Понятие и классификация взрывов. Взрывчатые вещества и взрывоопасные объекты


Что такое взрыв? Это процесс мгновенного преобразования состояния при котором выделяется значительное количество тепловой энергии и газов, образующих ударную волну.

Взрывчатые вещества представляют собой соединения, обладающие способностью подвергаться изменениям в физическом и химическом состоянии в результате внешнего воздействия с образованием взрыва.

Классификация типов взрывов

1. Физический - энергия взрыва представляет собой потенциальную энергию сжатого газа или пара. В зависимости от величины внутреннего давления энергии получается взрыв различной мощности. Механическое воздействие взрыва обусловлено действием ударной волны. Обломки оболочки обуславливают дополнительное поражающее действие.

2. Химический - в этом случае взрыв обусловлен практически мгновенным химическим взаимодействием веществ, входящих в состав, с выделением большого количества тепла, а также газов и пара с высокой степенью сжатия. Взрывы подобных типов характерны, к примеру, для пороха. Возникающие в результате химической реакции вещества при нагреве приобретают большое давление. Взрыв пиротехники тоже относится к этому виду.

3. Атомные взрывы представляют собой молниеносные реакции ядерного расщепления или слияния, характеризующиеся огромной мощностью выделяемой энергии, в том числе тепловой. Колоссальная температура в эпицентре взрыва приводит к образованию зоны очень высокого давления. Расширение газа приводит к появлению ударной волны, являющейся причиной механических разрушений.

Понятие и классификация взрывов позволяют правильно действовать в чрезвычайной ситуации.

Тип действия

Отличительные особенности

Взрывы различаются в зависимости от протекающих химических реакций:

  1. Разложение характерно для газообразной среды.
  2. Окислительно-восстановительные процессы подразумевают наличие восстановителя, с которым прореагирует находящийся в воздухе кислород.
  3. Реакция смесей.

К объемным взрывам относят пылевые взрывы, а также взрывы паровых облаков.

Пылевые взрывы

Характерны они для замкнутых запыленных сооружений, таких, как шахты. Опасная концентрация взрывоопасной пыли появляется при проведении механических работ с сыпучими материалами, дающими большое количество пыли. Работа с взрывоопасными веществами предполагает полное знание того, что такое взрыв.

Для каждого типа пыли существует так называемая предельная допустимая концентрация, при превышении которой возникает опасность самопроизвольного взрыва, и измеряется такое количество пыли в граммах на кубометр воздуха. Рассчитанные значения концентрации не являются постоянными величинами и должны корректироваться в зависимости от влажности, температуры и других условий внешней среды.

Особую опасность представляет собой наличие метана. В этом случае существует повышенная вероятность детонации пылевых смесей. Уже пятипроцентное содержание паров метана в воздухе грозит взрывом, за счет чего следует воспламенение пылевого облака и увеличение турбулентности. Возникает положительная обратная связь, приводящая к взрыву большой энергии. Ученых привлекают такие реакции, теория взрыва до сих пор не дает покоя многим.

Безопасность при работе в замкнутом пространстве

При работе в замкнутых помещениях с высоким содержанием пыли в воздухе следует в обязательном порядке придерживаться следующих правил безопасности:

Удаление пыли путем вентиляции;

Борьба с излишней сухостью воздуха;

Разбавление воздушной смеси для снижения концентрации взрывчатых веществ.

Пылевые взрывы характерны не только для шахт, но и для зданий, и зернохранилищ.

Взрывы паровых облаков

Представляют собой реакции молниеносной смены состояния, порождающие образование взрывной волны. Случаются на открытом воздухе, в ограниченном пространстве из-за воспламенения горючего парового облака. Как правило, подобное происходит при утечке

Отказ от работы с горючим газом или паром;

Отказ от источников зажигания, способных вызвать искру;

Избегание замкнутого пространства.

Нужно здраво понимать, что такое взрыв, какую опасность он несет. Несоблюдение правил безопасности и неграмотное использование некоторых предметов приводит к катастрофе.

Взрывы газа

Самые распространенные чрезвычайные происшествиями, при которых происходит взрыв газа, случаются в результате неправильного обращения с газовым оборудованием. Важно своевременное устранение и характерное определение. Что значит взрыв от газа? Происходит он из-за неправильной эксплуатации.

Для того чтобы не допустить подобных взрывов, все газовое оборудование должно проходить регулярный профилактический технический осмотр. Всем жителям частных домовладений, а также многоквартирных домов, рекомендован ежегодный ТО ВДГО.

Для снижения последствий взрыва конструкции помещений, в которых установлено газовое оборудование, делают не капитальными, а, наоборот, облегченными. В случае взрыва не возникает больших повреждений и завалов. Теперь вы представляете, что такое взрыв.

Для того чтобы утечку бытового газа было легче определить, в него добавляют ароматическую добавку этилмеркаптан, что обуславливает характерный запах. При наличии такого запаха в помещении необходимо открыть окна, обеспечив поступление свежего воздуха. После чего следует вызвать газовую службу. В это время лучше не пользоваться электрическими выключателями, способными вызвать искру. Строго запрещается курить!

Взрыв пиротехники тоже может стать угрозой. Склад таких предметов должен быть оборудован в соответствии с нормами. Некачественная продукция может нанести вред человеку, который ею пользуется. Все это стоит непременно учитывать.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Общая характеристика взрывных явле ний

Особую опасность с точки зрения возможных потерь и ущерба представляют взрывы.

