Причины поражения электрическим током производстве. Какие причины поражения электрическим током? Основные причины поражения электротоком


Основными причинами несчастных случаев при поражении электрическим током являются:

Случайное прикосновение или приближение на опасное расстояние к токоведущим частям, находящимся под напряжением;

Появление напряжения на конструктивных металлических частях электрооборудования (корпусах, кожухах, и т.п.) в результате повреждения изоляции и других причин (так называемое электрическое замыкание на корпус);

Появление напряжения на отключенных токоведущих частях, на которых работают люди, вследствие ошибочного включения;

Попадание человека в зону растекания тока.

Классификация помещений по опасности поражения

Человека током

Существенное влияние на безопасность электрических установок оказывают условия среды, от которых зависит состояние изоляции, а также электрическое сопротивление тела человека. В связи с этим в отношении опасности поражения человека электрическим током Правила устройства электроустановок (ПУЭ) различают:

1) помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность;

2) помещения с повышенной опасностью, характеризующиеся наличием одного из следующих условий, создающих повышенную опасность:

Относительная влажность воздуха превышает 75 %;

Пыль, которая может оседать на токоведущих частях, проникать внутрь оборудования;

Токопроводящие полы (металлические, земляные, железобетонные, кирпичные и т. п.);

Температура постоянно или периодически (свыше суток) превышает +35 °C;

Возможность одновременного прикосновения человека к металлоконструкциям зданий, имеющим соединение с землей, с одной стороны, и к металлическим корпусам электрооборудования - с другой;

3) особо опасные помещения, характеризующиеся наличием одного из следующих условий, создающих особую опасность:

Относительная влажность воздуха близка к 100 % (потолок, стены, пол и предметы, находящиеся в помещении, покрыты влагой);

Химически активная или органическая среда, разрушающая изоляцию и токоведущие части электрооборудования;

Одновременно два или более условий повышенной опасности.

Нормирование напряжений прикосновения и токов

Через тело человека

Предельно допустимые значения напряжений прикосновения U пд и токов I пд , протекающих через тело человека, задаются для пути тока "рука – рука" или "рука – ноги" (ГОСТ 12.1.038-82*). Указанные значения при нормальном (неаварийном) режиме электроустановки приведены в табл. 4.2.

Таблица 4.2

Примечание. Напряжения прикосновения и токи для лиц, выполняющих работу в условиях высоких температур (выше 25 °С) и влажности (относительная влажность более 75 %), должны быть уменьшены в 3 раза.

При аварийном режиме производственных и бытовых приборов и электроустановок напряжением до 1000 В в сетях с любым режимом нейтрали предельно допустимые значения U пд и I пд не должны превышать значений, приведённых в ГОСТ 12.1.038-82*. Для приближённой оценки U пд и I пд можно воспользоваться данными табл. 4.3. Аварийный режим означает, что электроустановка неисправна и могут возникнуть опасные ситуации, приводящие к электротравмам. При продолжительности воздействия более 1 с величины U пд и I пд соответствуют отпускающим значениям для переменного и не болевым для постоянного токов.

Таблица 4.3

Технические средства защиты человека

От поражения током

Основными техническими средствами защиты человека от поражения электрическим током, используемыми отдельно или в сочетании друг с другом, являются (ПУЭ): защитное заземление, защитное зануление, защитное отключение, электрическое разделение сети, малое напря­жение, электрозащитные средства, уравнивание потенциалов, двойная изоляция, предупредительная сигнализация, блокировка, знаки безопасности.

Защитное заземление – это преднамеренное электрическое соединение с грунтом Земли металлических нетоковедущих элементов электроустановок, которые в аварийных ситуациях могут оказаться под напряжением. Область применения защитного заземления – электроустановки напряжениями до 1000 В, питающиеся от СИН. При этом в помещениях без повышенной опасности защитное заземление является обязательным при номинальном напряжении электроустановок 380 В и выше переменного тока и 440 В и выше постоянного тока, а в помещениях с повышенной опасностью и особо опасных, а также в наружных установках - при напряжении выше 50 В переменного и выше 120 В постоянного тока.

Защитное заземление специально предназначено для обеспечения электробезопасности и позволяет уменьшить напряжение, приложенное к телу человека, до длительно допустимого значения . Защитному заземлению подлежат доступные для прикосновения человека металлические нетоковедущие элементы электроустановок, которые могут оказаться под напряжением, например, из-за повреждения изоляции фазного проводника сети. Схема защитного заземления представлена на рис. 4.6.


На рисунке пунктирными линиями показано эквивалентное сопротивление Z из /3 , которое заменяет комплексные сопротивления изоляций фаз в случае их равенства, но подключено к нейтрали N электрической сети.

В случае пробоя фазы на корпус ток замыкания определяется по формуле

в которой влиянием параллельного соединения R з и R h можно пренебречь (R з ||R h << Z из /3 ), т. к. R з << Z из . В результате ток замыкания на землю в СИН напряжением до 1000 В практически не превышает 5 А, а в большинстве случаев он во много раз меньше.

Для обеспечения приемлемой безопасности прикосновения к повреждённой электроустановке в СИН (замыкание фазы на корпус) необходимо обеспечить в любое время года достаточно малую величину сопротивления заземления.

Защитное заземление осуществляют с помощью заземляющего устройства , которое представляет собой совокупность заземлителей (естественные или искусственные) и заземляющих проводников.

Естественные заземлители – это непосредственно контактирующие с грунтом электропроводящие элементы коммуникаций, зданий и сооружений, используемые для целей заземления. К ним относятся, например, арматура железобетонных фундаментов, металлические водопроводные трубы, проложенные в земле, обсадные трубы скважин. Запрещается использовать в качестве естественных заземлителей трубопроводы горючих жидкостей, взрывоопасных или горючих газов и смесей. Согласно ПУЭ для заземления рекомендуется в первую очередь использовать естественные заземлители.

Искусственные заземлители – это специально предназначенные для устройства заземления стальные электроды (трубы, уголки), имеющие непосредственный контакт с грунтом. Их применяют, если естественные заземлители отсутствуют или их сопротивления растеканию тока не удовлетворяют требованиям.

Заземляющие проводники – это электрические проводники, соединяющие заземлители с заземляемыми элементами установок.

ПУЭ и ГОСТ 12.1.030-81* устанавливают, в частности, что в сетях с U ф = 220 В сопротивление заземляющего устройства не должно превышать 4Ом (R з ≤ 4 Ом ). Если мощность сетевого или автономного источника электроэнергии (трансформаторов, генераторов) не превышает 100 кВА, тоR з ≤ 10 Ом . Таким образом обеспечивают напряжение на корпусе аварийной производственной электроустановки, не превышающее 20 В, что считается допустимым.

