Обменная емкость катионита формула. Ионный обмен


Заранее благодарю за ответ.

С100Е - сильнокислотная катионообменная смола гелевого типа, обладающая высокой обменной емкостью, химической и физической стабильностью и превосходными рабочими характеристиками. С100Е эффективно задерживает взвешенные частицы, а также, в кислотной (Н+) форме, удаляет ионы железа и марганца.

Высокая обменная емкость позволяет получать воду с общей жесткостью порядка 0,05 мг-экв/л, а превосходная кинетика ионного обмена - добиться высоких скоростей потока. При использовании С100Е проскок ионов, обусловливающих жесткость воды в нормальных рабочих условиях, как правило, не превышает 1% от общей жесткости исходной воды. При этом обменная емкость смолы практически не изменяется при условии, что доля одновалентных ионов не превышает 25%.

С100Е не растворим в растворах кислот и щелочей и во всех обычных органических растворителях. Присутствие в воде остаточных окислителей (например, свободного хлора или ионов гипохлорита) может привести к уменьшению механической прочности частиц катионообменной смолы. С100Е термически стабильна до температуры 150оС, однако при высоких температурах обменная емкость катионообменной смолы в кислотной (Н+) форме снижается.

Технические характеристики

Физические свойства


прозрачные сферические частицы желтоватого цвета

Форма поставки

Насыпная масса, г/см3

Удельный вес, г/см3

Коэффициент однородности

Размер гранул, мм (mesh)

Обменная емкость, г-экв/л

Набухаемость Na + → H + , макс, %

Набухаемость Сa 2+ → Na + , макс, %

Условия применения


6 - 10 (Na-форма)

Максимальная рабочая температура, оС

Высота слоя, см (дюймы)

Рабочая скорость потока, объем смолы/час

Расширение слоя в режиме обратной промывки, %

Концентрация раствора NaCl, %

Расход соли на регенерацию, гр. NaCl /л смолы

КРАТКАЯ ХАРАКТЕРИСТИКА
свободное пространство над загрузкой - 50%
размер зерен 0.6мм до 90%
Насыпной вес 820гр/л
Содержание воды (влажность) 42-48%
Общая емкость до 2 гр экв/л
рабочая температура от 4 – 120 0 С
рН воды 0 - 14
переход ионов Na на Н - 8%
высота слоя от 0.8 - 2м
скорость при сервисе от 5 - 40м/час
удельная скорость сервиса 20ОЗ/час
скорость обратной промывки при 20 С от 10 - 12м/час
объем воды для обратной промывки при новой загрузке 20ОЗ
объем воды для обратной промывки 4ОЗ
объем воды для медленной промывки соли 4ОЗ
расход соли при регенерации на 1л загрузки - 150гр
остаточная жесткость - 0.5мг экв/л
удельное потеря давления в кПа м 2 высоту загрузки - 1
потеря давления в 11мбар при 4 о С на 1м высоты загрузки
скорость при регенерации - 5м/час
скорость при промывке соли водой - 5м/час

УСЛОВИЯ ПРИМЕНЕНИЯ
отсутствие в воде окисленного железа (Fe 3+)
отсутствие в воде растворенного кислорода
отсутствие органических веществ в воде
отсутствие в воде любых окислителей
после натрий - умягчения повысится общая щелочность и сухой остаток.
сильные окислители такие как азотная кислота может вызвать сильную реакцию
взвешенные вещества в исходной воде до 8 мг/л
цветность исходной воды до 30 0 С
мутность исходной воды до 6 мг/л
общая жесткость исходной воды до 15 мг экв/л

Ниже приводятся методики расчета обменной емкости и других параметров катионита.

Рабочую обменную емкость катионита Е ф г÷экв/ м3, можно выразить следующей формулой:

Е ф = Q x Ж; Ер = ер x Vк.

Объем загруженного в фильтр катионита в набухшем состоянии выражается формулой:

Формула для определения рабочей обменной емкости катионита ep, г÷экв/ м 3:

ер = Q x Ж/S x h;

где Ж - жесткость исходной воды, г÷экв/ м3; Q - количество умягченной воды, м 2 ; S - площадь катионитового фильтра, м 2 ; h - высота слоя катионита, м.

Обозначив скорость движения воды в катионите как v k , количество умягченной воды Q можно найти по следующей формуле:

Q = v k x S x Tk = ер x S x h /Ж;

откуда можно вычислить и длительность работы катионитового фильтра Тк:

Tk = ер x h/v k x Ж.

Расчет обменной емкости катионита возможно также произвести и по коррелирующим графикам.

Исходя из приближенных практических данных, Ваш фильтр сможет очистить не более 1500 л. воды. Для более точных расчетов необходимо знать количество (объем) смолы в вашем фильтре и рабочую обменную емкость вашей смолы (для катионнообменных смол рабочая емкость варьирует от 600 до 1500 мг.-экв/л). Зная эти данные, Вы легко вычислите точное количество умягченной воды по приведенным ваше формулам.

Полная (общая) обменная емкость катионита определяется при нейтрализации раствором NaOH или КОН в статических или динамических условиях и выражается в эквивалентах на 1 г сухого или 1 дм 3 набухшего катионита.

