Модернизированная конвективная поверхность нагрева водогрейных котлов. Расчет конвективных поверхностей нагрева


Конвективные поверхности нагрева котлов с применением оребренных труб , производимые на предприятии “УралКотлоМашЗавод” - это модернизированные модели, которые вобрали в себя наш богатый опыт в этой отрасли и новые высокотехнологичные изыскания, позволяющие увеличить эффективность и износостойкость этих узлов котельного оборудования.

К настоящему времени общепризнано, что конвективная поверхность нагрева в водогрейных котлах ПТВМ и КВГМ является наиболее слабым звеном. Многие котлостроительные заводы, ряд проектных организаций и ремонтных предприятий имеют свои проекты ее модернизации. Наиболее совершенной следует признать разработку ОАО «Машиностроительный завод «ЗИО-Подольск». Разработчики подошли к решению проблемы комплексно. Кроме увеличения диаметра труб с 28 мм до 38 мм и их поперечного шага в два раза, традиционные гладкостенные трубы заменены на оребренные. Применено мембранное и поперечно-спиральное оребрение. По оценке разработчиков замена в котлах ПТВМ-100 старой конструкции на новую позволит получить экономию топлива до 2,4%, а самое главное - увеличить эксплуатационную надежность и ресурс работы конвективной поверхности в 3 раза.
Ниже приводятся результаты дальнейшего совершенствования конвективной поверхности, направленные на возможность отказа от мембранного оребрения в высокотемпературной части поверхности с целью уменьшения ее металлоемкости. Вместо мембран между трубами вварены короткие дистанционирующие вставки. Они образуют по длине секций три пояса жесткости и поэтому дистанционирующие стойки не требуются. Точно такие же короткие дистанционирующие вставки применены и в низкотемпературной части поверхности из труб с поперечным спиральным оребрением. Они заменили громозкие штампованные стойки. Ранжирование поперечного шага труб и соответственно секций между собой осуществляется гребенками в области поясов жесткости. Гребенки фиксируют только крайние ряды труб каждой секции. Внутри собранной из секций поверхности нагрева ранжирование труб по перечному шагу происходит за счет жесткой конструкции секций.
Вваренные между трубами змеевиков дистанционирующие вставки вместо традиционных стоек применяются более 20 лет. Результат положительный. Дистанционирующие вставки надежно охлаждаются и не вызывают деформации труб. Случаев возникновения на трубах свищей по причине применения вставок за всю многолетнюю практику не зафиксировано.
Отказ от мембранного оребрения труб в высокотемпературной части поверхности нагрева и возврат к гладкотрубной конструкции позволил уменьшить ее металлоемкость практически без изменения тепловосприятия. В первых проектах шаг между поперечно-спиральными ребрами в низкотемпературной части принят 6,5 мм, а в более поздних он сокращен до 5 мм. Практика показывает, что при сжигании в водогрейных котлах только природного газа этот шаг можно еще уменьшить и получить дополнительную экономию топлива.
В период с 2002 по 2010 годы модернизированные конвективные поверхности нагрева для котлов ПТВМ-100 внедрены на Гурзуфской районной котельной (г. Екатеринбург) - 4 котла; ТЭЦ Нижнетагильского металлургического комбината (г. Нижний Тагил) -3 котла; Свердловская ТЭЦ (ОАО «Уралмаш», г. Екатеринбург) - 2 котла; для ПТВМ-180: Саратовская ТЭЦ-5 (г. Саратов) - 2 котла; КВГМ-100 (Ростовская область) - 2 котла.
Замечания со стороны эксплуатации по вновь разработанным и установленным в водогрейных котлах поверхностям нагрева отсутствуют. Подтверждено значительное уменьшение гидравлических и аэродинамических сопротивлений. Котлы легко выходят на номинальную нагрузку и устойчиво работают в этом режиме. Примененные дистанционирующие вставки надежно охлаждаются. Деформаций труб и самих секций в модернизированных поверхностях нагрева не наблюдается. Температура уходящих газов при номинальной заводской теплопроизводительности снизилась на 15оС у котлов с шагом между поперечно-спиральными ребрами 6,5 мм и на 18оС у котлов с шагом между ребрами 5 мм.