Взрыв - это освобождение большого количества энергии в ограниченном объеме за короткий промежуток времени.

Взрыв приводит к образованию сильно нагретого газа (плазмы) с очень высоким давлением, который при моментальном расширении оказывает ударное механическое воздействие (давление, разрушение) на окружающие тела.

Взрыв в твердой среде сопровождается ее разрушением и дроблением, в воздушной или водной - вызывает образование воздушной или гидравлической ударных волн, которые и оказывают разрушающее воздействие на помещенные в них объекты.

В деятельности, не связанной с преднамеренными взрывами в условиях промышленного производства, под взрывом следует понимать быстрое, неуправляемое высвобождение энергии, которое вызывает ударную волну, движущуюся на некотором удалении от источника.

В результате взрыва вещество, заполняющее объем, в котором происходит высвобождение энергии, превращается в сильно нагретый газ (плазму) с очень высоким давлением, (до нескольких сотен тысяч атмосфер). Этот газ, моментально расширяясь оказывает ударной механическое воздействия на окружающую среду, вызвав ее движение. Взрыв в твердой среде вызывает ее дробление и разрушение в гидравлической и воздушной среде - вызывает образование гидравлической и воздушной ударной (взрывной) волны.

Взрывная волна - есть движение среды, порожденное взрывом, при котором происходит резкое повышение давления, плотности и температуры среды.

Фронт (передняя граница) взрывной волны распространяется по среде с большой скоростью, в результате чего область охваченная движением, быстро расширяется.

Посредством взрывной волны (или разлетающихся продуктов взрыва - в вакууме) взрыв производит механическое воздействие на объекты, находящиеся на различных удалениях от места взрыва. По мере увеличения расстояния от места взрыва механическое воздействие взрывной волны ослабевает. Таким образом, взрыв несет потенциальную опасность поражения людей и обладает разрушительной способностью.

Взрыв может быть вызван:

Детонацией конденсированных взрывчатых веществ (ВВ);

Быстрым сгоранием воспламеняющего облака газа или пыли;

Внезапным разрушением сосуда со сжатым газом или с перегретой жидкостью;

Смешиванием перегретых твердых веществ (расплава) с холодными жидкостями и т.д.

В зависимости от вида энергоносителей и условий энерговыделения, источниками энергии при взрыве могут быть как химические так и физические процессы.

Источником энергии химических взрывов являются быстропротекающие самоускоряющиеся экзотермические реакции взаимодействия горючих веществ с окислителями или реакции термического разложения нестабильных соединений.

Источниками энергии сжатых газов (паров) в замкнутых объемах аппаратуры (оборудования) могут быть как внешние (энергия, используемая для сжатия тазов, нагнетания жидкостей; теплоносители, обеспечивающие нагрев жидкости и газов в замкнутом пространстве) так и внутренние (экзотермические физико-химические процессы и процессы тепломассообмена в замкнутом объеме), приводящие к интенсивному испарению жидкостей или газообразованию, росту температуры и давления без внутренних взрывных явлений.

Источником энергии ядерных взрывов являются быстропротекающие цепные ядерные реакции синтеза легких ядер изотопов водорода (дейтерия и трития) или деления тяжелых ядер изотопов урана и плутония. Физические взрывы возникают при смещении горячей и холодной жидкостей, когда температура одной из них значительно превосходит температуру кипения другой. Испарение в этом случае протекает взрывным образом. Возникающая при этом физическая детонация сопровождается возникновением ударной волны с избыточным давлением, достигающим в ряде случаев сотен МПа.

Энергоносителями химических взрывов могут быть твердые, жидкие, газообразные горючие вещества, а также аэровзвеси горючих веществ (жидких и твердых) в окислительной среде, в т.ч. и в воздухе.

взрыв энергия волна

2. Взрывчатые вещества

Твердые и жидкие энергоносители относятся в большинстве случаев к классу конденсированных взрывчатых веществ.

Взрывчатыми веществами называются химические соединения или смеси веществ, способные к быстрой химической реакции с выделением большого количества тепла и образованием газа.

В состав ВВ входят восстановители и окислители или другие химические нестабильные соединения. При инициировании взрыва в этих веществах с огромной скоростью протекают экзотермические окислительно-восстановительные реакции или реакции термического разложения с выделением тепловой энергии и большого количества газа. Эта реакция, возникнув в какой-либо точке заряда в результате нагревания, удара, трения, взрыва другого ВВ или иного внешнего воздействия распространяется о заряду путем тепло- или массообмена, (горение), ибо ударной волны (детонация).

ВВ обладают способностью к быстрому разложению, при котором энергия межмолекулярных связей выделяется в виде теплоты, причем - при повышений температуры скорость разложения ВВ увеличивается. При сравнительно низкой температуре скорость разложения ВВ невелика и ВВ в течении длительного времени может не претерпевать заметного изменения в своем состоянии. В этом случае между ВВ и окружающей средой устанавливается тепловое равновесие.

Если создаются условия, при которых теплота, выделяемая ВВ, не успевает отводится в окружающую среду, то благодаря повышению температуры развивается процесс самоускоряющегося химического разложения ВВ, который называется тепловым взрывом.

Возможен иной процесс осуществления взрыва, при котором химическая реакция распространяется по заряду ВВ последовательно от слоя к слою в виде волны. Движущийся по заряду с большой скоростью (>9 км/с) передний фронт этой волны представляет собой ударную волну - резкий переход вещества из исходного состояния в состояние с очень высоким давлением и температурой. ВВ, сжатое ударной волной, оказывается в состоянии, при котором химическое разложение протекает очень быстро.