Защитное зануление – это преднамеренное электрическое соединение нетоковедущих частей электроустановок, которые в аварийных ситуациях могут оказаться под напряжением, с глухозаземлённой нейтралью электрической сети с помощью нулевого защитного проводника (НЗП). Область применения защитного зануления – электроустановки напряжениями до 1000 В, питающиеся от СЗН. При этом в помещениях без повышенной опасности защитное зануление является обязательным при номинальном напряжении электроустановок 380 В и выше переменного тока и 440 В и выше постоянного тока, а в помещениях с повышенной опасностью и особо опасных, а также в наружных установках - при напряжении выше 50 В переменного и выше 120 В постоянного тока.

Схема варианта защитного зануления в СЗН приведена на рис. 4.7, где Пр1 и Пр2 – плавкие предохранители линии питания и электроустановки. Нулевой защитный проводник необходимо отличать от нулевого рабочего проводника N. Нулевой рабочий проводник при необходимости может быть использован для питания электроустановок. В реальной сети он может быть совмещён с НЗП, за исключением случая питания переносных электроприёмников, если он соответствует дополнительным требованиям, предъявляемым к НЗП. Должна быть обеспечена гарантированная непрерывность НЗП на всём протяжении от зануляемого элемента до нейтрали источника питания. Это обеспечивается отсутствием элементов защиты (плавких предохранителей и автоматических выключателей), а также разного рода разъединителей. Все соединения НЗП должны быть выполнены на основе сварки или быть резьбовыми. Полная проводимость НЗП должна составлять не менее 50 % от проводимости фазного проводника.


При замыкании одной из фаз на занулённый корпус электроустановки возникает контур короткого замыкания, образуемый источником фазного напряжения и комплексными сопротивлениями фазного (Ż ф) и нулевого защитного (Ż нзп) проводников, величина тока в котором гарантирует быстрое срабатывание ближайшего к электроустановке элемента защиты (Пр2). С целью дополнительного повышения уровня электробезопасности, например при обрыве НЗП, его повторно заземляют (на рис. 4.7 R п – сопротивление повторного заземлителя). При отсутствии R п напряжение на корпусе повреждённой установки может превышать 0,5U ф, а в случае применения повторного заземлителя оно может быть несколько снижено.

Таким образом, при защитном занулении безопасность человека, касающегося корпуса повреждённой установки, обеспечивается за счёт уменьшения времени воздействия опасного напряжения, действующего до момента срабатывания элемента защиты.

В СЗН с защитным занулением нельзя заземлять корпус установки, не присоединив его прежде к НЗП.

Защитное автоматическое отключение питания - это автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника), выполняемое в целях электробезопасности.

Защитное автоматическое отключение питания используется как дополнительная защита в электроустановках напряжением до 1000 В при наличии других мер защиты в соответствии с Правилами устройства электроустановок (ПУЭ) и реализуется с помощью устройства защитного отключения (УЗО).


Датчик Д реагирует на изменения одного или нескольких параметров Uэу, характеризующих электробезопасность. Его выходной сигнал U д пропорционален используемому входному сигналу УЗО, на который оно реагирует. В формирователе аварийного сигнала ФАС сигнал датчика U д сравнивается с установленным уровнем срабатывания Uп. Если U д > Uп, то сигнал U ас через элемент согласования (по мощности, напряжению) ЭС приводит к размыканию контактов отключающего устройства ОУ.

Практическое разнообразие УЗО определяется используемыми входными сигналами и выбранными конструктивными элементами.

Электрическое разделение сети . Реальные электрические сети могут иметь глухозаземлённую нейтраль, быть протяжёнными и разветвлёнными, что резко увеличивает опасность однофазного прикосновения человека. На рис. 4.9 показан пример разветвлённой однофазной сети с подключенными электроустановками, содержащей N ответвлений с соответствующими сопротивлениями изоляции. Результирующее сопротивление изоляции Z из сети определяется как результат параллельного соединения сопротивлений изоляции N отдельных участков и сопротивлений изоляции Z ЭУ электроустановок. Оно может оказаться недостаточным для обеспечения безопасности при однофазном прикосновении и может составлять, например, десятки кОм.

С целью повышения безопасности в таких случаях применяют электрическое разделение сети на ряд участков с помощью специальных разделительных трансформаторов РТ (рис. 4.10). Участок сети, подключенный ко вторичной обмотке РТ, имеет малую протяжённость и разветвлённость. Поэтому легко обеспечивается большое сопротивление изоляции проводников питания относительно земли. Разделительные транс­форматоры могут входить в состав, например, блоков питания (преобразователей напряжения) радиоэлектронных устройств. Следует иметь в виду, что выводы вторичной обмотки РТ должны быть изолированы от земли.



Применение малых напряжений . Существенное повышение уровня электробезопасности может быть достигнуто путём уменьшения рабочих напряжений электроустановок. Если номинальное напряжение электроустановки не превышает длительно допустимой величины напряжения прикосновения, то даже одновременный контакт человека с токоведущими частями разных фаз или полюсов может считаться относительно безопасным.

Малым называется напряжение не более 50 В переменного и не более 120 В постоянного тока, применяемое в целях уменьшения опас­ности поражения электрическим током. Наибольшая степень безопасности достигается при напряжениях до 12 В, т. к. при таких напряжениях сопротивление тела человека обычно не менее 6 кОм и, следовательно, ток, проходящий через тело человека, не превысит 2 мА. Такой ток можно считать условно безопасным. В производственных условиях для повышения безопасности эксплуатации переносных электроустановок применяются напряжения 36 В (в помещениях с повышенной опасностью) и 12 В (в особо опасных помещениях). Однако в любом случае малые напряжения являются лишь относительно безопасными, т.к. в худшем случае ток через тело человека может превысить значение порогового неотпускающего.

Источниками малого напряжения являются разделительные трансформаторы. Получение малых напряжений с помощью автотрансформаторов не допускается , т. к. токоведущие элементы сети малого напряжения в этом случае гальванически связаны с основной электрической сетью.

Широкому распространению малых напряжений переменного тока мешает трудность осуществления протяжённой сети малого напряжения из-за больших энергетических потерь и наличие понижающего трансформатора. Поэтому область их применения ограничивается в основном ручным электрифицированным инструментом, переносными лампами, светильниками местного освещения в помещениях как с повышенной опасностью, так и особо опасных.