Заказать, уточнить стоимость,цены, вы можите, отправив сообщение с сайта!

Поверхность нагрева котла - немаловажная часть, она представляет собой металлические стенки его элементов, которые омываются газами, поступающими непосредственно из топки, с одной стороны, и пароводяной смесью - с другой. Обычно ее составляющими являются поверхности экономайзера, пароперегревателя и самого парового котла. Ее размер может колебаться - от 2-3м2 до 4000м2, он зависит от области применения котла и его назначения.

Виды поверхностей нагрева котла

Производство поверхностей нагрева котлов достаточно развито и позволяет делать их различной конфигурации:

Экранно-трубными - бесшовные трубы, располагающиеся в топке котла, являются основой такой поверхности. Как правило, тип котла определяет то, какой экран необходим - задний, боковой правый или левый.

Конвективными - кипятильные пучки стальных бесшовных труб, которые размещаются стандартно в газоотводах стационарного котла. Теплота в таком случае получается при помощи конвекции.

Конвективные поверхности нагрева котла широко используются в теплоэнергетике, в частности, при производстве парогенераторов. К этому типу можно отнести такие тепловоспринимающие поверхности, как экономайзерные, воздухоподогреватели и прочие поверхности нагрева водогрейного и парового котла, за исключением поверхностей топочных экранов, а также радиационно-конвектиных ширмовых перегревателей, размещенных в первом газоходе и топке. Изобретение данного вида тепловоспринимающей поверхности значительно повысило технологичность как монтажную, так и последующую ремонтную.

Поверхности нагрева для паровых котлов

Поверхности нагрева паровых котлов в разнообразных промышленных системах имеют значительные отличия друг от друга. Идентичным является только место расположения - в основном это топка, и способ восприятия тепла радиацией. Объем воспринимаемого топочными экранами количества теплоты напрямую зависит от разновидности топлива, которое сжигается. Так, для парообразующей поверхности восприятие колеблется в пределах 40 - 50% от теплоты, отдаваемой рабочей среде в котле.

Модернизация конвективных поверхностей: эффективность и прочность

Тем не менее конвективные поверхности нагрева водогрейных котлов являются достаточно уязвимым местом, поэтому постоянно создаются проекты ее усовершенствования. Самой эффективной разработкой стало решение увеличить диаметр труб и заменить стандартные гладкотрубные конструкции на оребренные, что позволило экономить расход топлива и втрое повысить ресурс работы и общий срок эксплуатации, а также надежность конвективной поверхности. Следует отметить, что специалистами в этом случае применялось мембранная и поперечно-спиральная технология оребрения.

Для уменьшения металлоемкости также разрабатывались довольно успешные проекты по замене мембранного оребрения в той части поверхности, которая взаимодействует с высокими температурами, на небольшие дистанционирующие вставки. В результате уменьшилось сопротивление, как гидравлическое, так и аэродинамическое, металлоемкость, а тепловосприятие осталось на прежнем уровне.

Компания «УралКотлоМашЗавод» осуществляет поставки модернизированных конвективных поверхностей нагрева, изготовленных с применением технологии оребрения труб, которая позволяет повышать эффективность и износоустойчивость столь уязвимых частей котельного оборудования. Предприятие имеет многолетний опыт производства и реализации высокотехнологичных поверхностей, которые хорошо зарекомендовали себя на промышленном рынке.

Полезная модель относится к теплообменной технике и может быть, в частности, использована в качестве конвективных поверхностей нагрева котлов. Предлагаемая конструкция поверхности нагрева имеет уменьшенные по сравнению с прототипом шаги между трубами шахматного конвективного пучка в направлении поперечном движению газов. Схема соединения U-образных труб каждого флажка с коллектором позволяет при тех же габаритах конвективного пакета увеличить общую поверхность нагрева, а также увеличить скорость газов в конвективной поверхности нагрева, повысив, таким образом, интенсивность теплообмена. Конвективная поверхность нагрева содержит шахматный конвективный пучок, образованный флажками 1, выполненными из U-образных труб 2, подключенных к вертикальным коллекторам 3. U-образные трубы 2 каждого флажка 1 соединяются с вертикальным коллектором 3 так, что центры их отверстий располагаются на двух осях, параллельных оси вертикального коллектора 3. Места присоединения входных концов U-образных труб 2 каждого флажка 1 последовательно перемежаются по осям, при этом входной и выходной концы каждой трубы 2 соединяются с коллектором 3 на разных осях. Таким образом, U-образные трубы 2 располагаются перекрестие, одна над другой, что позволяет уменьшить расстояние между центрами отверстий соединения труб 2 с коллектором 3 и, следовательно, шаги между трубами шахматного конвективного пучка в поперечном направлении.