Процесс химического превращения В1, который вводится ударной волной и сопровождается быстрым выделением энергии называется детонацией.

Скорость химической реакции при детонации обычно достигает нескольких км/сек. Тонна твердого ВВ может превратиться в плотный газ с очень высоким давлением за время 1*10 -4 сек. Давление достигает в этом случае нескольких сотен тысяч атмосфер.

Преимущество конденсированных и водонаполненных ВВ заключается в значительной концентрации энергии в единице объема.

Резко расширяясь, сжатый газ наносит по окружающим телам удар огромной силы. Происходит взрыв. Объекты, находящиеся вблизи заряда, подвергаются дроблению и сильнейшей пластической деформации (местное или бризантное действие взрыва). Объекты, находящиеся вдали от парада, испытывают меньшее разрушение, но зона, в которой оно происходит, гораздо больше (общее или фугасное действие взрыва). Бризантность ВВ определяется давлением, развивающемся при детонации, которое в свою очередь зависит от плотности заряда и скорости детонации. Фугасность (работоспособность) ВВ определяется теплотой, а также объемом газообразных продуктов, образующихся при взрыве.

Основными характеристиками ВВ являются:

Бризантность;

Фугасность (работоспособность);

Химическая и физическая стойкость (способность сохранять свои свойства, при хранении и обращении с ними);

Чувствительность к внешним воздействиям (минимальное количество энергии, необходимое для возбуждения взрыва);

Детонационная способность (критический диаметр детонации).

К взрывоопасным веществам относятся:

Некоторые вещества, не содержащие кислорода (азида, ацетилен, ацетиленида, диазосоединения, гидрозин, йодистый и хлористый азот, смеси горючих веществ с галогенами, соединения инертных газов и т.п.).

Из многих, способных к взрыву соединений, в качестве ВВ используются:

Нитросоединения (тринитротолуол, тетрил, гексоген, октоген, нитроглицерин, тэн, нитроклетчатка, нитрометан);

Соли азотной кислоты (нитрат аммония).

Как правило эти вещества применяются не в чистом виде, а в виде смесей.

По взрывчатым свойствам (условиям перехода горения в детонацию) ВВ подразделяют на:

Инициирующие (первичные);

Бризантные (вторичные);

Метательные (пороха).

Инициирующие ВВ характеризуются очень высокой скорость взрывного превращения, высокой чувствительностью, неустойчивым горением, быстрым его переходом в детонацию уже при атмосферном давлении. Взрыв может быть возбужден поджиганием, ударом или трением.

Основными представителями инициирующих ВВ являются азид свинца, гремучая ртуть, тетразен, тринитрорезорцинат свинца. Инициирующие ВВ используются для возбуждения взрывов других ВВ.

Бризантные ВВ более инертны, обладают меньшей чувствительностью к внешним воздействиям. Горение этих ВВ может перейти в детонацию только при наличии прочной оболочки, либо большого количества ВВ. Относительно безопасны в обращении. Основными представителями бризантных ВВ являются нитросоединения и взрывчатые смеси на основе нитратов, хлоратов, перхлоратов и жидкого кислорода: тринитротолуол, тетрил, гексоген, октоген др. Применяются при производстве взрывных работ и для снаряжения боеприпасов различных видов и назначения.

Метательные ВВ (пороха) обладают устойчивым горением, не детонируют в самих жестких условиях.

Все виды взрывов можно классифицировать на следующие три группы:

Неконтролируемое резкое высвобождение энергии за короткий промежуток времени и в ограничением пространстве (взрывные процессы);

Образование облаков топливно-воздушной смеси (ТВС) или других химических газообразных, пылеобразных веществ, их быстрые взрывные превращения (объемный взрыв);

Взрывы трубопроводов, сосудов, находящихся под высоким давлением или с перегретой жидкостью, прежде всего резервуаров со сниженным углеродным газом.

Взрывы проходят за счет высвобождения химической энергии (взрывчатке вещества), внутриядерной энергии (ядерный взрыв), электромагнитной анергии (искровой разряд, лазерная искра), энергии сжатых газов (при превышении давления газа в сосуде предела прочности этого сосуда - различных баллонов, трубопроводов и т.д.)

Наиболее часто взрывы происходят на взрывоопасных объектах (ВОО).

Взрывоопасный объект - это объект, на котором хранятся, используются, производятся, транспортируются вещества (продукты) приобретающие при определенных условиях способность к взрыву.

К взрывоопасным объектам относятся:

Предприятия оборонной, нефтедобывающей, нефтеперерабатывающей, нефтехимической, химической, газовой промышленности;

Предприятия хлебопродуктовой, текстильной и фармацевтической промышленности

Склады легковоспламеняющихся и горючих жидкостей и сжиженных газов.

Основными поражающими факторами взрыва являются:

1. воздушная ударная волна, возникающая при ядерных взрывах, взрывах инициирующих и детонирующих взрывчатых веществ, при взрывных превращениях топливо-воздушных смесей (ТВС), газовоздушных смесей (ГВС), взрывах резервуаров с перегретой жидкостью и резервуаров под давлением,

2. осколочные поля, создаваемые летящими обломками разного рода объектов технологического оборудования, строительных деталей.

При взрыве газо-воздушной среды образуется три полусферические области (зоны):

I - зона непосредственного бризантного действия газо-воздушного взрыва вблизи земли (зона полных разрушений);

II - зона действия продуктов взрыва;

III - зона действия воздушной ударной волны.