Электрозащитные средства -это средства индивидуальной защиты, служащие для защиты людей от поражения электрическим током, от воздействия электрической дуги и электромагнитного поля.

По своему назначению средства защиты условно разделяют на изолирующие, ограждающие и предохранительные.

Изолирующие средства защиты предназначены для изоляции человека от частей электроустановок, находящихся под напряжением, и от земли. Различают основные и дополнительные изолирующие средства. Основные изолирующие средства имеют изоляцию, способную длительное время выдерживать рабочее напряжение электроустановки, и, следовательно, с их помощью можно касаться токоведущих частей, находящихся под напряжением. Основными изолирующими средствами для электроустановок напряжением до 1000 В служат изолирующие штанги, изолирующие и электроизмерительные клещи, диэлектрические перчатки, слесарно-монтажный инструмент с изолирующими рукоятками, указатели напряжения. Дополнительные изолирующие средства применяют для обеспечения большей электробезопасности лишь в комплекте с основными средствами для обеспечения большей безопасности. К дополнительным изолирующим средствам относятся, например, диэлектрические боты и галоши, изолирующие подставки и коврики. Все изолирующие средства должны подвергаться испытаниям после изготовления и периодически в процессе эксплуатации, о чём на них делается соответствующая отметка.

Ограждающие защитные средства предназначены для временного ограждения токоведущих частей, находящихся под напряжением (изолирующие накладки, щиты, барьеры), а также для предотвращения появления опасного напряжения на отключенных токоведущих частях (переносные заземляющие устройства).

Предохранительные защитные средства служат для защиты персонала от факторов, сопутствующих его работе с электроустановками. К ним относятся средства защиты от падения с высоты (предохранительные пояса), при подъёме на высоту (монтёрские когти, лестницы), от световых, тепловых, механических, химических воздействий (защитные очки, щитки, рукавицы) и электромагнитных полей (экранирующие каски, костюмы).

Уравнивание потенциалов применяют в помещениях, имеющих заземлённые или занулённые электроустановки для повышения уровня безопасности. При этом к сети заземления или зануления подключают металлические трубы коммуникаций, входящих в здание (горячего и холодного водоснабжения, канализации, отопления, газоснабжения и т.п.), металлические части каркаса здания, централизованных систем вентиляции, металлические оболочки телекоммуникационных кабелей, все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования.

Двойная изоляция представляет собой совокупность рабочей и защитной (дополнительной) изоляции, при которой доступные прикосновению металлические части электроустановки не приобретают опасного напряжения при повреждении только рабочей или только защитной изоляции. Согласно требованиям ГОСТ 12.2.006-87 двойную изоляцию обязательно должны иметь устройства бытового или аналогичного общего применения. Установки с двойной изоляцией не следует заземлять или занулять, поэтому они не имеют соответствующих присоединительных элементов. В качестве дополнительной изоляции используют пластмассовые корпуса, ручки, втулки. Если устройство с двойной изоляцией имеет металлический корпус, он должен быть изолирован от конструктивных частей установки, которые могут оказаться под напряжением (шасси, оси регуляторов, статоры электродвигателей) изолирующими элементами.

Предупредительная сигнализация служит для выдачи сигнала опасности при приближении к частям, находящимся под высоким напряжением.

Блокировки предотвращают доступ к неотключенным токоведущим частям электроустановки, например, при ремонте. Электрические блокировки осуществляют разрыв цепи контактами, размыкающимися при открывании аппаратурной дверцы, или не позволяют её открыть, если не снято высокое напряжение с токоведущих частей. Механические блокировки имеют конструктивные элементы, не позволяющие включить аппарат при открытой крышке или открыть аппарат, когда он включен.

Знаки и плакаты безопасности предназначены для привлечения внимания работающих к опасности поражения током, предписания, разрешения определённых действий и указаний с целью обеспечения безопасности. Они бывают запрещающими, предупреждающими, предписывающими и указательными.

Электромагнитные поля

Работа с электрическим током требует особой осторожности: электрический ток поражает внезапно, когда человек оказывается включенным в цепь прохождения тока.

Причины поражения электрическим током:
  • прикосновение к токоведущим частям, оголенным проводам, контактам электроприборов, рубильников, ламповых патронов, предохранителей, находящихся под напряжением;
  • прикосновение к частям электрооборудования, металлическим конструкциям сооружений и т.п., в обычном состоянии не находящихся, но в результате повреждения (пробоя) изоляции оказавшихся под напряжением:
  • нахождение вблизи места соединения с землей оборванного провода электросети;
  • нахождение в непосредственной близости от токоведущих частей, находящихся под напряжением выше 1000 В;
  • прикосновение к токоведущей части и мокрой стене или металлической конструкции, соединенной с землей;
  • одновременное прикосновение к двум проводам или другим токоведущим частям, которые находятся под напряжением;
  • несогласованные и ошибочные действия персонала (подача напряжения на установку, где работают люди; оставление установки под напряжением без надзора; допуск к работам на отключенном электрооборудовании без проверки отсутствия напряжения и т.д.).

Опасность поражения электрическим током отличается от других производственных опасностей тем, что человек не в состоянии без специальных приборов обнаружить ее на расстоянии. Часто эта опасность обнаруживается слишком поздно, когда человек уже оказался под напряжением.

Поражающее действие электрического тока

На живую ткань носит разносторонний характер. Проходя через тело человека, электрический ток производит термическое, электролитическое, механическое и биологическое воздействие.

Термическое действие тока проявляется в ожогах отдельных участков тела, нагреве и повреждении кровеносных сосудов; электролитическое — в разложении органической жидкости, в том числе крови, что вызывает нарушение ее состава, а также ткани в целом; механическое - в расслоении, разрыве тканей организма: биологическое - в раздражении и возбуждении живых тканей организма, а также в нарушении внутренних биологических процессов. Например, взаимодействуя с биотоками организма, внешний ток может нарушить нормальный характер их воздействия на ткани и вызвать непроизвольные сокращения мышц.

Рис. Классификация и виды электрических травм

Существуют три основных вида поражения электрическим током:

  • электрические травмы;
  • электрические удары;
  • электрический шок.

Электрическая травма

Электрическая травма - местное поражение тканей и органов электрическим током: ожоги, электрические знаки, электрометаллизация кожи, поражение глаз воздействием на них электрической дуги (электроофтальмия), механические повреждения.

Электрический ожог — это повреждения поверхности тела или внутренних органов под действием электрической дуги или больших токов, проходящих через тело человека.