Полезная модель относится к теплообменной технике и может быть, в частности, использована в качестве конвективных поверхностей нагрева котлов.

Известна конвективная поверхность нагрева по авт. свид. СССР №844917, содержащая шахматный конвективный пучок образованный установленными в вертикальных коллекторах встречно расположенными флажками, выполненными из U-образных труб. Трубы каждого флажка традиционно соединяются с вертикальными коллекторами так, что центры их отверстий располагаются на двух осях, параллельных оси коллектора, причем часть труб каждого флажка крепится по одной оси, часть - по другой. При этом шаг между трубами шахматного конвективного пучка в поперечном направлении не может быть меньше двух диаметров труб, что не позволяет уменьшить габаритные размеры конвективной поверхности нагрева.

Технический результат заявляемой полезной модели заключается в уменьшении шагов между трубами в поперечном движению газов направлении, что позволяет при тех же габаритах конвективного пакета увеличить общую поверхность нагрева, и, кроме того, увеличивает скорость проходящих газов, что увеличивает интенсивность теплообмена.

Указанный технический результат достигается тем, что в конвективной поверхности нагрева, содержащей шахматный конвективный пучок образованный установленными в вертикальных

коллекторах встречно расположенными флажками, выполненными из U-образных труб, в которой трубы каждого флажка соединяются с вертикальными коллекторами так, что центры их отверстий располагаются на двух осях, параллельных оси коллектора, в соответствии с предлагаемой полезной моделью, места присоединения входных концов U-образных труб каждого флажка последовательно перемежаются по осям, при этом входной и выходной концы каждой трубы соединяются с коллектором на разных осях.

Предлагаемые чертежи поясняют суть предложения. На фиг.1 представлен общий вид конвективной поверхности нагрева, на фиг.2 и 3 - то же соответственно в разрезе по А-А и по Б-Б.

Конвективная поверхность нагрева (фиг.1-3) содержит шахматный конвективный пучок, образованный флажками 1, выполненными из U-образных труб 2, подключенных к вертикальным коллекторам 3. U-образные трубы 2 каждого флажка 1 соединяются с вертикальным коллектором 3 так, что центры их отверстий располагаются на двух осях, параллельных оси вертикального коллектора 3. Места присоединения входных концов U-образных труб 2 каждого флажка 1 последовательно перемежаются по осям, при этом входной и выходной концы каждой трубы 2 соединяются с коллектором 3 на разных осях. Таким образом, U-образные трубы 2 располагаются перекрестие, одна над другой, что позволяет уменьшить расстояние между центрами отверстий соединения труб 2 с коллектором 3 и, следовательно, шаги между трубами шахматного конвективного пучка в поперечном направлении.

Работает устройство следующим образом.

Рабочая среда поступает в коллекторы 3 и раздается по U-образным трубам 2 флажков 1 конвективной поверхности нагрева.

Горячие газы поперечно омывают трубы 2, при этом за счет уменьшенного шага между трубами 2, обеспечившего более плотное расположение труб в шахматном конвективном пучке, скорость газов увеличивается. Нагретая рабочая среда попадает в коллекторы 3 и отводится из конвективной поверхности нагрева.

Предлагаемая конструкция поверхности нагрева имеет уменьшенные по сравнению с прототипом шаги между трубами шахматного конвективного пучка в направлении поперечном движению газов. Схема соединения U-образных труб каждого флажка с коллектором позволяет при тех же габаритах конвективного пакета увеличить общую поверхность нагрева, а также увеличить скорость газов в конвективной поверхности нагрева, повысив, таким образом, интенсивность теплообмена.