Эффективное воздействие в I зоне характеризуется разрушениями, которые возникают в результате резкого удара продуктов детонации, находящихся внутри газо-воздушной смеси окружающих предметов. Радиус этой зоны определяется по таблицам или по формуле Ч I = 1.7 Ч 0 .

При взрывах углеводорода, пропана и метана Ч 0 имеет значение 8.

Основными параметрами поражающих факторов являются:

1. - воздушной ударной волны - избыточное давление в её фронте.

2. - осколочного поля - количество осколков, их кинетическая энергия и радиус разлёта.

Ударная волна любых взрывов вызывает большие людские потери и разрушения элементов сооружений. Размеры зон поражения от взрывов возрастают с увеличением их мощности. Действие ударной волны на элементы сооружения характеризуется сложным комплексом нагрузок:

Прямое давление;

Давление отражения;

Давление обтекания;

Давление затекания;

Сопротивляемость элементов сооружений действию ударной волны принято характеризовать величиной избыточного давления во фронте ударной волны, в Рф. Избыточное давление в Рф используется как универсальная характеристика сопротивляемости элементов сооружения действию ударной волны и для определения степени их разрушения и повреждения.

Степень и характер повреждения сооружений при взрывах во время производственных аварий зависят от:

1. - мощности (тротилового эквивалента) взрыва;

2. - технических характеристик сооружения (конструкция, прочность, размер, форма - капитальные, временные, наземные, подземные и т.п.);

3. - планировки объекта (рассредоточение сооружений), характера застройки, ландшафта местности (рельеф, грунт, занесенность);

5. - метеоусловий (направление и сила взрыва, влажность, температура, наличие осадков).

Последствия взрывов

В результате действия поражающих факторов взрыва происходит разрушение или повреждение зданий, сооружений, технологического оборудования, транспортных средств, элементов коммуникаций и других объектов, гибель людей.

Размещено на Allbest.ru

Подобные документы

    Происхождение и классификация взрывчатых веществ. Основные свойства взрывчатых веществ. Особенности факторов поражения и зоны действия взрыва. Последствия воздействие взрыва на человека. Техника предотвращения взрывов. Действия населения при взрывах.

    реферат , добавлен 22.02.2008

    Понятие о взрывчатых материалах, стабильность их химического состава. Классификация складов взрывчатых веществ и боеприпасов. Поверхностные и подземные хранилища. Правила безопасности при перевозке взрывчатых материалов. Знаки опасности и их описание.

    курсовая работа , добавлен 03.12.2012

    Ядерный взрыв как процесс высвобождения большого количества тепловой и лучистой энергии в результате цепной ядерной реакции деления или реакции термоядерного синтеза. Его последствия и правила поведения. Негативное воздействие на жизнь, окружающую среду.

    презентация , добавлен 18.04.2016

    Понятие чрезвычайной ситуации техногенного характера. Классификация производственных аварий по их тяжести и масштабности. Пожары, взрывы, угрозы взрывов. Аварии с выбросом радиоактивных веществ, химически опасных веществ. Гидродинамические аварии.

    презентация , добавлен 09.02.2012

    Прогнозирование обстановки при чрезвычайных ситуациях природного харатера. Классификация зданий и сооружений по сейсмостойкости. Взрыв парогазовоздушного облака в неограниченном и ограниченном пространстве. Характеристики взрываемости некоторых газов.

    учебное пособие , добавлен 14.04.2009

    Основные меры воздействия на очаг пожара. Классификация веществ по горючести, пожаро- и взрывобезопасности. Схема горения вещества в воздухе. Структура инженерных решений по предупреждению пожаров и взрывов. Основные характеристики дымообразования.

    реферат , добавлен 03.05.2014

    Понятие и классификация экологических катастроф. Пожары на промышленных объектах. Аварии с выбросом (угрозой выброса) биологически опасных веществ. Опасность возникновения селей. Причины взрывов и авиакатастроф. Чрезвычайные ситуации на железной дороге.

    реферат , добавлен 19.09.2013

    Виды, классификация, причины возникновения, последствия, поражающие факторы и рекомендации по предотвращению пожаров и взрывов. Обеспечение безопасности при возникновении загорания, пожара и взрывоопасной ситуации. Способы и средства борьбы с огнем.

    реферат , добавлен 30.11.2009

    Пожароопасный объект. Основная техника для борьбы с огнем. Фронт сплошного пожара. Профилактика пожаров и взрывов, меры по снижению ущерба от них. Рекомендации населению по профилактике пожаров и взрывов, действиям в ходе ЧС.

    лекция , добавлен 16.03.2007

    Моделирование обстановки ЧС на ОЭ при взрыве конденсированных взрывчатых веществ, идентификация опасностей и вторичных поражающих факторов. Разработка комплекса организационных, инженерно-технических, специальных мероприятий по ПУФ данного объекта.

Взрывы, наиболее часто встречающиеся на практике, можно разделить на две основные группы: физические и химические (см. рис. 7.2).

К физическим взрывам относят процессы, приводящие к взрыву и не сопровождающиеся химическим превращением вещества.

К химическим взрывам относят процессы, химического превращения вещества, проявляющиеся горением и характеризующиеся выделением тепловой энергии за короткий промежуток времени и в таком объеме, что образуются волны давления, распространяющиеся от источника взрыва.