Ожоги бывают двух видов: токовый (или контактный) и дуговой.

Токовый ожог обусловлен прохождением тока непосредственно через тело человека в результате прикосновений к токоведущей части. Токовый ожог — следствие преобразования электрической энергии в тепловую; как правило, это ожог кожи, так как кожа человека обладает во много раз большим электрическим сопротивлением, чем другие ткани тела.

Токовые ожоги возникают при работе на электроустановках относительно небольшого напряжения (не выше 1-2 кВ) и являются в большинстве случаев ожогами I или II степени; впрочем, иногда возникают и тяжелые ожоги.

При более высоких напряжениях более высоких между токоведущей частью и телом человека или между токоведущими частями образуется электрическая дуга, которая и вызывает возникновение ожога другого вида — дугового.

Дуговой ожог обусловлен действием на тело электрической дуги, обладающей высокой температурой (свыше 3500ºC) и большой энергией. Такой ожог возникает обычно при электроустановках высокого напряжения и носит тяжелый характер — III или IV степени.

Состояние пострадавшего зависит не столько от степени ожога, сколько от площади поверхности тела, пораженной ожогом.

Электрические знаки — это поражения кожи в местах соприкосновения с электродами круглой или эллиптической формы, серого или бело-желтого цвета с резко очерченными гранями диаметром 5-10 мм. Они вызываются механическим и химическим действиями тока. Иногда появляются спустя некоторое время после прохождения электрического тока. Знаки безболезненны, вокруг них не наблюдается воспалительных процессов. В месте поражения появляется припухлость. Небольшие знаки заживают благополучно, при больших размерах знаков часто происходит омертвение тела (чаще рук).

Электрометаллизация кожи — это пропитывание кожи мельчайшими частицами металла вследствие его разбрызгивания и испарения под действием тока, например при горении дуги. Поврежденный участок кожи приобретает жесткую шероховатую поверхность, а пострадавший испытывает ощущение присутствия инородного тела в месте поражения. Исход поражения, как и при ожоге, зависит от площади пораженного тела. В большинстве случаев металлизированная кожа сходит, пораженный участок приобретает нормальный вид и следов не остается.

Электрометаллизация может произойти при коротких замыканиях, отключениях разъединителей и рубильников под нагрузкой.

Электроофтальмия — это воспаление наружных оболочек глаз, возникающее под воздействием мощного потока ультрафиолетовых лучей. Такое облучение возможно при образовании электрической дуги (короткое замыкание), которая интенсивно излучает не только видимый свет, но и ультрафиолетовые и инфракрасные лучи.

Электроофтальмия обнаруживается спустя 2-6 ч после ультрафиолетового облучения. При этом наблюдаются покраснение и воспаление слизистых оболочек век, слезотечение, гнойные выделения из глаз, спазмы век и частичное ослепление. Пострадавший испытывает сильную головную боль и резкую боль в глазах, усиливающуюся при свете, у него возникает так называемая светобоязнь.

В тяжелых случаях воспаляется роговая оболочка глаза и нарушается ее прозрачность, расширяются сосуды роговой и слизистой оболочек, суживается зрачок. Болезнь продолжается обычно несколько дней.

Предупреждение электроофтальмии при обслуживании электроустановок обеспечивается применением защитных очков с обычными стеклами, которые плохо пропускают ультрафиолетовые лучи и защищают глаза от брызг расплавленного металла.

Механические повреждения возникают вследствие резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через тело человека. В результате могут произойти разрывы кожи, кровеносных сосудов и нервной ткани, а также вывихи суставов и даже переломы костей.

Электрический удар

Электрический удар — это возбуждение живых тканей организма проходящим через них электрическим током, сопровождающееся непроизвольными судорожными сокращениями мышц.

Степень отрицательного воздействия этих явлений на организм может быть различна. Небольшие токи вызывают лишь неприятные ощущения. При токах, превышающих 10-15 мА, человек не способен самостоятельно освободиться от токоведущих частей и действие тока становится длительным (неотпускающий ток). При токе, равном 20-25 мА (50 Гц), человек начинает испытывать затруднение дыхания, которое усиливается с ростом тока. При действии такого тока в течение нескольких минут наступает удушье. При длительном воздействии токов величиной несколько десятков миллиампер и времени действия 15-20 с могут наступить паралич дыхания и смерть. Токи величиной 50-80 мА приводят к фибрилляции сердца, т.е. беспорядочному сокращению и расслаблению мышечных волокон сердца, в результате чего прекращается кровообращение и сердце останавливается. Действие тока величиной 100 мА в течение 2-3 с приводит к смерти (смертельный ток).

При невысоких напряжениях (до 100 В) постоянный ток примерно в 3-4 раза менее опасен, чем переменный частотой 50 Гц; при напряжениях 400-500 В опасность их сравнивается, а при более высоких напряжениях постоянный ток даже опаснее переменного.

Наиболее опасен ток промышленной частоты (20-100 Гц). Снижение опасности действия тока на живой организм заметно сказывается при частоте 1000 Гц и выше. Токи высокой частоты, начиная от сотен килогерц, вызывают только ожоги, не поражая внутренних органов. Это объясняется тем, что такие токи не способны вызывать возбуждение нервных и мышечных тканей.

В зависимости от исхода поражения электрические удары могут быть условно разделены на четыре степени:

  • I — судорожное сокращение мышц без потери сознания;
  • II — судорожное сокращение мышц с потерей сознания, но с сохранившимися дыханием и работой сердца;
  • III — потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе);
  • IV — клиническая смерть, т.е. отсутствие дыхания и кровообращения.

Клиническая смерть - это переходный период от жизни к смерти, наступающий в момент прекращения деятельности сердца и легких. У человека, находящегося в состоянии клинической смерти, отсутствуют все признаки жизни: он не дышит, сердце его не работает, болевые раздражения не вызывают никаких реакций, зрачки глаз расширены и не реагируют на свет.

Длительность клинической смерти определяется временем с момента прекращения сердечной деятельности и дыхания до начала гибели клеток коры головного мозга. В большинстве случаев она составляет 4-5 мин, а при гибели здорового человека от случайной причины, в частности от электрического тока. — 7-8 мин.

Причинами смерти от электрического тока могут быть прекращение работы сердца, прекращение дыхания и электрический шок.

Работа сердца может прекратиться в результате или прямого воздействия тока на мышцу сердца, или рефлекторного действия, когда сердце не подвержено прямому воздействия тока. В обоих случаях может произойти остановка сердца или наступить его фибрилляция.