Формула полезной модели

Конвективная поверхность нагрева, содержащая шахматный конвективный пучок, образованный установленными в вертикальных коллекторах встречно расположенными флажками, выполненными из U-образных труб, причем трубы каждого флажка соединяются с вертикальными коллекторами так, что центры их отверстий располагаются на двух осях, параллельных оси коллектора, отличающаяся тем, что места присоединения входных концов U-образных труб каждого флажка последовательно перемежаются по осям, при этом входной и выходной концы каждой трубы соединяются с коллектором на разных осях.

Расчет конвективных пучков котла.

Конвективные поверхности нагрева паровых котлов играют важную роль в процессе получения пара, а также использования теплоты продуктов сгорания, покидающих топочную камеру. Эффективность работы конвективных поверхностей нагрева в значительной мере зависит от интенсивности передачи теплоты продуктами сгорания пару.

Продукты сгорания передают теплоту наружной поверхности труб путем конвекции и лучеиспускания. От наружной поверхности труб к внутренней теплота передается через стенку теплопроводностью, а от внутренней поверхности к воде и пару -- конвекцией. Таким образом, передача теплоты от продуктов сгорания к воде и пару представляет собой сложный процесс, называемый теплопередачей.

При расчете конвективных поверхностей нагрева используется уравнение теплопередачи и уравнение теплового баланса. Расчет выполняется для 1 м3 газа при нормальных условиях.

Уравнение теплопередачи.

Уравнение теплового баланса

Qб=?(I"-I”+???I°прс);

В этих уравнениях К - коэффициент теплопередачи, отнесенный к расчетной поверхности нагрева, Вт/(м2-К);

T - температурный напор, °С;

Bр - расчетный расход топлива, м3/с;

H - расчетная поверхность нагрева, м2;

Коэффициент сохранения теплоты, учитывающий потери теплоты от наружного охлаждения;

I",I" - энтальпии продуктов сгорания на входе в поверхность нагрева и на выходе из нее, кДж/м3;

I°прс - количество теплоты, вносимое присасываемым в газоход воздухом, кДж/м3.

В уравнении Qт=K?H??t/Bр коэффициент теплопередачи K является расчетной характеристикой процесса и всецело определяется явлениями конвекции, теплопроводности и теплового излучения. Из уравнения теплопередачи ясно, что количество теплоты, переданное через заданную поверхность нагрева, тем больше, чем больше коэффициент теплопередачи и разность температур продуктов сгорания и нагреваемой жидкости. Очевидно, что поверхности нагрева, расположенные в непосредственной близости от топочной камеры, работают при большей разности температуры продуктов сгорания и температуры воспринимающей теплоту среды. По мере движения продуктов сгорания по газовому тракту температура их уменьшается и хвостовые поверхности нагрева (водяной экономайзер) работают при меньшем перепаде температур продуктов сгорания и нагреваемой среды. Поэтому чем дальше расположена конвективная поверхность нагрева от топочной камеры, тем большие размеры должна она иметь и тем больше металла расходуется на ее изготовление.

При выборе последовательности размещения конвективных поверхностей нагрева в котлоагрегате стремятся так расположить эти поверхности, чтобы разность температуры продуктов сгорания и температуры воспринимающей среды была наибольшей. Например, пароперегреватель располагают сразу после топки или фестона, поскольку температура пара выше температуры воды, а водяной экономайзер - после конвективной поверхности нагрева, потому что температура воды в водяном экономайзере ниже температуры кипения воды в паровом котле.

Уравнение теплового баланса Qб=?(I"-I”+???I°прс) показывает, какое количество теплоты отдают продукты сгорания пару через конвективную поверхность нагрева.

Количество теплоты Qб, отданное продуктами сгорания, приравнивается к теплоте, воспринятой паром. Для расчета задаются температурой продуктов сгорания после рассчитываемой поверхности нагрева и затем уточняют ее путем последовательных приближений. В связи с этим расчет ведут для двух значений температуры продуктов сгорания после рассчитываемого газохода.

1. определяем площадь поверхности нагрева, расположенная в рассчитываемом газоходе Н =68.04м2 .

Площадь живого сечения для прохода продуктов сгорания при поперечном омывании гладких труб F =0.348м2.

По конструктивным данным подсчитываем относительный поперечный шаг:

1= S1 /dнар=110/51=2.2;

относительный продольный шаг:

2 = S2 /d=90/51=1.8.

