится достаточно полный список полезной литературы.

Не следует думать, что данное пособие годится только для отстающих студентов. Оно предназначено для всех студентов с той лишь разницей, что студент, посетивший лекцию и студент, пропустивший лекцию, должны будут работать с этим пособием разными методами.

Более того, в условиях перехода на двухуровневое обучение и в условиях все большего проникновения и реализации основных идей Болонского процесса, подобные пособия, которые с одной стороны достаточно унифицированы под жесткие требования государственного стандарта, а с другой – имеют несомненную «печать» индивидуальности и творческих взглядов авторов, будут все более и более востребованы на «студенческом рынке».

Следует также отметить, что настоящее пособие при сокращении математической части может быть позиционировано для студентов не физических специальностей.

Тула, апрель 2007

Введение

1. Электродинамика как наука

Определение: Электродинамика – наука, изучающая поведение электромагнитного поля, осуществляющего взаимодействие между электрическими зарядами.

2. Историческая справка

Здесь можно привести практически весь курс истории физики, к которому мы Вас и отсылаем.

3. Теория дально - и близкодействия

Долгое время в физике господствовала теория дальнодействия, которая, опираясь на математические законы, описывала взаимодействие тел без указания механизма данного взаимодействия. Это связано с тем, что хорошо сформулированные законы Ньютона прекрасно описывали все механические явления, сами, при этом, не поддаваясь какому-либо объяснению. Механический подход распространился и на другие разделы физики (закон Кулона). Трудами Остроградского, Гаусса, Лапласа и т.д. эта теория приобрела законченный математический вид. Вместе с тем ученых беспокоил вопрос о том, как же и с помощью чего передаётся взаимодействие. Фарадей ввел понятие поля, которое и является переносчиком взаимодействия. Долгое время теории существовали равноправно.

В квазистатических полях они приводят к одинаковым результатам. И только после опытов Герца и Попова с быстропеременными полями вопрос был однозначно решен в пользу теории близкодействия. Считается, что взаимодействия между зарядами осуществляются с помощью электромагнитного поля, которое распространяется в пространстве. В вакууме поле распространяется со скоростью

c=299792458 м/с≈3,00·108 м/с.

Электрический заряд

1. Общие понятия

Определение: Электрический заряд – это физическая величина, определяющая электромагнитное поле, посредством которого осуществляется взаимодействие между зарядами.

Несмотря на различные способы получения заряда, существует электричество только двух сортов: «стеклянное» и «смоляное» («+» и «–»). Хотя существует мнение, что на самом деле это избыток или недостаток электричества одного сорта, а именно отрицательного. В природе количество положительного электричества примерно равно количеству отрицательного.

2. Способы получения наэлектризованных тел

3. Измерение заряда

Определение: Пробный заряд – это заряд, который не вносит искажений в существующее поле.

Пусть существует некоторое электрическое поле. В какую-то точку поля помещаем пробный заряд. Поле на него будет действовать с некоторой силой.

Вносим в это поле другой пробный заряд. Если силы направлены в одну сторону, то заряды одноименные, если нет, то разноименные.

F 1 = F 2 q 1 q 2

F 1 = const = q 1 F 2 q 2

Зная отношения сил, знаем и отношение зарядов, а, приняв один из зарядов за эталон, указываем принципиальный способ измерения зарядов.

4. Единица заряда

Определение: 1 Кулон – единица СИ электрического заряда, равная заряду, протекающему через поперечное сечение проводника за 1 с при силе неизменяющегося тока 1 А.

5. Закон сохранения заряда

Если на замкнутую систему падает энергичный фотон, может возникнуть парный электрический заряд. В сумме заряд системы не изменится. Все эксперименты показывают, что заряду присуще свойство сохраняться, поэтому это положение возводится в ранг постулата.

Закон: В замкнутой системе электрический заряд есть величина постоянная.