Причиной случайных взрывов чаще всего являются процессы го­рения. Взрывы такого рода чаще всего происходят при хранении, транспортировке и изготовлении ВВ. Они имеют место при обращении с ВВ и взрывоопасными веществами в химической и нефтехимической промышленности; при утечках природного газа в жилых домах; при изготовлении, транспортировке и хранении легколетучих или сжиженных горючих веществ; при промывке резервуаров для хранения жидкого топлива; при изготовлении, хранении и использовании горючих пылевых систем и некоторых самовозгорающихся твердых и жидких веществ.

Рис. 7.2. Классификация взрывов, наиболее часто встречающихся на практике

При физическом взрыве высвобождающаяся энергия является внутренней энергией сжатого или сжиженного газа (более строго, сжиженного пара). Сила таких взрывов зависитот внутреннего давления, а разрушения могут быть вызваны ударной волной от расширяющегося газа или осколками разорвавшегося резервуара. В ряде аварий отмечались физические взрывы, возникающие от полного разрушения автоцистерн. В зависимости от обстоятельств части такого резервуара разлетались на сотни метров.

То же может случиться (в меньших масштабах) с переносными баллонами для газа, если такой баллон упадет и сорвется вентиль, понижающий давление. Известны многочисленные случаи таких чисто физических взрывов сосудов со сжиженными газами под давлением, не превышающим 4 МПа.

К физическим взрывам следует отнести и явление так называемой физической (или термической) детонации, которая возникает при смешении горячей и холодной жидкостей, когда температура одной из них значительно превышает температуру кипения другой (например, при выливании расплавленного железа в воду). В образовавшейся парожидкостной смеси испарение может протекать взрывным образом вследствие развивающихся процессов тонкой фрагментации капель расплава, быстрого отвода от них и перегрева холодной жидкости. Физическая детонация сопровождается образованием ударной волны с избыточным давлением в жидкой фазе, достигающим в некоторых случаях сотен мегапаскалей. Указанное явление может стать причиной крупных аварий в ядерных реакторах и на промышленных предприятиях металлургической, химической и бумажной промышленности.


Источники энергии сжатых газов (паров) в замкнутых объемах аппаратуры могут быть как внешними, так и внут­ренними. Внешние – это электрическая энергия, используе­мая для сжатия газов и нагнетания жидкостей; теплоносите­ли, в том числе электрические, обеспечивающие нагрев жидкостей и газов в замкнутых объемах аппаратуры. К внутренним источникам относится энергия экзотермиче­ских физико-химических и тепломассообменных процессов в замкнутом объеме аппаратуры, приводящая к интенсив­ному испарению жидких сред или газообразованию, росту температуры и давления без внутренних взрывных явлений.

Химические взрывы делят на объемные (см. рис. 7.3) и взрывы конденсированных ВВ. Источником химического взрываявляются быстро протекающие самоускоряющиеся экзотермические реакции взаимодействия горючих веществ с окислителями или тер­мического разложения нестабильных соединений. При не­которых обстоятельствах возможны неконтролируемые ре­акции, сопровождающиеся возрастанием давления в реак­ционном сосуде, который может полностью разрушиться, ес­ли нет предохранительного клапана. При этом могут обра­зоваться ударная волна и осколочное поле.

Рис. 7.3. Классификация объемных взрывов

Энергоносители химических взрывов могут быть твердыми, жидкими, газообразными веществами, а также аэровзвесями горючих веществ (жидких и твердых) в окис­лительной среде (часто в воздухе). Взрывы газовых смесей и аэровзвесей горючих веществ иногда называют объемны­ми взрывами. Твердые и жидкие энергоносители относятся в большинстве случаев к классу конденсированных ВВ. В состав этих веществ или их смесей вхо­дят восстановители и окислители или другие химически нест абильные соединения. При инициировании взрыва в этих веществах с огромной скоростью протекают экзотермические окислительно-восстановительные реакции или реакции термического разложения с выделением тепловой энергии(при взрывах конденсированного ВВ атомы углерода и водорода в молекулах вещества замеща­ется атомами азота).

Газообразные энергоносители представляют собой гомогенные смеси горючих газов (паров) с газообразными окислителями, такими как воздух, кислород, хлор и др., либо нестабильные газообразные соединения, такие как ацетилен, этилен (склонные к термическому разложению в отсутствии окислителей). Источником взрывов газовых смесей являются экзотермические реакции окисления горючего вещества или реакции разложения нестабильных соединений.

Двухфазные взрывоопасные аэровзвеси состоят измелкодисперсных горючих жидкостей («туманов») или твердых веществ (пыли) в окислительной среде, в основном, в воздухе. Источником энергии их взрывов также является тепло сгорания этих веществ.

Технологическая система взрывоопасна, если она обладает запасом потенциальной энергии, высвобождающейся с настолько большой скоростью, что она может генерировать воздушную ударную волну (ВУВ), способную вызвать крушения или поражения людей. Количество потенциальной энергии определяется соответствующими физико-химическими закономерностями энерговысвобождения.

Энергию взрыва парогазовых сред определяют по теплоте сгорания горючих веществ в смеси с воздухом (окислителем); конденсированных ВВ – по теплоте, выделяющейся при их детонации (реакции разложения); при физиче­ских взрывах систем со сжатыми газами и перегретыми жидкостями – по энергии адиабатического расширения па­рогазовых сред и перегрева жидкости.