2. Предварительно принимаем два значения температуры продуктов сгорания после рассчитанного газохода: =200°С =400°С;

3. Определяем теплоту, отданную продуктами сгорания (кДж/м3),

Qб =??(-+ ??к?I°прс),

где? - коэффициент сохранения теплоты, определяется в пункте 3.2.5;

I" - энтальпия продуктов сгорания перед поверхностью нагрева, определяется по табл. 2 при температуре и коэффициенте избытка воздуха после поверхности нагрева, предшествующей рассчитываемой поверхности; =21810 кДж/м3 при =1200°С;

I" - энтальпия продуктов сгорания после рассчитываемой поверхности нагрева, определяется по табл. 2 при двух предварительно принятых температурах после конвективной поверхности нагрева; =3500 кДж/м3 при =200°С;

6881 кДж/м3 при =400°С;

К - присос воздуха в конвективную поверхность нагрева, определяется как разность коэффициентов избытка воздуха на входе и выходе из нее;

I°прс - энтальпия присосанного в конвективную поверхность нагрева воздуха, при температуре воздуха tв= 30 °С определяется пункте 3.1.

Qб1 =0.98?(21810-3500+0.05?378.9)=17925 кДж/м3;

Qб2=0.98?(21810-6881+0.05?378.9)=14612 кДж/м3;

4. Вычисляем, расчетную температуру потока продуктов сгорания в конвективном газоходе (°С)

где и - температура продуктов сгорания на входе в поверхность и на выходе из нее.

5. Определяется температурный напор (°С)

T1=-tк = 700-187.95=512°С;

T2 =-tк=800-187.95=612°С;

где tк - температура охлаждающей среды, для парового котла принимается равной температуре кипения воды при давлении в котле, tн.п=187.95°С;

6. Подсчитываем среднюю скорость продуктов сгорания в поверхности нагрева (м/с)

где Вр - расчетный расход топлива, м3/с, (см. п. 3.2.4);

F - площадь живого сечения для прохода продуктов сгорания (см. п. 1.2), м2;

Vг - объем продуктов сгорания на 1кг твердого и жидкого топлива или на 1 м8 газа (из расчетной табл. 1 при соответствующем коэффициенте избытка воздуха);

кп -средняя расчетная температура продуктов сгорания, °С;

7. Определяем коэффициент теплоотдачи конвекцией от продуктов сгорания к поверхности нагрева при поперечном омывании коридорных пучков:

К = ?н?сz ?сs ?сф;

где?н - коэффициент теплоотдачи, определяемый по номограмме при поперечном омывании коридорных пучков (рис. 6.1 лит 1); ?н.1=84Вт/м2К при?г.1 и dнар; ?н.2=90Вт/м2К при?г.2 и dнар;

сz - поправка на число рядов труб по ходу продуктов сгорания, определяется при поперечном омывании коридорных пучков; сz =1 при z1=10;

сs - поправка на компоновку пучка, определяется при поперечном омывании коридорных пучков; сs =1

сф - коэффициент, учитывающий влияние изменения физических параметров потока, определяется при поперечном омывании коридорных пучков труб (рис. 6.1 лит 1);

cф1=1.05 при; сф2=1.02 при;

К1=84?1?1?1.05=88.2 Вт/м2К;

К2=90?1?1?1.02=91.8 Вт/м2К;

8. Вычисляем степень черноты газового потока по номограмме. При этом необходимо вычислить суммарную оптическую толщину

kps=(kг?rп +kзл?µ)?p?s ,

где kг - коэффициент ослабления лучей трехатомными газами, определяется в п.4.2.6;

rп -- суммарная объемная доля трехатомных газов, берется из табл. 1;

kзл - коэффициент ослабления лучей эоловыми частицами, kзл=0;

µ - концентрация золовых частиц, µ =0;

р - давление в газоходе, для котлоагрегатов без наддува принимается равным 0,1 МПа.

Толщина излучающего слоя для гладкотрубных пучков (м):

s=0.9?d?()=0.9?51?10-3 ?(-1)=0.18;

9. Определяем коэффициент теплоотдачи?л, учитывающий передачу теплоты излучением в конвективных поверхностях нагрева, Вт/(м2К):

для незапыленного потока (при сжигании газообразного топлива) ?л = ?н??ф?сг, где?н - коэффициент теплоотдачи, определяется по номограмме (рис. 6.4 лит 1); ?ф - степень черноты;

сг - коэффициент, определяется.