Реакции обмена катионов (К- катионит) имеют вид:

Вещества, не диссоциирующие в растворах, адсорбируются ионитами, как на активном угле, по законам молекулярной адсорбции.

Полная обменная емкость различных марок сильнокислотных катионитов, применяемых в сахарной промышленности, колеблется от 4 до 6 мг-экв/г. Например, отечественный катионит КУ-2-8/Н, Na ионная форма/ имеет полную обменную емкость 5,1 /Н/мг-экв/г.

Цель анализа - оценить качество и пригодность катионита для очистки сахарных растворов.

Принцип метода анализа основан на титровании образовавшейся в результате реакции ионного обмена кислоты 0,1 н. раствором NaOH в присутствии метилоранжа как индикатора.

Реактивы:

5%-ный раствор NaCl;

0,1 н. раствор NaOH;

Индикатор - метилоранж.

Приборы и материалы:

Стеклянная колонка диаметром 18 мм, высотой 250см с оттянутым концом;

Капельная воронка;

Мерная колба вместимостью 200 см 3 ;

Мерный цилиндр вместимостью 100 см 3 ;

Бюретка для титрования;

Химический стакан;

Катионообменная смола.

Ход определения

5 г приготовленного для анализа катионита в Н-форме переводят в стеклянную колонку диаметром 18 мм с помощью дистиллированной воды, избыток воды спускают через резиновую трубку с зажимом, одетую на оттянутый конец нижней части колонки. Для предотвращения уноса катионита на стеклянную решетку колонки помещают тампон из стеклянной ваты.

После этого из капельной воронки, установленной над колонкой с катионом, в течение 30 мин равномерно пропускают 100 см 3 5%-ного раствора химически чистого NaCl, поддерживая уровень раствора над слоем катионита равным 1 см. Затем катионит промывают двойным по его объему количеством воды. Фильтрат и промывные воды собирают в мерную колбу, где доводят их объем до 200 см 3 . Из этого объема отбирают 50 см 3 в отдельный стакан и титруют 0,1н. раствором NaОН в присутствии метилоранжа как индикатора.

Расчеты:

1. Для получения сравнимых результатов обменную емкость катионита выражают через миллиграмм-эквивалент ионов / или число активных групп/, приходящихся на 1 г сухого ионита. Поэтому, если расход 0,1н. раствора NaOH для нейтрализации кислоты, выделенной 1 г абсолютно сухого катионита, можно выразить формулой

,

а в 1 см 3 1 н. раствора NaОН содержится 0,1 мг-экв, то полная обменная емкость катионита может быть рассчитана из формулы

где Ек - полная обменная емкость, в мг-экв/г абсолютно сухого катионита;

b - общее количество фильтрата, см 3 ;

V - количество 0,1 н. раствора NaOH, пошедшее на титрование фильтрата, см 3 ;

a – количество фильтрата, отобранного для титрования, см 3 ;

g – количество сухогого катионита, взятого для определения его полной обменной емкости, г;

W – влажность катионита, %. Определяют методом высушивания в течение 3-х часов при температуре 95-100ºС.

2. Обменную емкость катионита можно выразить также по натрию. В этом случае расчет ведется по формуле

или, так как 1 см 3 0,1 н. раствора NaОН содержит 0,0023 г натрия, то
.

Некоторые фильтрующие материалы (иониты ) способны поглощать из воды положительные ионы (катионы) в обмен на эквивалентное количество ионов катионита.

Умягчение воды катионированием основано на явлении ионного обмена (ионообменные технологии), сущность которого состоит в способности ионообменных фильтрующих материалов (иониты – катиониты) поглощать из воды положительные ионы в обмен на эквивалентное количество ионов катионита.

Основной рабочий параметр катионита – обменная ёмкость ионита, которая определяется количеством катионов, которые катионит может обменять в течение фильтроцикла. Обменная ёмкость измеряется в грамм-эквивалентах задержанных катионов на 1м 3 катионита, находящегося в набухшем (рабочем) состоянии после пребывания в воде, т.е. в таком состоянии, в котором катионит находится в фильтрате.

Бывает полная и рабочая (динамическая) обменная емкость катионита. Полная обменная ёмкость катионита – то количество катионов кальция Са +2 и магния Мg +2 , которое может задержать 1 м 3 катионита, находящегося в рабочем состоянии, до того момента, когда жесткость фильтрата сравнивается с жесткостью исходной воды. Рабочая обменная емкость катионита – то количество катионов Са +2 и Мg +2 , которое задерживает 1м 3 катионита до момента «проскока» в фильтрат катионов солей жесткости.

Обменная ёмкость, отнесенная ко всему объему катионита, загруженного в фильтр, называют емкостью поглощения фильтра умягчения воды.

В умягчителе очищаемая вода проходит через слой катионита сверху вниз. При этом на определённой глубине фильтрующего слоя происходит максимальное умягчение воды ( от солей жёсткости). Слой катионита, который участвует в умягчении воды , называется зоной умягчения (рабочий слой катионита). При дальнейшем умягчении воды верхние слои катионита истощаются и теряют ионообменную способность. В ионный обмен вступают нижние слои катионита и зона умягчения постепенно опускается. Через некоторое время наблюдаются три зоны: работающего, истощенного и свежего катионита. Жесткость фильтрата будет постоянной до момента совмещения нижней границы зоны умягчения с нижним слоем катионита. В момент совмещения начинается «проскок» катионов Са +2 и Мg +2 и увеличение остаточной жесткости, пока она не станет равной жесткости исходной воды, что свидетельствует о полном истощении катионита.