∑ qi = const.

i= 1

6. Заряд Земли

Заряд Земли отрицателен.

q = − 6 105 Кл .

7. Инвариантность заряда

Принципиально заряды измеряются путем сравнения сил. Сила является инвариантом, т.е. она одинакова в разных системах отсчёта. Следовательно, отношение зарядов также инвариантно. А если и эталон заряда одинаков, то можно говорить, что заряд имеет одно и то же количественное значение в разных системах отсчета.

8. Дискретность заряда

Любой заряд можно представить в виде

q = N e , N = 0, ± 1, ± 2, ...

|e| = 1,6021892(46)·10-19 Кл - элементарный заряд

Говорят, что электрический заряд дискретен или квантуется, т.е. существует некоторая минимальная порция заряда, которую дальше разделить нельзя.

9. Модели заряженных тел

Как правило, считается, что заряд непрерывно «размазан» по телу и вводятся понятия физически бесконечно малых заряда и объема.

<< dV <

10− 27

÷ 10

− 30 м 3 ;

<< dq << Q ;

Объёмная плотность

Поверхностная

Линейная плотность

плотность

ρ =

= ρ (x , y , z )

σ = dq

τ = dq

Q = ∫ ρ (x, y, z) dV

Q = ∫ σ dS

Q = ∫ τ dl

V тела

S тела

L тела

10. Точечный заряд

Определение: Точечным зарядом называется материальная точка, обладающая зарядом.

Плотность точечного заряда может быть записана в виде формулы;

ρ (r ) = q δ (r − r 0 ).

Здесь r 0 – радиус-вектор, определяющий положение точечного заряда; δ (r − r 0 )

– дельта-функция Дирака.

11. Дельта функция или функция Дирака.

В одномерном случае эта функция определяется следующим образом:

0, x ≠ 0

∫ δ (x) dx = 1

δ (x ) = ∞ , x = 0

Отсюда следует также, что


Электрическая проводимость
Электрическое сопротивление
Электрический импеданс См. также: Портал:Физика

Электростатика - раздел учения об электричестве , изучающий взаимодействие неподвижных электрических зарядов .

Между одноимённо заряженными телами возникает электростатическое (или кулоновское) отталкивание, а между разноимённо заряженными - электростатическое притяжение. Явление отталкивания одноименных зарядов лежит в основе создания электроскопа - прибора для обнаружения электрических зарядов.

В основе электростатики лежит закон Кулона . Этот закон описывает взаимодействие точечных электрических зарядов .

История

Основание электростатики положили работы Кулона (хотя за десять лет до него такие же результаты, даже с ещё большей точностью, получил Кавендиш . Результаты работ Кавендиша хранились в семейном архиве и были опубликованы только спустя сто лет); найденный последним закон электрических взаимодействий дал возможность Грину, Гауссу и Пуассону создать изящную в математическом отношении теорию. Самую существенную часть электростатики составляет теория потенциала , созданная Грином и Гауссом. Очень много опытных исследований по электростатике было произведено Рисом книги которого составляли в прежнее время главное пособие при изучении этих явлений.

Диэлектрическая проницаемость

Нахождение величины диэлектрического коэффициента K какого-либо вещества, коэффициента, входящего почти во все формулы, с которыми приходится иметь дело в электростатике, может быть произведено весьма различными способами. Наиболее употребительные способы суть нижеследующие.

1) Сравнение электроёмкостей двух конденсаторов , имеющих одинаковые размеры и форму, но у которых у одного изолирующим слоем является слой воздуха, у другого - слой испытуемого диэлектрика .