Для определения?н и коэффициента сг вычисляется температура загрязненной стенки (°С)

где t - средняя температура окружающей среды, для паровых котлов принимается равной температуре насыщения при давлении в котле, t= tн.п=194°С;

T - при сжигании газа принимается равной 25 °С.

Tст=25+187=212;

Н1=90 Вт/(м2К) ?н2=110 Вт/(м2К) при Tст, и;

Л1=90?0.065?0.96=5,62 Вт/(м2К);

Л2=94?0.058?0.91=5,81 Вт/(м2К);

10. Подсчитываем суммарный коэффициент теплоотдачи от продуктов сгорания к поверхности нагрева, Вт/(м2-К),

? = ??(?к + ?л),

где? - коэффициент использования, учитывающий уменьшение тепловосприятия поверхности нагрева вследствие неравномерного смывания ее продуктами сгорания, частичного протекания продуктов сгорания мимо нее и образования застойных зон; для поперечно омываемых пучков принимается? = 1.

1=1?(88.2+5.62)=93.82Вт/(м2-К);

2=1?(91.8+5.81)=97.61Вт/(м2-К);

11. Вычисляем коэффициент теплопередачи, Вт/(м2-К)

где? - коэффициент тепловой эффективности, (табл. 6.1 и 6.2 лит 1 в зависимости от вида сжигаемого топлива).

К1=0.85*93.82 Вт/(м2-К);

К2=0.85*97.61 Вт/(м2-К);

12. Определяем количество теплоты, воспринятое поверхностью нагрева, на 1 м3 газа (кДж/м3)

Qт=K?H??t/(Bр?1000)

Температурный напор?t определяется для испарительной конвективной поверхности нагрева (°С)

T1==226°С; ?t2==595°С;

где tкип - температура насыщения при давлении в паровом котле;

Qт1==8636 кДж/м3;

Qт2==23654 кДж/м3;

13. По принятым двум значениям температуры и и полученным двум значениям Q6 и Qт производится графическая интерполяция для определения температуры продуктов сгорания после поверхности нагрева. Для этого строится зависимость Q = f(), показанная на рис. 3. Точка пересечения прямых укажет температуру продуктов сгорания, которую следовало бы принять при расчете. ===310°С;


Рис3.

Таблица №7 Тепловой расчет котельных пучков

Рассчитываемая величина

Обозначение

Размерность

Формула и обоснование

Поверхность нагрева

Рассчитана по чертежу

Живое сечение для прохода газов

Рассчитана по чертежу

Поперечный шаг труб

Рассчитана по чертежу

Продольный шаг труб

Рассчитана по чертежу

По I-t диаграмме

Энтальпия прод. сгор на выходе с КП

По I-t диаграмме

Энтальпия прод. сгор на входе в КП

Для обеспечения потребностей бурного роста промышленного и жилищного строительства в 60-е годы в ВТИ совместно с Оргэнергостроем (г. Москва) была разработана серия водотрубных водогрейных котлов типа ПТВМ тепловой мощностью от 34,9 до 209,4 МВт (30…180 Гкал/ч). Они были спроектированы для сжигания природного газа и мазута. Несмотря на выявленные в первые же годы эксплуатации недостатки, эти котлы получили широкое распространение, так как экономические условия того времени позволяли мириться с их низкой эксплуатационной надежностью и экономичностью.

Разработанные позже аналогичные котлы типа КВГМ, устранив ряд выявленных недостатков, сохранили основной из них – конструкцию конвективной поверхности нагрева. В эту конструкцию была заложена идея малой загрязняемости поверхности нагрева за счет эффекта самообдувки, вызванной малым диаметром труб (28 мм) и их плотной компоновкой (зазоры в свету между трубами составляют всего лишь 4 мм). Эта идея получила к тому времени подтверждение в лабораторных условиях и на практике при сжигании в энергетических котлах твердого топлива, особенно дающего на трубах поверхностей нагрева сыпучие отложения. На рассматриваемые водогрейные котлы она была распространена поспешно, без достаточного изучения характера золовых отложений мазута.