Рабочие параметры системы смягчения воды () определяются по формулам:

Е p = QЖ и (г-экв/м 3)
Е p = е p V к,
V к = аh к
е p = QЖ и / аh к
Q = v к aT к = е p аh к / Ж и
T к = е p h к /v к Ж и.

где:
е p – рабочая ёмкость катионита, м-экв/м 3
V к – объём загруженного в умягчитель катионита в набухшем состоянии, м 3
h к – высота слоя катионита, м
Ж и – жесткость исходной воды, г-экв/ м 3
Q – количество умягченной воды, м 3
а – площадь поперечного сечения фильтра-умягчителя воды, м 2
v к – скорость фильтрования воды в катионитовом фильтре
T к – длительность работы установки умягчения воды (межрегенерационный период)


Цель работы – определить одну из основных физико-химических характеристик ионита – полную динамическую обменную емкость (ПДОЕ).

Сущность работы . Максимальное количество ионов, которое может поглотить ионообменник, определяет его полную обменную емкость. Она соответствует концентрации ионогенных групп. Емкость выражается числом миллимоль эквивалентов обмениваемого иона, приходящимся на 1 г сухого (ммоль экв/г) или 1 мл набухшего ионита (ммоль экв/мл) при значениях рН, соответствующих его полной ионизации. Определение емкости ионитов проводят в статических или динамических условиях (в ионообменной колонке).

Емкость ионитов в динамических условиях определяют по выходным кривым, построенным в координатах «Концентрация обмениваемого иона на выходе из колонки – объем элюата». По ним находят полную динамическую обменную емкость (ПДОЕ) и динамическую обменную емкость до проскока (ДОЕ), которая показывает количество поглощенных ионов до момента появления их в элюате (проскока).

В лабораторной работе необходимо определить ПДОЕ сильнокислотного катионита КУ-2 по меди (II). Для этого раствор CuSO 4 непрерывно пропускают через колонку, заполненную катионитом КУ-2 в Н + –форме, и собирают отдельные порции вытекающего раствора (элюата ) в мерные колбы для последующего определения концентрации Cu 2+ в каждой из них.

При пропускании раствора CuSO 4 через слой ионита протекает реакция ионного обмена:

2 R–SO 3 H + CuSO 4 Û (R–SO 3) 2 Cu + Н 2 SO 4 .

В первых порциях элюата ионы Cu 2+ должны отсутствовать, так как слой ионита будет постепенно насыщаться этими ионами по мере пропускания раствора. Затем наступит проскок ионов Cu 2+ в элюат, после которого концентрация Cu 2+ на выходе из колонки будет увеличиваться, пока не сравняется с концентрацией Cu 2+ на входе в колонку, что свидетельствует о полном насыщении слоя ионита.

Анализ элюата на содержание ионов Cu 2+ проводится фотометрически. Определение основано на образовании аммиаката меди (II), обладающего интенсивной синей окраской:

Cu 2+ + 4NH 3 ↔ 2+ .

Максимум светопоглощения этого соединения соответствует λ = 620 нм. Для нахождения неизвестной концентрации используется метод градуировочного графика.

Оборудование, посуда, реактивы : колонка с сульфокатионитом КУ-2 в водородной форме; фотоэлектроколориметр; кюветы (l = 3 см); склянка Мариотта для равномерной подачи раствора в колонку; стаканы; мерные колбы вместимостью 25,0 мл (3 шт.) и 50,0 мл (6 шт.); градуированные пипетки; цилиндр мерный вместимостью 25 мл, 0,1 н. стандартный раствор СuSO 4 ; 3 н. раствор HCl; реактивы для обнаружения Cu 2+ ; 5%-ный водный раствор NH 3 ; универсальная индикаторная бумага.

Выполнение работы

1. Подготовка ионита к работе . В работе используется заранее подготовленная колонка с катионитом, навеску которого необходимо уточнить у преподавателя.

Прежде всего необходимо перевести катионит в водородную форму. Для этого через колонку пропускают 80–100 мл 3 н. раствора HCl, проверяя фильтрат на содержание Cu (II). В качестве аналитических реагентов для обнаружения меди (II) можно использовать раствор NaOH или KOH (образуется голубой осадок Cu(OH) 2), водный раствор NH 3 (образуется аммиачный комплекс меди (II) интенсивно синего цвета ) и др.

При отсутствии катионов Cu (II) в фильтрате катионит в колонке промывают дистиллированной водой до нейтральной реакции. В таком виде ионит считается подготовленным к работе.

2. Проведение ионного обмена в динамических условиях . В склянку Мариотта, присоединенную к верхней части колонки, заливают раствор CuSO 4 . Затем начинают пропускать его через слой катионита, поддерживая постоянной (~ 1 мл/мин) скорость фильтрации и регулируя ее на выходе винтовым зажимом. При выполнении работы необходимо следить за тем, чтобы уровень раствора в колонке поддерживался постоянным. Фильтрат собирают отдельными порциями в мерные колбы вместимостью 25,0 мл и в каждой из них определяют концентрацию Cu (II) (см. ниже ).