Токи, которые вызывают фибрилляцию сердца, называются фибрилляциоиными , а наименьший из них —

Фибрилляция обычно продолжается недолго и сменяется полной остановкой сердца.

Прекращение дыхания вызывается непосредственным, а иногда рефлекторным действием тока на мышцы грудной клетки, участвующие в процессе дыхания.

Как при параличе дыхания, так и при параличе сердца функции органов самостоятельно не восстанавливаются, необходимо оказание первой помощи (искусственное дыхание и массаж сердца). Кратковременное действие больших токов не вызывает ни паралича дыхания, ни фибрилляции сердца. Сердечная мышца при этом резко сокращается и остается в таком состоянии до отключения тока, после чего продолжает работать.

Электрический шок

Электрический шок — своеобразная реакция нервной системы организма в ответ на сильное раздражение электрическим током: расстройство кровообращения, дыхания, повышение кровяного давления.

Шок имеет две фазы:

  • I — фаза возбуждения;
  • II — фаза торможения и истощения нервной системы.

Во второй фазе учащается пульс, ослабевает дыхание, возникают угнетенное состояние и полная безучастность к окружающему при сохранившемся сознании. Шоковое состояние может длиться от нескольких десятков минут до суток, после чего наступает легальный исход.

Параметры, определяющие тяжесть поражения электрическим током

Основными факторами, определяющими степень поражения электрическим током, являются: сила тока, протекающего через человека, частота тока, время воздействия и путь протекания тока через тело человека.

Сила тока

Протекание через организм переменного тока промышленной частоты (50 Гц), широко используемого в промышленности и в быту, человек начинает ощущать при силе тока 0,6...1,5 мА (мА — миллиампер равен 0,001 А). Этот ток называют пороговым ощутимым током.

Большие токи вызывают у человека болезненные ощущения, которые с увеличением тока усиливаются. Например, при токе 3...5 мА раздражающее действие тока ощущается всей кистью, при 8... 10 мА — резкая боль охватывает всю руку и сопровождается судорожными сокращениями мыши кисти и предплечья.

При 10... 15 мА судороги мышц руки становятся настолько сильными, что человек не может их преодолеть и освободиться от проводника тока. Такой ток называется пороговым неотпускающим током.

При токе величиной 25...50 мА происходят нарушения в работе легких и сердца, при длительном воздействии такого тока может произойти остановка сердца и прекращение дыхания.

Начиная с величины 100 мА протекание тока через человека вызывает фибрилляцию сердца — судорожные неритмичные сокращения сердца; сердце перестает работать как насос, перекачивающий кровь. Такой ток называется пороговым фибрилляционным током. Ток более 5 А вызывает немедленную остановку сердца, минуя состояние фибрилляции.

Величина тока, протекающего через тело человека (I ч), зависит от напряжения прикосновения U пp и сопротивления тела человека

R ч: I ч = U пр / R ч

Сопротивление тела человека — величина нелинейная, зависящая от многих факторов: сопротивления кожи (сухая, влажная, чистая, поврежденная и т.д.): величины тока и приложенного напряжения; длительности протекания тока.

Наибольшим сопротивлением обладает верхний роговой слой кожи:

  • при снятом роговом слое R ч = 600-800 Ом;
  • при сухой неповрежденной коже R ч = 10-100 кОм;
  • при увлажненной коже R ч = 1000 Ом.

Сопротивление тела человека (R 4) в практических расчетах принимается равным 1000 Ом. В реальных условиях сопротивление тела человека — величина непостоянная и зависит от ряда факторов.

С ростом тока, проходящего через человека, его сопротивление уменьшается, так как при этом увеличиваются нагрев кожи и потоотделение. По этой же причине снижается R 4 с увеличением длительности протекания тока. Чем выше приложенное напряжение, тем больше ток, проходящий через тело человека I ч, тем быстрее снижается сопротивление кожи.

С ростом напряжения сопротивление кожи уменьшается в десятки раз, следовательно, уменьшается и сопротивление тела в целом; оно приближается к сопротивлению внутренних тканей тела, т.е. к своему наименьшему значению (300-500 Ом). Это можно объяснить электрическим пробоем слоя кожи, который происходит при напряжении 50-200 В.

Загрязнение кожи различными веществами, особенно хорошо проводящими электрический ток (металлическая или угольная пыль, ока-чина и т.п.), снижает ее сопротивление.

Сопротивление разных участков тела человека не одинаково. Объясняется это различной толщиной рогового слоя кожи, неравномерным распределением потовых желез на поверхности тела и неодинаковой степенью наполнения сосудов кожи кровью. Поэтому величина сопротивления тела зависит от места приложения электродов. Действие тока на организм усиливается при замыкании контактов в акупунктурных точках (зонах).

На исход электротравм влияют и условия окружающей среды (температура, влажность). Повышенная температура, влажность повышают опасность поражения электрическим током. Чем ниже атмосферное давление, тем выше опасность поражения.

Психическое и физическое состояние человека также оказывает влияние на тяжесть поражения электрическим током. При заболеваниях сердца, щитовидной железы и т.п. человек подвергается более сильному поражению при меньших значениях тока, так как в этом случае уменьшается электрическое сопротивление тела человека и общая сопротивляемость организма внешним раздражениям. Отмечено, например, что у женщин пороговые значения токов примерно в 1.5 раза ниже, чем у мужчин. Это объясняется более слабым физическим развитием женщин. При применении спиртных напитков сопротивление тела человека снижается так же, как и сопротивляемость его организма и внимание.

Частота тока

Наиболее опасен ток промышленной частоты — 50 Гц. Постоянный ток и ток больших частот менее опасен, и пороговые значения для него больше. Так, для постоянного тока:

  • пороговый ощутимый ток — 3...7 мА;
  • пороговый неотпускающий ток — 50...80 мА;
  • фибрилляционный ток — 300 мА.

Путь протекания тока

Важное значение имеет путь прохождения электрического тока через тело человека. Установлено, что ткани разных частей человеческого тела имеют различные удельные сопротивления. При прохождении тока через тело человека наибольшая часть тока проходит по пути наименьшего сопротивления, главным образом вдоль кровеносных и лимфатических сосудов. Различают 15 путей тока в теле человека. Наиболее частые: рука — рука; правая рука — ноги; левая рука — ноги; нога — нога; голова — ноги: голова — руки.

Наиболее опасным является путь тока вдоль тела, например от руки к ноге или через сердце, голову, спинной мозг человека. Однако известны смертельные поражения, когда ток проходил по пути «нога — нога» или «рука — рука».