Практика показала, что при сжигании мазута предполагавшийся эффект самообдувки полностью отсутствует, а вместо него в низкотемпературной части конвективной поверхности нагрева часто наблюдается занос межтрубного пространства золовыми отложениями мазута. В высокотемпературной части поверхности примененная конструкция трубного пучка привела к другому существенному недостатку. Из-за высоких тепловых потоков, особенно внутри первых рядов труб по ходу продуктов сгорания, часто возникает пристенное кипение воды. Это приводит к интенсивному образованию внутренних отложений, уменьшению проходного сечения и протока воды в трубках. Результат известный – пережог труб. Чем хуже качество воды, тем интенсивнее идет этот процесс и меньше ресурс секций поверхности нагрева.

К настоящему времени общепризнано, что конвективная поверхность нагрева в водогрейных котлах ПТВМ и КВГМ является наиболее слабым звеном. Многие котлостроительные заводы, ряд проектных организаций и ремонтных предприятий имеют свои проекты ее модернизации. Наиболее совершенной следует признать разработку ОАО «Машиностроительный завод «ЗИО-Подольск». Разработчики подошли к решению проблемы комплексно. Кроме увеличения диаметра труб с 28 мм до 38 мм и их поперечного шага в два раза, традиционные гладкостенные трубы заменены на оребренные. Применено мембранное и поперечно-спиральное оребрение. По оценке разработчиков замена в котлах ПТВМ-100 старой конструкции на новую позволит получить экономию топлива до 2,4%, а самое главное – увеличить эксплуатационную надежность и ресурс работы конвективной поверхности в 3 раза.

Ниже приводятся результаты дальнейшего совершенствования конвективной поверхности, направленные на возможность отказа от мембранного оребрения в высокотемпературной части поверхности с целью уменьшения ее металлоемкости. Вместо мембран между трубами вварены короткие дистанционирующие вставки. Они образуют по длине секций три пояса жесткости и поэтому дистанционирующие стойки не требуются. Точно такие же короткие дистанционирующие вставки применены и в низкотемпературной части поверхности из труб с поперечным спиральным оребрением. Они заменили громозкие штампованные стойки. Ранжирование поперечного шага труб и соответственно секций между собой осуществляется гребенками в области поясов жесткости. Гребенки фиксируют только крайние ряды труб каждой секции. Внутри собранной из секций поверхности нагрева ранжирование труб по перечному шагу происходит за счет жесткой конструкции секций.

Вваренные между трубами змеевиков дистанционирующие вставки вместо традиционных стоек применяются более 20 лет. Результат положительный. Дистанционирующие вставки надежно охлаждаются и не вызывают деформации труб. Случаев возникновения на трубах свищей по причине применения вставок за всю многолетнюю практику не зафиксировано.

Отказ от мембранного оребрения труб в высокотемпературной части поверхности нагрева и возврат к гладкотрубной конструкции позволил уменьшить ее металлоемкость практически без изменения тепловосприятия. В первых проектах шаг между поперечно-спиральными ребрами в низкотемпературной части принят 6,5 мм, а в более поздних он сокращен до 5 мм. Практика показывает, что при сжигании в водогрейных котлах только природного газа этот шаг можно еще уменьшить и получить дополнительную экономию топлива.

Представленное здесь техническое решение защищено патентом на полезную модель. Проекты выполняются совместно сотрудниками НПФ «Градиент-С» СГТУ и ОП «Свердловэнергоремонт». Изготовление осуществляется на производственной базе ОП «Свердловэнергоремонт». В период с 2002 по 2010 годы модернизированные конвективные поверхности нагрева для котлов ПТВМ-100 внедрены на Гурзуфской районной котельной (г. Екатеринбург) – 4 котла; ТЭЦ Нижнетагильского металлургического комбината (г. Нижний Тагил) -3 котла; Свердловская ТЭЦ (ОАО «Уралмаш», г. Екатеринбург) – 2 котла; для ПТВМ-180: Саратовская ТЭЦ-5 (г. Саратов) – 2 котла; КВГМ-100 (Ростовская область) – 2 котла.