Пропускание раствора CuSO 4 через катионит прекращают тогда, когда содержание насыщающего иона Cu (II) в последних двух пробах остается постоянным.

3. Проведение анализа .

§ Построение градуировочного графика . Аликвоты стандартного 0,1 н. раствора CuSO 4 (1,00; 2,50; 4,00; 5,00; 6,00 мл) помещают в мерные колбы вместимостью 50,0 мл, добавляют в каждую колбу по 25 мл 5%-ного раствора аммиака и дистиллированную воду до метки. В мерной колбе той же вместимости готовят раствор сравнения, содержащий 25 мл раствора аммиака.

Измеряют светопоглощение (А ) одного из приготовленных растворов в кювете с толщиной слоя 3 см со всеми светофильтрами и по зависимости A = f (λ) проводят выбор светофильтра.

Затем измеряют светопоглощение всех эталонных растворов при выбранном светофильтре. Проводят обработку результатов измерений методом наименьших квадратов, желательно с использованием ПК, и строят градуировочный график в координатах A С , ммоль экв/мл.

§ Анализ фильтрата . Каждую собранную порцию элюата (25,0 мл) количественно переносят в мерную колбу вместимостью 50,0 мл и разбавляют до метки 5%-ным раствором аммиака. Измеряют светопоглощение по отношению к раствору сравнения и находят по градуировочному графику концентрацию Cu (II) в растворе.

Если измеренное значение A ≥ 0,6, то аликвоту этого раствора (10,0 мл) помещают в мерную колбу вместимостью 50,0 мл, прибавляют 20 мл 5%-ного раствора NH 4 OH и разбавляют дистиллированной водой до метки. Полученный раствор фотометрируют. При расчете концентрации меди (II) в каждой порции элюата необходимо учитывать проведенное разбавление.

4. Обработка полученных данных .

4.1. Расчет ПДОЕ :

· по измеренному значению светопоглощения (А ) каждого из растворов определяют концентрацию ионов Cu (II), используя градуировочный график;

· по закону эквивалентов рассчитывают концентрацию ионов Cu (II) во всех порциях элюата (25 мл), учитывая все предварительно сделанные разбавления;

· рассчитывают химическое количество ионов Cu (II) (ммоль экв) в общем объеме пропущенного раствора по формуле

где V (Cu 2+) = 25 мл – объем одной порции элюата; p – количество порций.

· рассчитывают химическое количество ионов Cu (II) (ммоль экв) во всех порциях элюата по формуле

где С i (1/2 Cu 2+) – концентрация меди в i -й порции элюата.

· по разности находят количество ммоль экв Cu (II), поглощенных ионитом:

· значение динамической обменной емкости ионита (ПДОЕ) рассчитывают по формуле

В некоторых случаях по указанию преподавателя, кроме того, рассчитывают ДОЕ.

4.2. Построение выходной кривой . По полученным данным строят выходную кривую, откладывая по оси абсцисс объем элюата (мл) от начала опыта, а по оси ординат – концентрацию меди (II) в каждой порции элюата (ммоль экв/л).

6. Ограничение срока действия снято по протоколу N 5-94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

7. ИЗДАНИЕ (январь 2002 г.) с Поправкой (ИУС 3-91)


Настоящий стандарт распространяется на иониты и устанавливает методы определения динамической обменной емкости с полной регенерацией ионита и с заданным расходом регенерирующего вещества.

Методы заключаются в определении количества ионов, поглощаемых из рабочего раствора единицей объема набухшего ионита при непрерывном протекании раствора через слой ионита.

1. МЕТОД ОТБОРА ПРОБ

1. МЕТОД ОТБОРА ПРОБ

1.1. Метод отбора проб указывают в нормативно-технической документации на конкретную продукцию.

1.2. Для ионитов, у которых массовая доля влаги менее 30%, отбирают пробу (100±10) г. Для набухания пробу помещают в стакан вместимостью 600 см и заливают насыщенным раствором хлористого натрия, который должен с избытком покрывать слой ионита с учетом его набухаемости. Через 5 ч ионит промывают дистиллированной водой.

1.3. Для ионитов с массовой долей влаги более 30% отбирают пробу (150±10) г в стакан вместимостью 600 см и приливают 200 см дистиллированной воды.

2. РЕАКТИВЫ, РАСТВОРЫ, ПОСУДА, ПРИБОРЫ

Вода дистиллированная по ГОСТ 6709 или деминерализованная, отвечающая требованиям ГОСТ 6709 .

Барий хлористый по ГОСТ 742 , х.ч., раствор с массовой долей 10%.

Кальций хлористый 2-водный, х.ч., растворы концентраций (СаСl=0,01 моль/дм (0,01 н.) и (СаСl)=0,0035 моль/дм (0,0035 н.).

Кислота соляная по ГОСТ 3118 , х.ч., растворы с массовой долей 5% и концентраций (НСl)=0,5 моль/дм (0,5 н.), (НСl)=0,1 моль/дм (0,1 н.) и (НСl)=0,0035 моль/дм (0,0035 н.).