Вопреки установившемуся мнению наибольшая величина тока через сердце оказывается не по пути «левая рука — ноги», а по пути «правая рука — ноги». Это объясняется тем, что большая часть тока входит в сердце по продольной его оси, лежащей по пути «правая рука — ноги».

Рис. Характерные пути тока в теле человека

Время воздействия электрического тока

Чем продолжительнее протекает ток через человека, тем он опаснее. При протекании электрического тока через человека в месте контакта с проводником верхний слой кожи (эпидермис) быстро разрушается, электрическое сопротивление тела уменьшается, ток возрастает, и отрицательное действие электротока усугубляется. Кроме того, с течением времени растут (накапливаются) отрицательные последствия воздействия тока на организм.

Определяющую роль в поражающем действии тока играет величина силы электрического тока , протекающего через организм человека. Электрический ток возникает тогда, когда создается замкнутая электрическая цепь, в которую оказывается включенным человек. По закону Ома сила электрического тока / равна электрическому напряжению (/, деленному на сопротивление электрической цепи R :

Таким образом, чем больше напряжение, тем больше и опаснее электрический ток. Чем больше электрическое сопротивление цепи, тем меньше ток и опасность поражения человека.

Электрическое сопротивление цепи равно сумме сопротивлений всех участков, составляющих цепь (проводников, пола, обуви и др.). В общее электрическое сопротивление обязательно входит и сопротивление тела человека.

Электрическое сопротивление тела человека при сухой, чистой и неповрежденной коже может изменяться в довольно широких пределах — от 3 до 100 кОм (1 кОм = 1000 Ом), а иногда и больше. Основной вклад в электрическое сопротивление человека вносит наружный слой кожи — эпидермис, состоящий из ороговевших клеток. Сопротивление внутренних тканей тела небольшое — всего лишь 300...500 Ом. Поэтому при нежной, влажной и потной коже или повреждении эпидермиса (ссадины, раны) электрическое сопротивление тела может быть очень небольшим. Человек с такой кожей наиболее уязвим для электрическою тока. У девушек более нежная кожа и тонкий слой эпидермиса, нежели у юношей; у мужчин, имеющих мозолистые руки, электрическое сопротивление тела может достигать очень больших величин, и опасность их поражения электротоком снижается. В расчетах на электробезопасность обычно принимают величину сопротивления тела человека, равную 1000 Ом.

Электрическое сопротивление изоляции проводников тока, если она не повреждена, составляет, как правило, 100 и более килоом.

Электрическое сопротивление обуви и основания (пола) зависит от материала, из которого сделано основание и подошва обуви, и их состояния — сухие или мокрые (влажные). Например, сухая подошва из кожи имеет сопротивление примерно 100 кОм, влажная подошва — 0,5 кОм; из резины соответственно 500 и 1,5 кОм. Сухой асфальтовый пол имеет сопротивление около 2000 кОм, мокрый — 0,8 кОм; бетонный соответственно 2000 и 0,1 кОм; деревянный — 30 и 0,3 кОм; земляной — 20 и 0,3 кОм; из керамической плитки — 25 и 0,3 кОм. Как видим, при влажных или мокрых основаниях и обуви значительно возрастает электроопасность.

Поэтому при пользовании электричеством в сырую погоду, особенно на воде, необходимо соблюдать особую осторожность и принимать повышенные меры обеспечения электробезопасности.

Для освещения, бытовых электроприборов, большого количества приборов и оборудования на производстве, как правило, используется напряжение 220 В. Существуют электросети на 380, 660 и более вольт; во многих технических устройствах применяются напряжения в десятки и сотни тысяч вольт. Такие технические устройства представляют исключительно высокую опасность. Но и значительно меньшие напряжения (220, 36 и даже 12 В) могут быть опасными в зависимости от условий и электрического сопротивления цепи R.

Причины несчастных случаев от электрического тока многочисленны и разнообразны. Основными из них являются:

1) случайное прикосновение к открытым токоведущим частям, находящимся под напряжением. Это может происходить, например, при производстве каких-либо работ вблизи или непосредственно на частях, находящихся под напряжением: при неисправности защитных средств, посредством которых пострадавший прикасался к токоведущим частям; при переноске на плече длинномерных металлических предметов, которыми можно случайно прикоснуться к неизолированным электропроводам, расположенным на доступной в данном случае высоте;

2) появление напряжения на металлических частях электрооборудования (корпусах, кожухах, ограждениях и т.п.), которые в нормальных условиях не находятся под напряжением. Чаше всего это может происходить вследствие повреждения изоляции кабелей, проводов или обмоток электрических машин и аппаратов, приводящего, как правило, к замыканию на корпус;

3) появление напряжения на отключенных токоведущих частяхв ре­зультате ошибочного включения отключенной установки; замыкания между отключенными и находящимися под напряжением токоведущими частями; разряда молнии в электроустановку и других причин

4) электрическая дуга, которая может образоваться в электроустановках напряжением свыше 1000 В между токоведущей частью и человеком при условии, если человек окажется в непосредственной близости от токоведущих частей;

5) возникновение шагового напряжения на поверхности земли при замыкании провода на землю или при стекании тока с заземлителя в землю (при пробое на корпус заземленного электрооборудования);

6) прочие причины, к которым можно отнести такие, как: несогласованные и ошибочные действия персонала, оставление электроустановок под напряжением без надзора, допуск к ремонтным работам на отключенном оборудовании без предварительной проверки отсутствия напряжения и неисправности заземляющего устройства и т.д.

Все случаи поражения че­ловека током в результате электрического удара возможны лишь при замы­кании электрической цепи через тело человека, то есть при прикосновении человека не менее чем к двум точкам цепи, между которыми существует не­которое напряжение.

Напряжение между двумя точками цепи тока, которых одновременно касается человек, называется напряжением прикосновения.

Напряжение прикосновения 20 В считается безопасным в сухих помещениях, т.к. ток, проходящий через тело человека будет ниже порогового неотпускающего и человек, получивший электрический удар, сразу оторвет руки от металлических частей оборудования.

В сырых помещениях безопасным считается напряжение 12 В.

Напряжением шага называется напряжение между точками земли, обусловленное растеканием тока замыкания на землю при одновременном касании ихногами человека. Наибольший электрический потенциал будет в месте соприкосновения проводника с землей. По мере удаления от этого места потенциал поверхности грунта уменьшается и на расстоянии, пример­но равном 20 м, может быть принято равным нулю. Поражение при шаговом напряжении усугубляется тем, что из-за судорожных сокращений мышц ног человек может упасть, после чего цепь тока замыкается на теле через жиз­ненно важные органы.