2) Сравнение притяжений между поверхностями конденсатора, когда этим поверхностям сообщается определённая разность потенциалов, но в одном случае между ними находится воздух (сила притяжения = F 0), в другом случае - испытуемый жидкий изолятор (сила притяжения = F). Диэлектрический коэффициент находится по формуле:

3) Наблюдения электрических волн (см. Электрические колебания), распространяющихся вдоль проволок. По теория Максвелла скорость распространения электрических волн вдоль проволок выражается формулой

в которой K обозначает диэлектрический коэффициент среды, окружающей собой проволоку, μ обозначает магнитную проницаемость этой среды. Можно положить для огромного большинства тел μ = 1, а потому получается

Обыкновенно сравнивают длины стоячих электрических волн, возникающих в частях одной и той же проволоки, находящихся в воздухе и в испытуемом диэлектрике (жидком). Определив эти длины λ 0 и λ, получают K = λ 0 2 / λ 2. По теории Максвелла следует, что при возбуждении электрического поля в каком-либо изолирующем веществе внутри этого вещества возникают особые деформации. Вдоль трубок индукции изолирующая среда является поляризованной. В ней возникают электрические смещения, которые можно уподобить перемещениям положительного электричества по направлению осей этих трубок, причём через каждое поперечное сечение трубки проходит количество электричества, равное

Теория Максвелла даёт возможность найти выражения тех внутренних сил (сил натяжения и давления), которые являются в диэлектриках при возбуждении в них электрического поля. Этот вопрос был впервые рассмотрен самим Максвеллом, а позже и более обстоятельно Гельмгольцем . Дальнейшее развитие теории этого вопроса и тесно соединённой с этим теории электрострикции (то есть теории, рассматривающей явления, зависящие от возникновения особых напряжений в диэлектриках при возбуждении в них электрического поля) принадлежит работам Лорберга, Кирхгофа , П. Дюгема , Н. Н. Шиллера и некоторых др.

Граничные условия

Закончим краткое изложение наиболее существенного из отдела электрострикции рассмотрением вопроса о преломлении трубок индукции. Представим себе в электрическом поле два диэлектрика, отделяющихся друг от друга какой-нибудь поверхностью S, с диэлектрическими коэффициентами К 1 и К 2 .

Пусть в точках Р 1 и Р 2 , расположенных бесконечно близко к поверхности S по ту и по другую её сторону, величины потенциалов выражаются через V 1 и V 2 , а величины сил, испытываемых помещенной в этих точках единицей положительного электричества чрез F 1 и F 2 . Тогда для точки Р, лежащей на самой поверхности S, должно быть V 1 = V 2 ,

если ds представляет бесконечно малое перемещение по линии пересечения касательной плоскости к поверхности S в точке Р с плоскостью, проходящей через нормаль к поверхности в этой точке и через направление электрической силы в ней. С другой стороны, должно быть

Обозначим через ε 2 угол, составляемый силой F2 с нормалью n2 (внутрь второго диэлектрика), и через ε 1 угол, составляемый силой F 1 с той же нормалью n 2 Тогда, пользуясь формулами (31) и (30), найдем

Итак, на поверхности, отделяющей друг от друга два диэлектрика, электрическая сила претерпевает изменение в своём направлении подобно световому лучу, входящему из одной среды в другую. Это следствие теории оправдывается на опыте.

См. также

  • Электростатический разряд

Литература

  • Ландау, Л. Д. , Лифшиц, Е. М. Теория поля. - Издание 7-е, исправленное. - М .: Наука , 1988. - 512 с. - («Теоретическая физика» , том II). - ISBN 5-02-014420-7
  • Матвеев А. Н. Электричество и магнетизм. М.: Высшая школа, 1983.
  • Тоннела М.-А. Основы электромагнетизма и теории относительности. Пер. с фр. М.: Иностранная литература, 1962. 488 с.
  • Боргман, «Основания учения об электрических и магнитных явлениях» (т. I);
  • Maxwell, «Treatise on Electricity and Magnetism» (т. I);
  • Poincaré, «Electricité et Optique»";
  • Wiedemann, «Die Lehre von der Elektricität» (т. I);

Ссылки

  • Константин Богданов. Что может электростатика // Квант . - М .: Бюро Квантум, 2010. - № 2.
Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...