Кислота серная по ГОСТ 4204 , х.ч., растворы с массовой долей 1%, концентрации (HSO)=0,5 моль/дм (0,5 н.).

Натрия гидроокись по ГОСТ 4328 , х.ч., растворы с массовой долей 2, 4, 5%, концентраций (NaOH)=0,5 моль/дм (0,5 н.), (NaOH)=0,1 моль/дм (0,1 н.), (NaOH)=0,0035 моль/дм (0,0035 н.).

Натрий хлористый по ГОСТ 4233 , х.ч., насыщенный раствор и раствор концентрации (NaCI)=0,01 моль/дм (0,01 н.).

Индикатор смешанный, состоящий из метилового красного и метиленового голубого или из метилового красного и бромкрезолового зеленого, готовят по ГОСТ 4919.1 .

Индикатор метиловый оранжевый или метиловый красный, раствор с массовой долей 0,1%, готовят по ГОСТ 4919.1 .

Индикатор фенолфталеин, спиртовой раствор с массовой долей 1%, готовят по ГОСТ 4919.1 .

Поглотитель химический известковый ХПИ-1 по ГОСТ 6755 или известь натронная.

Трубка (хлоркальциевая) по ГОСТ 25336 .

Мензурка 1000 по ГОСТ 1770 .

Цилиндры по ГОСТ 1770 исполнений 1-4 вместимостью 100 и 250 см и исполнений 1, 2 вместимостью 500 и 1000 см.

Стаканы В или Н по ГОСТ 25336 в любом исполнении вместимостью 600 и 1000 см.

Колбы Кн-1-250 по ГОСТ 25336 .

Пипетки 2-2-100, 2-2-25, 2-2-20 и 2-2-10 по НТД.

Бюретки по НТД типов 1, 2, исполнений 1-5, классов точности 1, 2, вместимостью 25 или 50 см, с ценой деления не более 0,1 см и бюретки типов 1, 2, исполнения 6, классов точности 1, 2, вместимостью 2 или 5 см, с ценой деления не более 0,02 см.

Колбы мерные исполнений 1, 2 по ГОСТ 1770 , классов точности 1, 2, вместимостью 10, 25 и 100 см.

Сито с контрольной сеткой 0315К по ГОСТ 6613 с обечайкой диаметром 200 мм.

Чашка ЧКЦ-5000 по ГОСТ 25336 или из полимеризационного материала, достаточная для помещения в нее сита.

Установка лабораторная (см. чертеж) состоит из бутыли 1 и стеклянной колонки 6 внутренним диаметром (25,0±1,0) мм и высотой не менее 600 мм для определения динамической обменной емкости в условиях полной регенерации ионита и внутренним диаметром (16,0±0,5) мм и высотой не менее 850 мм для определения в условиях заданного расхода регенерирующего вещества. В нижнюю часть колонки впаян фильтр 7 типа ФКП ПОР 250 ХС по ГОСТ 25336 или другое фильтрующее устройство, устойчивое к действию кислот и щелочей, не пропускающее зерен ионита размером более 0,25 мм и обладающее малым сопротивлением фильтрации. Колонку соединяют с бутылью с помощью стеклянной трубки 3 и резинового шланга 4 с винтовым зажимом 5. Для предотвращения попадания углекислого газа из воздуха в раствор гидроокиси натрия в пробку бутыли устанавливают хлоркальциевую трубку 2 с поглотителем ХПИ-1.

Лабораторная установка

Допускается применение других средств измерения с метрологическими характеристиками не хуже указанных, а также реактивов по качеству не ниже указанных.

3. МЕТОД ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОЙ ОБМЕННОЙ ЕМКОСТИ С ПОЛНОЙ РЕГЕНЕРАЦИЕЙ ИОНИТА

3.1. Подготовка к испытанию

3.1.1. Подготовку к испытанию проводят по ГОСТ 10896 и после подготовки ионит хранят в закрытой колбе под слоем дистиллированной воды.

Катионит марки КУ-2-8чС и анионит марки АВ-17-8чС к испытанию по ГОСТ 10896 не готовят.

3.1.2. Пробу ионита из колбы в виде водной суспензии переносят в цилиндр вместимостью 100 см и уплотняют слой ионита постукиванием о твердую поверхность дна цилиндра до прекращения усадки. Объем ионита доводят до 100 см и с помощью дистиллированной воды переносят ионит в колонку, следя за тем, чтобы между гранулами ионита не попали пузырьки воздуха. Избыток воды из колонки сливают, оставляя над уровнем ионита слой высотой 1-2 см.

3.1.3. Ионит в колонке промывают дистиллированной водой, пропуская ее сверху вниз со скоростью 1,0 дм/ч. При этом анионит отмывают от щелочи (по фенолфталеину), а катионит от кислоты (по метиловому оранжевому).

3.1.4. Сильноосновные аниониты в гидроксильной форме быстро загружают и промывают водой, не содержащей углекислый газ.

3.2. Проведение испытания

3.2.1. Определение динамической обменной емкости ионитов состоит из нескольких циклов, каждый из которых включает три последовательные операции - насыщение, регенерацию, отмывку, условия проведения которых приведены в табл.1.