Напряжение между двумя точками цепи тока, которых одновременно касается человек, называется напряжением прикосновения. Опасность такого прикосновения, оцениваемая значением тока, проходящего через тело человека, или же напряжением прикосновения, зависит от ряда факторов: схемы замыкания цепи тока через тело человека, напряжением сети, схемы самой сети, режима ее нейтрали (т.е. заземлена или изолирована нейтраль), степени изоляции токоведущих частей от земли, а также от значения емкости токоведущих частей относительно земли и т.п.

Наиболее типичны два случая замыкания цепи тока через тело человека: когда человек касается одновременно двух проводов и когда он касается лишь одного провода. Применительно к сетям переменного тока первую схему обычно называют двухфазным прикосновением, а вторую – однофазным.

Двухфазное прикосновение более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение – линейное, и поэтому через человека пойдет больший ток.

Однофазное прикосновение происходит во много раз чаще, чем двухфазное, но оно менее опасно, поскольку напряжение, под которым оказывается человек, не превышает фазного, т.е. меньше линейного в 1,73 раза.

Основные причины поражения электрическим током:

1) Случайное прикосновение к токоведущим частям, находящимся под напряжением в результате: ошибочных действий при проведении работ; неисправности защитных средств, которыми пострадавший касался токоведущих частей и др.

2) Появление напряжения на металлических конструктивных частях электрооборудования в результате: повреждения изоляции токоведущих частей; замыкания фазы сети на землю; падения провода (находящегося под напряжением) на конструктивные части электрооборудования и др.

3) Появление напряжения на отключенных токоведущих частях в результате: ошибочного включения отключенной установки; замыкания между отключенными и находящимися под напряжением токоведущими частями; разряда молнии в электроустановку и др.

4) Возникновения напряжения шага на участке земли, где находятся человек, в результате: замыкания фазы на землю; выноса потенциала протяженным токопроводящим предметом (трубопроводом, железнодорожными рельсами); неисправностей в устройстве защитного заземления и др.

Напряжением шага называется напряжение между точками земли, обусловленное растеканием тока замыкания на землю при одновременном касании их ногами человека.

Если человек будет находится в зоне растекания тока, например, при повреждении воздушной линии электропередачи, или нарушении изоляции силового кабеля, проложенного в земле, или при стекании тока через заземлитель и стоять при этом на поверхности земли, имеющей разные потенциалы в местах, где расположены ступни ног, то на длине шага возникает напряжение U ш = φ х ─ φ х+8 , где φ х и φ х+8 , - потенциалы расположения точек ног; S = 0,8 м – длина шага.


Электрический ток, протекающий через тело человека в этом случае, зависит от значения тока замыкания на землю, сопротивления основания пола и обуви, а также от расположения ступней ног.

Напряжение шага может быть равным нулю, если обе ноги человека находятся на эквипотенциальной линии, т.е. линии электрического поля, обладающей одинаковым потенциалом. Напряжение шага может быть уменьшено до минимума, если свести ступни ног вместе. Наибольший электрический потенциал будет в месте соприкосновения проводника с землей. По мере удаления от этого места потенциал поверхности грунта уменьшается, и на расстоянии, примерно равном 20 м, он может быть принят равным нулю.

Напряжение шага всегда меньше напряжения прикосновения. Кроме того, протекание тока по нижней петле «нога – нога» менее опасно, чем по пути «рука – нога». Однако в практике немало случаев поражения людей при воздействии напряжения шага. Поражение при напряжении шага усугубляется тем, что из-за судорожных сокращений мышц ног человек может упасть, после чего цепь тока замыкается на теле через жизненно важные органы. Кроме того, рост человека обусловливает большую разность потенциалов, приложенных к его телу.

Человек может пострадать при работе с электроустройствами в том случае, когда в электросети наблюдаются неисправности.

Возможные причины поражения электрическим током

Наибольшее количество инцидентов наблюдается при обслуживании электроустановок. Люди, которые становятся жертвами несчастных случаев:

  • не представляют, какую опасность несёт за собой неправильное обращение с электричеством;
  • не компетентны в вопросах электробезопасности.

Классификация электротравм

  1. Электроудар лёгкой степени – как правило, без нарушения работы организма человека.
  2. Электроудар средней степени тяжести – наблюдается потеря сознания человека, нарушение работы дыхательной и сердечнососудистой систем.
  3. Электрический шок – высокая степень поражения организма. Наблюдаются многочисленные травмы на теле, человек не реагирует на внешние раздражители.
  4. Клиническая смерть. Является следствием получения особо тяжких травм.

Пострадавшему, при необходимости, следует оказать медпомощь. Если степень травматизма велика, то больного немедленно необходимо доставить в больницу.

Основные термины

Электробезопасность – совокупность мероприятий, действий и защитного электрооборудования, направленных на сокращение несчастных случаев при контакте с электротоком.

Электротравматизм – нарушение работы организма, вызванное воздействием электротока.

Электротравма – полученная под воздействием электротока травма.

Электрические знаки – безвредные следы на коже, как следствие контакта кожных покровов с токоведущими частями.

Электрические знаки на коже у пострадавшего

Электрический ожог – поражение кожных тканей, вызванное высокими температурами электродуги, которое возникло вследствие КЗ.

Металлизация кожи – проникновение в средние слои живых тканей частиц расплавленного металла.

Электрический шок – состояние (часто временное) паралича организма, потери дыхательного рефлекса, сердцебиения и работоспособности систем организма.

Электроудар – многочисленные повреждения организма, полученные во время инцидента.

Паралич сердечной мышцы происходит при особо тяжких обстоятельствах. Когда заряды проходят вдоль тела или поперёк, задевая линию сердца, прекращая нормальную его работу. Фибрилляция вызывает нарушение оттока крови. Смерть наступает при бездействии или неправильном оказании первой помощи.

Высвобождение пострадавшего от поражения электрическим током

Напряжение шага – величина напряжения между двумя точками касания (шагами). Наименьшее значение его достигается при минимальном расстоянии ног друг от друга. При попадании под действие шагового напряжения увеличивается риск травматизма и летального исхода, т. к. при падении ток проходит через жизненно важные органы.