Скорость высвобождения энергии в общем случае вы­ражается удельной мощностью , т. е. количеством энергии, выделяемой в единицу времени на единицу объема. При химических взрывах скорость энерговыделения можно оп­ределить по скоростям распространения детонации или пламени в газовой среде. Скорость распространения дето­нации в твердом или жидком ВВ приблизительно соответ­ствует скорости звука в веществе и находится в интервале 2 . 10 3 -9 . 10 3 м/с; при газовых физических и химических взрывах волны сжатия двигаются со скоростью, близкой к скорости звука в воздухе.

Химические взрывы, вызываемые экзотермическими реакциями разложения в конденсированных ВВ или неус­тойчивых соединениях в газовой фазе, сопровождаются об­разованием (увеличением) числа моль газов. Например, при взрыве 1 кг тринитротолуола (ТНТ), являющегося вещест­вом с отрицательным кислородным балансом, образуется приблизительно 20 моль газов (паров) (0,6 – СО; 10,0 – СО 2 ; 0,8 – Н 2 О; 6,0 – N 2 ; 0,4 – NH 3 ; 4,7 –СН 3 ОН; 1,0 – HCN) и 15 моль угле­рода. Большинство других бризантных ВВ (за исключением нитроглицерина) также являются веществами с отрицатель­ным кислородным балансом, т. е. числа атомов кислорода в их молекулах недостаточно для полного превращения имеющихся атомов углерода в СО 2 и водорода в Н 2 О.Спо­собность вещества к взрывному процессу подчиняется за­конам термохимии, согласно которым, если в данной реакции сумма теплот образования продуктов меньше теплоты образования исходного соединения, то это вещество потен­циально взрывоопасно. Например, если вещество А, разла­гающееся по реакции А → B + C + D, взрывоопасно, то долж­но соблюдаться условие:

q(A) ≥ q(B) + q(C) + q(D),

где q – эн­тальпия (теплота) образования; qимеет положительные зна­чения для соединений, образующихся с поглощением тепла (эндотермические процессы) и отрицательное для соедине­ний образующихся с выделением тепла (экзотермические процессы).

Таким образом можно оценить лишь способность вещества к взрывному процессу, а энергию и мощность взрыва определяют по скорости реакции.

Источниками энергии взрывов могут быть окислительно-восстановительные химические реакции, в которых
воздух или кислород взаимодействуют с восстановителем.
Наряду с горючими газами восстановителями могут быть
мелкодисперсные горючие твердые вещества (пыли) или
диспергированные жидкости. Окислительно-восстановительные реакции в этих условиях могут проте­кать как в замкнутых, так и незамкнутых объемах с доста­точно высокими скоростями, при которых генерируются ударные волны, способные вызвать ощутимые разрушения.

    Введение

    Взрыв. Классификация взрывов

    Особенности взрывов

    Заключение

    Используемая литература

Введение

Чрезвычайная ситуация (ЧС)- это состояние или обстановка в определенной территории, сложившийся в результате аварии, катастрофы, опасного явления, стихийного или иного бедствия, которые могут повлечь или уже повлекли за собой за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери, нарушение условий нормальной жизнедеятельности человека.

В большинстве случаев техногенные аварии связаны с неконтролируемым, самопроизвольным выходом в окружающее пространство вещества или энергии. Самопроизвольное высвобождение энергии приводит к промышленным взрывам, а вещества – к взрывам, пожарам и химическому загрязнению окружающей среды.

Существуют различные классификации чрезвычайных ситуаций. Наиболее часто за основание классификации выбирают характер возникновения (генезис) чрезвычайной ситуации. По природе (сфере) возникновения все ЧС условно можно разделить на следующие большие группы:

    Техногенные ЧС, связанные по происхождению с техническими объектами или технологическими процессами (выбросы радиоактивных веществ, аварии на химических опасных объектах, пожары и взрывы, разрушение строительных конструкций, транспортные катастрофы и т.д.) в том числе антропогенные ЧС, вызванные негативным влиянием самого человека на техносферу (ошибочные и несвоевременные действия операторов, диспетчеров, пилотов, водителей и т.д.)

    Природные ЧС, связанные с воздействием стихийных явлений физической природы (наводнение, землетрясения, ураганы и т.д.) на человека и его среду обитания, а также биологические ЧС и экологические ЧС.

    Социальные ЧС, связанные с масштабными событиями в обществе и государстве (войны, вооруженные конфликты, столкновения на межнациональной и межрелигиозной основе и т.д.)

    Комбинированные ЧС, имеющие сочетанный, инициированный характер различных видов вышеназванных групп ЧС.

В этой работе мы рассмотрим лишь небольшую группу, относящуюся к техногенным ЧС.

Взрыв. Классификация взрывов.

Взрыв - процесс быстрого неуправляемого физического или химического превращения системы, сопровождающейся переходом ее потенциальной энергии в механическую работу. Механическая работа, совершаемая при взрыве, обусловлена быстрым расширением газов или паров независимо от того, существовали ли они до взрыва или образовались во время взрыва. В основе взрывного процесса, могут лежать как физические (разрушение сосуда со сжатым газом или с перегретой жидкостью), так и химические превращения (детонация конденсированного взрывчатого вещества, быстрое сгорание газового облака). Самым существенным признаком взрыва является резкий скачок давления в среде, обуславливающий образование ударной волны, распространяющееся на некоторое расстояние от места взрыва.