Таблица 1

Условия определения динамической обменной емкости с полной регенерацией ионита

Показатель

Класс ионитов

Рабочий раствор для насыщения ионитов

Контроль насыщения

Регенери-
рующий раствор

насыще-
ние

отмыв-
ка

регене-
рация

Динамическая обменная емкость до проскока ()

Сильно-
кислотные катиониты

Кальций хлористый (CaCl)=0,01 моль/дм (0,01 н.)

До концентрации ионов кальция в фильтрате (Са)=0,05 ммоль/дм (0,05 мг·экв/дм) определяют по ГОСТ 4151

Соляная кислота, раствор с массовой долей 5%

Сильно-
основные аниониты

Натрий хлористый (NaCl)=0,01 моль/дм (0,01 н.)

До снижения концентрации щелочи на 0,5 ммоль/дм (0,5 мг·экв/дм) в сравнении с максимально устойчивым ее значением в фильтрате [индикатор смешанный, титрующий раствор, соляная кислота концентрации (НСl)=0,01 моль/дм (0,01 н.)] и до повышения содержания ионов хлора в сравнении с его устойчивым содержанием в фильтрате (определяют по ГОСТ 15615)

Гидроокись натрия, раствор с массовой долей 5%

Слабо-
основные аниониты

До появления в фильтрате кислоты (по метиловому оранжевому)

Полная динамическая обменная емкость ()

Слабо-
основные аниониты

Соляная кислота (НСl)=0,1 моль/дм (0,1 н.)

До уравнивания концентрации фильтрата с концентрацией рабочего раствора

Гидроокись натрия, раствор с массовой долей 2%

Примечания:

1. При определении концентрации ионов Ca по ГОСТ 4151

2. Удельная нагрузка - это объем раствора, пропускаемый через объем ионита за 1 ч. Например, 5 дм/дм·ч соответствует скорости фильтрации, при которой через 100 см ионита за 1 ч проходит 500 см раствора (8,3 см/мин).

3. Скорость фильтрации устанавливают измерением в мерном цилиндре объема фильтрата, полученного за определенный интервал времени.


Растворы и воду подают сверху вниз. При насыщении анионита марок АН-1 и АН-2ФН растворы подают снизу вверх.

3.2.2 Перед проведением операций насыщения, регенерации и отмывки колонку заполняют соответствующим раствором. Слой раствора над ионитом должен быть (15±3) см.

3.2.3. После насыщения, регенерации и отмывки в колонке над ионитом оставляют слой жидкости высотой 1-2 см.

3.2.4. Колонку с ионитом заполняют рабочим раствором для конкретного класса ионита (см. табл.1) так, чтобы слой раствора над ионитом составлял (15±3) см, и выбирают соответствующую скорость фильтрации.

При пропускании через колонку с ионитом рабочих растворов концентрации 0,1 моль/дм (0,1 н.), фильтрат собирают в цилиндры вместимостью 250 см, при концентрации 0,01 моль/дм (0,01 н.) - в цилиндры вместимостью 1000 см. Во втором и последующих циклах насыщения перед появлением ионов рабочего раствора в фильтрате (определяют после первого цикла) фильтрат собирают порциями по 100 и 250 см соответственно концентрациям рабочего раствора.

3.2.5. От каждой порции фильтрата отбирают пробу и контролируют насыщение в соответствии с табл.1.

3.2.6. После появления в порции фильтрата ионов рабочего раствора вычисляют общий объем фильтрата.

3.2.7. Для определения полной динамической обменной емкости продолжают пропускать раствор до выравнивания концентрации фильтрата с концентрацией рабочего раствора. Контроль насыщения в этом случае проводят титрованием пробы раствором кислоты (гидроокиси натрия) со смешанным индикатором до изменения окраски.

3.2.8. Перед проведением регенерации ионит в колонке взрыхляют током дистиллированной воды снизу вверх так, чтобы все зерна ионита были в движении. Взрыхление катионита марки КУ-1 и анионитов марок АН-1 и АН-2ФН проводят перед операцией насыщения.

3.2.9. Регенерацию ионита проводят раствором кислоты (гидроокиси натрия) со скоростью, указанной в табл.1. Фильтрат непрерывно собирают порциями цилиндром объемом 250-1000 см, добавляя 3-4 капли индикатора. При появлении кислоты (гидроокиси натрия) в фильтрате в последующих порциях определяют ее концентрацию. Для контроля фильтрата отбирают пипеткой или мерной колбой пробу и титруют раствором кислоты (гидроокиси натрия) концентрации (НСl, HSO)=0,5 моль/дм (0,5 н.), (NaOH)=0,5 моль/дм (0,5 н.) в присутствии индикатор

3.2.10. Раствор кислоты (гидроокиси натрия) пропускают до уравнивания концентрации фильтрата с концентрацией регенерирующего раствора.

3.2.11. Ионит после регенерации промывают дистиллированной водой до нейтральной реакции по метиловому оранжевому (фенолфталеину) со скоростью, указанной в табл.1. Затем ионит выдерживают в дистиллированной воде в течение 1 ч и снова проверяют фильтрат. Если фильтрат не имеет нейтральной реакции, ионит промывают повторно.