Травматизм

Условия, при которых возможно получение травм:

  • Прикосновение к открытым частям электроприборов, которые находятся под напряжением.
  • Несчастные случаи, которые вызваны несогласованностью работы персонала.
  • Касание к корпусу электроаппаратов, которые вышли из строя и на поверхности которых есть напряжения либо задерживаются токи утечки.
  • Случайное приближение в зону поражения неисправных высоковольтных ЛЭП.
  • Попадание в зону действия электродуги.
  • Прикосновение инструментом (из токопроводящих материалов) к электроаппаратам.
  • Попадание под перенапряжение .
  • Прикосновение к трубам и металлическим конструкциям, которые оказались под напряжением (попадания оборванного провода и др.).
  • Неисправность ограждающих устройств ремонтных объектов. Отсутствие необходимых мероприятий по ограничению доступа к опасным элементам.
  • Подача напряжения без предупреждения. Ошибочное включение отходящих автоматов на подстанциях.
  • Отсутствие защитного заземления.
  • Возникновение коротких замыканий при выполнении ремонтных работ.
  • Неисправность электроприборов. Нарушение целостности изоляционных поверхностей.
  • Пробои в изоляции, вызванные перегревом и расплавлением защитного слоя кабелей.
  • Пользование поломанными электроприборами.
  • Неисправности на ЛЭП.
  • Короткие замыкания.
  • Ошибки в работе: случайные прикосновения к опасным устройствам, падения и др.
  • Электродуга. Возникает при преодолении предельно допустимого безопасного расстояния между человеком и электроустановкой более 1 кВ.
  • Возникновение шагового напряжения при наличии оголённого проводника под напряжением.
  • Удары молнии в установки, не оборудованные молниеотводами. Возникает электроток и большой величины. Инцидент зачастую сопровождается пожаром.
  • Повешенная влажность в помещении с неисправной электроустановкой: наличие конденсата на стенах и полах, приводит к поражению живых организмов.
  • Оставление электроустановок без надзора при замкнутой цепи. Является нередкой причиной травматизма.
  • Неисправность или отсутствие заземляющего контура. Нарушение работы ЗУ.
  • Поломка СЗ. Возникает из-за невнимательного отношения к рабочему процессу персонала.
  • Внешние факторы: возникновение напряжения на токоведущих частях из-за повторных аварий – на питающих подстанциях, удары молнии во время проведения работ др.

Масштаб травматизма

Различают следующие масштабы травматизма, которые зависят от факторов:

  • Продолжительность пребывания человека под действием электротока. Чем выше показатель, тем больше вероятность получения травм и летального исхода.

Защитные функции организма (вместе с сопротивлением тела) снижаются при длительном контакте. Доказано, что при длительности поражения 1-2 минуты, сопротивление может снизиться на 25%. Увеличивается негативное влияние на работу сердца. Если электроток проходит через главный орган во время расслабленного состояния, то действие его наиболее губительно. В таких случаях наступает фибрилляция.

  • Состояния организма: физическая подготовка, стрессоустойчивость, наличие хронических болезней, острой фазы течения заболеваний.

Во время острого цикла болезни или при наличии хронических заболеваний индивид более уязвим, чем лицо, у которого нет серьёзных проблем со здоровьем. Проблемы сердечно-сосудистой системы увеличивают вероятность получить серьёзные повреждения. Ток течёт по пути наименьшего сопротивления, поэтому поражёнными будут те органы, которые работают не стабильно.

Сухие кожные покровы имеют сопротивление большее, чем после увлажнения. Растворенные соли и кислоты, сокращают величину сопротивления в 1,5-2 раза. Пот и грязь повышают удельную электропроводность кожи. Действие электротока в данном случае становится более значительным.

Удельное сопротивление кожных покровов тела имеет разное значение. Наименьшим – обладает эпидермис ладоней, лица, паховых зон, шеи, там, где толщина его слоя минимальна. Также люди с крупной комплекцией обладают большим сопротивлением. Уязвимыми считаются участки тела с большим количеством потовых желез.

Величина тока пола и возраста. Женщины и дети при одинаковых условиях инцидента пострадают больше, чем мужчины.

Как выглядит электроожог у ребёнка

Во время стресса защитные функции организма также уменьшаются, следовательно, лица, обладающие стрессоустойчивостью менее уязвимы.

Местность с меньшим значением относительного давления атмосферы является более опасной зоной. Разрежение (низкое содержание кислорода в воздухе) способствует увеличению негативного влияния физической величины.

  • Характеристика сети: класс напряжения, тип и сила тока, частоты сети и др.

Класс напряжения имеет второстепенную значимость по сравнению с понятием тока при инциденте. При одном и том же напряжении силы тока может отличаться в тысячи раз.

Ощутимый ток – до 1,5 мА. Вызывает дискомфорт при прохождении через кожные покровы. В большинстве случаев он неопасен.

Не отпускающий ток. (3-5 мА). Вызывает сокращения мышечных тканей. При увеличении параметра до 15мА, пострадавший начинает испытывать значительные болевые ощущения. Высвободиться самостоятельно становится невозможно.

Фибрилляционный ток 100мА..5А. наблюдаются нарушения работы всех систем организма.

При преодолении порога в 5А мгновенно наступает электрический шок в результате остановки сердца и дыхания. Длительное воздействие ведёт к смерти.

Доказано, что влияние переменного тока в сетях до 0,4 кВ намного опаснее постоянного. Далее, опасность последнего становится больше (при частоте 50 Гц). При увеличении рабочей частоты до 10 кГц организм подвергается тепловому воздействию (получение электроожогов).

  • Обстоятельств инцидента – места, быстроты оказания доврачебной помощи.

Влажность в помещении, действия во время прохождения зарядов по телу, качество оказания помощи и д. р. первостепенно влияют на исход случая.

  • Пути прохождения электротока по организму. Если заряды проходят, не задевая внутренние органы, то шансы выжить высоки.

Самыми опасными являются цепочки рука-рука, рука-нога, т. е. такие, при которых страдают жизненно важные органы. Прикосновения рефлексогенными областями также являются опасными (грудь, шея, виски).

Получение электротравмы человеком

Существует ряд случаев, когда контакт с электричеством не представляет опасность для организма:

  • Контакт в сухих помещениях с сетями 20 В. Человек не получит электротравмы при касании опасных предметов. При таком воздействии не происходит судорог, и пострадавший может самостоятельно высвободиться.
  • Напряжение 12 В считается безопасным в сырых комнатах.

Освещение в детских комнатах применяют на 12 В. Эта мера применяется для снижения риска получения травмы ребёнком.

Видео про первую помощь

Как оказать первую помощь при электротравме, рассказывает видео ниже.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...