При химических взрывах взрывчатые вещества могут быть твердыми, жидкими, газообразными, а также аэровзвесями горючих веществ (жидких и твердых) в окислительной среде (часто в воздухе). Твердые и жидкие взрывчатые вещества в большинстве случаев относятся к классу конденсированных взрывчатых веществ (ВВ). При инициировании взрыва в этих веществах с огромной скоростью протекают экзотермические окислительно-восстановительные реакции или реакции термического разложения с выделением тепловой энергии. Газообразные взрывчатые вещества представляют собой гомогенные смеси горючих газов (паров) с газообразными окислителями - воздухом, кислородом, хлором и др. Взрывоопасные аэровзвеси состоят из мелкодисперсных частиц горючих жидкостей (туманов) или твердых веществ (пылей) в окислительной среде, чаще всего в воздухе.

Физический взрыв чаще всего связан с неконтролируемым высвобождением потенциальной энергии сжатых газов из замкнутых объемов машин и аппаратов. Сила взрыва сжатого или сниженного газа зависит от внутреннего давления, а разрушения вызываются ударной волной от расширяющегося газа (пара) и осколками разорвавшегося резервуара.

Параметрами, определяющими мощность взрыва, являются энергия взрыва и скорость ее выделения. Энергия взрыва определяется физико-химическими превращениями, протекающими при различных типах взрывов. Для парогазовых сред энергию взрыва определяют по теплоте сгорания горючих веществ в с смеси с воздухом; конденсированных ВВ- по теплоте, выделяющейся при детонации (реакции разложения); при физических взрывах систем со сжатыми газами и перегретыми жидкостями- по энергии адиабатического расширения парогазовых сред и перегрева жидкости.

В производственных условиях возможны следующие основные виды взрывов: свободный воздушный, наземный, взрыв в непосредственной близости от объекта, а также взрыв внутри объекта (производственного сооружения).

При воздушном взрыве ударная сферическая волна достигает земной поверхности и отражается от нее. На некотором расстоянии от эпицентра взрыва (проекции центра взрыва на земную поверхность) фронт отраженной волны сливается с фронтом падающей, вследствие чего образуется так называемая головная волна, вертикальным фронтом, распространяющаяся от эпицентра вдоль земной поверхности.

Характер воздушной ударной волны при наземной взрыве (за пределами воронки) соответствует дальней зоне воздушного взрыва. Таким образом, как при воздушном, так и при наземном взрывах обычно рассматривают воздушную ударную волну, распространяющуюся от эпицентра с вертикальным фронтом. При подходе ударной волны к преграде она отражается и происходит торможение масс движущегося воздуха, что приводит к повышению избыточного давления в 2…8 раз.

После начального взаимодействия с преградой (препятствием) ударная волна начинает его обтекать и под действие давления уже попадают боковые и тыльные поверхности преграды. Она как бы оказывается в сжатом состоянии со всех сторон, однако наибольшее давление оказывается на фронтальную часть препятствия.

Копирование технологических объектов по взрывоопасности производится по значениям показателей Q в =(16,534) -1 *E 1/3 .

Энергетический эквивалент взрыва тротила W=E/4520 кг, где Е полная энергия взрыва.

По этим показателям технологические объекты подразделяются на три категории:

Взрыв внутри объекта характеризуется тем, что нагрузка воздействует на объект изнутри. При взрыве смеси внутри объекта, заполненного частично, на последствия взрыва будет влиять местоположение взрывоопасного облака. В общем случае последствие взрывов внутри помещения во многом будут определяться максимально возможным избыточным давлением взрыва ∆р, расчет которого возможно производить по следующему соотношению:

∆р=WZ p0 H T 1/K H N 0 C B p B V C K ,

Где W-масса горючего газа, пара ЛЖВ или взвешенной в воздухе горючей пыли, поступившей в объем помещения, кг; Z-коэффициент участия горючего вещества во взрыве; р 0 -атмосферное давление, равное 101 кПа; Н т - теплота сгорания поступившего в помещение вещества; К н - коэффициент учитывающий негерметичность помещения(принимается равным трем); Т 0 -температура в помещении (можно принять равной 293К); С в - теплоемкость воздуха (можно принять равной 1,01 кДж/(кг*К)); р в - плотность воздуха (можно принять равной 1,2 кг/м 3); V с - свободный объем помещения, м 3 ; K=k B t+1-коэффициент, учитывающий наличие в помещении аварийной вентиляции (k B -кратность воздуха обмена в помещении, с -1 ; t-время поступления взрывоопасных веществ в помещении, с).

Особенности взрывов

Взрывы систем повышенного давления сопровождаются разлетом осколков. На сообщение осколкам кинетической энергии тратится до 60% энергии расширения газов, а 40 %- на формировании ударной волны. При взрывах большая часть осколков (до 80%) разлетается на расстояние 200 м, меньшая (20%) на расстояния до 1000 м, отдельные осколки могут разлетаться на расстояния до 3 км. Направления разлета осколков для цилиндрических сосудов со сниженными газами характеризуются схемой, представленной на рис 9.4. за безопасное расстояние для людей можно принимать величину, превышающую 1000 м.

Большие газовые облака могут образовываться при утечках или внезапном разрушении герметичных емкостей, трубопроводах и т.д. Процесс взрыва или горения таких газовых облаков имеет ряд специфических особенностей. Образующиеся в атмосфере газовые облака чаще всего имеют сигарообразную форму, вытянутую по направлению ветра. Инициаторы горения или взрыва в этих случаях носят чаще всего случайный характер. Причем воспламенение не всегда сопровождается взрывом.