3.2.12. Определение динамической обменной емкости заканчивают, если в двух последних циклах получены результаты, расхождение между которыми не превышает 5% среднего результата.

3.2.13. Динамическую обменную емкость анионита АВ-17-8чС определяют на двух параллельных пробах по первому циклу насыщения, перед появлением ионов рабочего раствора в фильтрате. Фильтрат собирают порциями по 250 см. За результат принимают среднее арифметическое результатов двух определений, допускаемое расхождение между которыми не превышает 5% среднего результата.

(Поправка, ИУС 3-91).

4. МЕТОД ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОЙ ОБМЕННОЙ ЕМКОСТИ С ЗАДАННЫМ РАСХОДОМ РЕГЕНЕРИРУЮЩЕГО ВЕЩЕСТВА

4.1. Подготовка к испытанию

4.1.1. Ионит, отобранный в соответствии с пп.1.2 и 1.3, отделяют от мелких фракций методом мокрого рассева по ГОСТ 10900 , используя сито с сеткой N 0315К.

4.1.2. Отсеянный анионит помещают в стакан, приливают 500 см раствора гидроокиси натрия с массовой долей 4% и перемешивают. Через 4 ч раствор гидроокиси сливают, а анионит промывают водой до слабощелочной реакции по фенолфталеину и переносят в колонку, как указано в п.3.1.2.

4.1.3. Отсеянный катионит промывают от взвеси и мути дистиллированной водой декантацией до появления светлой промывной воды и переносят в колонку в соответствии с п.3.1.2.

4.2. Проведение испытания

4.2.1. Определение динамической обменной емкости ионитов до появления ионов рабочего раствора в фильтрате () состоит из нескольких циклов, каждый из которых включает три последовательные операции - насыщение, регенерацию, отмывку, условия проведения которых приведены в табл.2. Растворы и воду подают сверху вниз. Высоту слоя жидкости над уровнем ионита устанавливают, как указано в пп.3.2.2 и 3.2.3.

Таблица 2

Условия определения динамической обменной емкости ионитов при заданном расходе регенерирующего вещества

Класс ионитов

Регенери-
рующий раствор

Норма удельного расхода регене-
рирующего вещества (), г/моль (г/г·экв) погло-
щенных ионов

Контроль отмывки

Рабочий раствор для насыщения ионита

Контроль насыщения

Скорость фильтрации

насы-
щение

отмывка

реге-
нера-
ция

Сильно
кислотные катиониты

До остаточной концентрации кислоты в фильтрате не более
(HSO)=1 ммоль/дм
(1 мг·экв/дм) и концентрации ионов кальция (Са)=0,05 ммоль/дм
(0,05 мг·экв/дм), определяют
по ГОСТ 4151

Кальций хлористый (СаСl=0,0035 моль/дм (0,0035 н.)

До концентрации ионов кальция в фильтрате более (Ca)=0,05 ммоль/дм
(0,05 мг·экв/дм), определяют
по ГОСТ 4151

Слабо-
кислотные катиониты

Серная кислота, раствор с массовой долей 1%

До отсутствия в фильтрате сульфатионов (проба с BaCl в присутствии НСl)

Гидроокись натрия (NaOH)=0,0035 моль/дм (0,0035 н.)

До концентрации в фильтрате гидроокиси натрия (NaOH)=0,1 ммоль/дм
(0,1 мг·экв/дм) (по фенолфталеину)

Сильно-
основные аниониты

Гидроокись натрия с массовой долей 4%

До остаточной концентрации гидроокиси натрия в фильтрате не более (NaOH)=0,2 ммоль/дм
(0,2 мг·экв/дм) по фенолфталеину

Натрий хлористый (NaCI)=0,01 моль/дм (0,01 н.)

До снижения концентрации щелочи на (NaOH)=0,7 ммоль/дм
(0,7 мг·экв/дм) в сравнении с максимально устойчивым ее значением в фильтрате

Слабо-
основные аниониты

Гидроокись натрия, раствор с массовой долей 4%

До остаточной концентрации гидроокиси натрия в фильтрате не более (NaOH)=0,2 ммоль/дм (0,2 мг·экв/дм) по фенолфталеину

Соляная (серная) кислота (НСl,HSO)=0,0035 моль/дм (0,0035 н.)

До остаточной концентрации кислоты в фильтрате не более (Н)=0,1 ммоль/дм (0,1 мг·экв/дм), индикатор смешанный, титрующий раствор - гидроокись натрия концентрации (NaOH)=0,01 моль/дм (0,01 н.)

Примечания:

1. При выражении нормы удельного расхода регенерирующего вещества () в граммах на моль под словом "моль" имеется в виду молярная масса эквивалента иона (Na, K, Са, Mg, Сl, NO, НСО, HSO, СО, SO

И т.д.).

2. Фактический расход регенерирующего вещества не должен отличаться от заданной нормы более чем на 5%.

3. При определении концентрации ионов Са по ГОСТ 4151 допускается использование 2-3 капель индикатора хром-темно-синего и титрование раствором трилона Б концентрации (NaHCON·2HO)=0,01 моль/дм (0,01

4. Удельная нагрузка - это объем раствора, пропускаемый через объем ионита за 1 ч. Например, 5 дм/дм·ч соответствует скорости фильтрации, при которой через 100 см ионита за 1 ч проходит 500 см раствора (8,3 см/мин).