Замечания со стороны эксплуатации по вновь разработанным и установленным в водогрейных котлах поверхностям нагрева отсутствуют. Подтверждено значительное уменьшение гидравлических и аэродинамических сопротивлений. Котлы легко выходят на номинальную нагрузку и устойчиво работают в этом режиме. Примененные дистанционирующие вставки надежно охлаждаются. Деформаций труб и самих секций в модернизированных поверхностях нагрева не наблюдается. Температура уходящих газов при номинальной заводской теплопроизводительности снизилась на 15 о С у котлов с шагом между поперечно-спиральными ребрами 6,5 мм и на 18 о С у котлов с шагом между ребрами 5 мм.

КОНВЕКТИВНАЯ ПОВЕРХНОСТЬ НАГРЕВА КОТЛА

(от лат. convectio - принесение, доставка) - тепловоспринимающая поверхность котла, теплообмен к-рой с омывающими её продуктами сгорания осуществляется в осн. за счёт конвекции (см. Конвективный теплообмен). К ней относятся все поверхности нагрева котла, кроме поверхностей тооочных экранов и радиационно-конвективных ширмовых перегревателей, устанавливаемых в топке и первом газоходе.


. 2004 .

Смотреть что такое "КОНВЕКТИВНАЯ ПОВЕРХНОСТЬ НАГРЕВА КОТЛА" в других словарях:

    конвективная поверхность нагрева котла - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN convection surface …

    конвективная поверхность нагрева - стационарного котла конвективная поверхность нагрева Поверхность нагрева стационарного котла, получающая теплоту, в основном, конвекцией. [ГОСТ 23172 78] Тематики котел, водонагреватель Синонимы конвективная поверхность нагрева EN convective… … Справочник технического переводчика

    Конвективная поверхность нагрева стационарного котла - 54. Конвективная поверхность нагрева стационарного котла Конвективная поверхность нагрева D. Beruhrungsheizflache Е. Convective heating surface F. Surface de convection Поверхность нагрева стационарного котла, получающая теплоту, в основном,… …

    Поверхность нагрева, воспринимающая теплоту в процессе излучения и конвекции. К Р. к. п. н. относится ширмовая поверхность нагрева котла, воспринимающая теплоту излучения и конвекции примерно в равных кол вах … Большой энциклопедический политехнический словарь

    радиационно-конвективная поверхность нагрева стационарного котла - радиационно конвективная поверхность нагрева Поверхность нагрева стационарного котла, получающая теплоту излучением и конвекцией примерно в равных количествах. [ГОСТ 23172 78] Тематики котел, водонагреватель Синонимы радиационно конвективная… … Справочник технического переводчика

    - (англ. Boiler radiant convective heating surface) поверхность нагрева, воспринимающая теплоту в процессе излучения и конвекции. К радиационно конвективной поверхности нагрева обычно относится ширмовая поверхность нагрева котла, воспринимающая… … Википедия

    Радиационно-конвективная поверхность нагрева стационарного котла - 53. Радиационно конвективная поверхность нагрева стационарного котла Радиационно конвективная поверхность нагрева D. Beruhrungs und Strahlungsheizfache Е. Radiant convective heating surface F. Surface convective et rayonnement Поверхность нагрева … Словарь-справочник терминов нормативно-технической документации

    Ширм-конвективная поверхность нагрева - Комбинированная поверхность нагрева котла, состоящая из ширм и расположенных между ними конвективных пакетов змеевиков. Примечание. Змеевики могут образовывать одно и многорядные пучки, расположенные под углом друг к другу и потоку газов, и… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ 23172-78: Котлы стационарные. Термины и определения - Терминология ГОСТ 23172 78: Котлы стационарные. Термины и определения оригинал документа: 47. Барабан стационарного котла Барабан D. Trommel E. Drum F. Reservoir Элемент стационарного котла, предназначенный для сбора и раздачи рабочей среды, для… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ 28269-89: Котлы паровые стационарные большой мощности. Общие технические требования - Терминология ГОСТ 28269 89: Котлы паровые стационарные большой мощности. Общие технические требования оригинал документа: Головная серия котлов Котлы, поставленные заказчику за период с начала изготовления оборудования котла данного типа до… … Словарь-справочник терминов нормативно-технической документации

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...