5. Скорость фильтрации устанавливают измерением в мерном цилиндре объема фильтрата, полученного за определенный интервал времени.


Во избежание загипсовывания катионита регенерацию кислотой и отмывку от продуктов регенерации проводят без остановок, не допуская разрыва между операциями.

Перед проведением каждого последующего цикла ионит взрыхляют током воды снизу вверх так, чтобы все зерна ионита были в движении.

4.2.2. Через ионит в колонке пропускают регенерирующий раствор, объем которого () в кубических сантиметрах вычисляют по формуле

где - заданная норма удельного расхода регенерирующего вещества, г/моль (г/г·экв);

- динамическая обменная емкость; выбирают по нормативно-технической документации на конкретный ионит, моль/м (г·экв/м); для ионитов марок АВ-17-8, АН-31 и ЭДЭ-10П допускается для первой регенерации увеличенное значение динамической обменной емкости до 3;

- объем пробы ионита, см;

- концентрация регенерирующего раствора, г/дм.

Количество регенерирующего раствора измеряют на выходе из колонки цилиндром или мензуркой. Затем колонку отсоединяют, уровень раствора над ионитом в колонке опускают до 1-2 см и закрывают нижний за

4.2.3. Иониты после регенерации промывают дистиллированной водой от избытка кислоты (гидроокиси натрия) со скоростью, указанной в табл.2.

Периодически отбирают пробу фильтрата и титруют растворами гидроокиси натрия (кислоты) концентрации (NaOH, HCl, HSO)=0,1 моль/дм (0,1 н.) в присутствии метилового оранжевого (фенолфталеина).

Отмывку контролируют по табл.2.

4.2.4. После отмывки колонку заполняют рабочим раствором и устанавливают по табл.2 скорость насыщения.

При пропускании через колонку рабочих растворов концентрации 0,01 моль/дм (0,01 н.) фильтрат собирают в цилиндр вместимостью 250 см, при концентрации 0,0035 моль/дм (0,0035 н.) используют цилиндр вместимостью 1000 см. Во втором и последующих циклах насыщения перед появлением ионов рабочего раствора в фильтрате (определяют после первого цикла) фильтрат собирают по 100 и 250 см соответственно концентрациям рабочего раствора.

4.2.5. Для контроля насыщения от порции фильтрата отбирают пробу и анализируют ее в соответствии с табл.2. Если результат анализа показывает, что уровень насыщения не достиг значений, указанных в табл.2, все предыдущие пробы фильтрата можно не анализировать.

4.2.6. После появления в порции фильтрата ионов рабочего раствора в количествах, указанных в табл.2, насыщение заканчивают и вычисляют общий объем фильтрата () и динамическую обменную емкость.

4.2.7. Ионит подвергают второй регенерации и отмывают в соответствии с пп.4.2.2 и 4.2.3.

При расчете регенерирующего вещества, необходимого для второго цикла, используют значение динамической обменной емкости, полученное в первом цикле в соответствии с п.4.2.6.

Перед проведением последующих циклов насыщения расход регенерирующего вещества вычисляют по величине динамической обменной емкости, полученной в предыдущем цикле.

4.2.8. Определение заканчивают, если в двух последних циклах получены результаты, допускаемые расхождения между которыми не превышают 5% среднего результата, при фактическом удельном расходе регенерирующего вещества, отличающемся от заданной нормы не более чем на 5%.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Динамическую обменную емкость () в молях на кубический метр (г·экв/м) до появления ионов рабочего раствора в фильтрате вычисляют по формуле

где - общий объем фильтрата, пропущенный через ионит до появления ионов рабочего раствора, см;


- объем ионита, см.

5.2. Фактический расход регенерирующего вещества () в граммах на моль (г/г·экв) поглощенных ионов вычисляют по формуле

где - объем регенерирующего раствора, см;

- концентрация регенерирующего раствора, г/дм;

- общий объем фильтрата, пропущенного через ионит до появления ионов рабочего раствора, см;

- концентрация рабочего раствора, моль/дм (н.

5.3. Полную динамическую обменную емкость () в молях на кубический метр (г·экв/м) вычисляют по формуле

где - общий объем фильтрата, пропущенный через ионит до уравнивания концентраций фильтрата и рабочего раствора, см;

- концентрация рабочего раствора, моль/дм (н.);

- объем порции фильтрата после появления ионов рабочего раствора (проскока), см;

- концентрация раствора в порции фильтрата после появления ионов рабочего раствора (проскока), моль/дм (н.);

- объем ионита,

5.4. За результат определения принимают среднее арифметическое результатов двух последних циклов, допускаемые расхождения между которыми не превышают ±5%, при доверительной вероятности =0,95.

Примечание. При выражении динамической обменной емкости ионитов в молях на кубический метр под словом "моль" имеется в виду молярная масса эквивалента иона (Na, K, Ca, Mg, Сl, NO, НСО, HSO, CO, SO и т.д.).



Текст документа сверен по:
официальное издание
Иониты. Методы определения
обменной емкости: Сб. ГОСТов. -
М.: ИПК Издательство стандартов, 2002

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...