При плохом перемешивании газообразных веществ с атмосферным воздухом взрыва вообще не наблюдается. В этом случае при воспламенении газо - или паровоздушной смеси от места инициирования будет распространяться «волна горения». Так как распространение пламени происходит со сравнительно низкой скоростью, то в волне горения давление не повышается. В таком процессе наблюдается только расширение продуктов горения за счет их нагрева в зоне пламени. Медленный режим горения облака с наружной поверхности с большим выделением лучистой энергии может привести к образованию множества очагов пожара на промышленном объекте.

При оценке разрушительного действия взрыва газового облака в открытом пространстве определяющим будет скоростной напор во фронте пламени. Для пламени предельных углеводов скоростной напор в открытом пространстве может достигать 26кПа.

Заключение

Чрезвычайная ситуация (ЧС)- это состояние или обстановка на определенной территории, сложившийся в результате катастрофы или стихийного бедствия и повлекшие человеческие жертвы, значительный ущерб здоровью людей или окружающей природной среде.

По сфере возникновения различают техногенные, природные (физические, биологические), социальные и комбинированные ЧС.

По масштабам последствий их делят на локальные, местные, территориальные, региональные, федеральные и трансграничные.

По структуре развития ЧС имеют следующие основные фазы: накопление отклонений, инициирующего события, активного развития, действия остаточных и вторичных поражающих факторов, активной ликвидации последствий.

Государственная система предупреждения и ликвидации ЧС (РСЧС) имеет следующие структурные уровни: федеральный, межрегиональный, региональный, муниципальный и объектовый.

Основными направлениями деятельности РСЧС являются профилактика и предупреждения ЧС (как основное и способное снизить ущерб от ЧС), аварийно-спасательные работы и ликвидация последствий ЧС.

Система градации состояний угрозы ЧС, принятая в РСЧС, требует большей дифференциации и введения дополнительных уровней угроз.

Используемая литература

    Безопасность жизнедеятельности. Учебник для студентов Б 40/С.В. Белов, В.А. Девисилов, А.Ф. Козьяков и др.; Под общ. Ред. С.В. Белова.

    Безопасность жизнедеятельности: конспект лекций.-М.: Юрайт-Издат,2008.191с.

    Экология и безопасность жизнедеятельности:учеб.пособие для вузов/Д.А.Кривошеин, Л.А. Муравей, Н.Н. Роева и др.; Под ред. Л.А. Муравей

  1. Техногенные черезвычайные ситуации . Пожары

    Реферат >>

    ... – рассмотреть особенности техногенных чрезвычайных ситуаций на примере пожаров . При написании... Следствием горения может быть пожар и взрыв . Пожар – это горение вне... сопровождается появлением пламени. Взрыв - процесс чрезвычайно быстрого, под влиянием...

  2. Техногенные чрезвычайные ситуации

    Реферат >> Безопасность жизнедеятельности

    ... техногенная чрезвычайная ситуация . К опасным техногенным происшествиям относят аварии на промышленных объектах или на транспорте, пожары , взрывы ...

  3. Экологическая безопасность человека, биосферы и промышленных объектов в условиях техногенных чрезвычайных ситуаций и аварий

    Курсовая работа >> Экология

    Промышленных объектов в условиях техногенных чрезвычайных ситуаций и аварий 1. Основные понятия Чрезвычайная ситуация - это обстановка на определенной... веществами является возможность их потенциального взрыва

Воздушная ударная волна взрыва вызывает разрушения или повреждения железнодорожного пути, подвижного состава, зданий, элементов связи, СЦБ, железнодорожного водоснабжения и других элементов инженерно-технического комплекса (ИТК)* железнодорожного транспорта.

Качественное состояние разрушенных элементов ИТК в зонах чрезвычайных ситуаций оценивается соответствующей степенью разрушения: полной, сильной, средней и слабой.

Полные разрушения характеризуются разрушением или обрушением всех или большей части несущих конструкций, капитальных стен, сильной деформацией или обрушением межэтажных и потолочных перекрытий, пролетных строений мостов. При этом обломки зданий и сооружений создают сплошные завалы. Основные элементы железнодорожного пути полностью выходят из строя. Подвижной состав, путевые машины, станционное оборудование и аппаратура не подлежат восстановлению.

Использование элементов машин, подвижного состава и разрушенных частей сооружений невозможно.

Сильные разрушения характеризуются разрушением части капитальных и большинства остальных стен зданий, деформацией пролетных строений мостов, большинства опор контактной сети и ЛЭП. Восстановление железнодорожного пути и сооружений возможно, но нецелесообразно, так как практически сводится к новому строительству с использованием некоторых сохранившихся элементов и конструкций. Технические и транспортные средства ремонту не подлежат, отдельные их детали в дальнейшем могут быть использованы при ремонте.

Средние разрушения характеризуются разрушением второстепенных элементов (внутренних перегородок, окон, крыш), появлением трещин в стенах, обрушением чердачных перекрытий и отдельных участков верхних этажей. Вокруг зданий завалов не образуется, но отдельные обломки конструкций могут быть отброшены на значительные расстояния. Железнодорожный путь получает деформацию. Деформируются отдельные элементы пролетных строений мостов, отдельные опоры ЛЭП, контактной сети и линии связи. Возможно восстановление зданий, железнодорожного пути, сооружений, подвижного состава, транспортных и других технических средств с использованием капитального и среднего ремонта.

Слабые разрушения зданий характеризуются разрушением наименее прочных конструкций: оконных и дверных заполнений, легких перегородок, кровли. Оборудование получает незначительные деформации второстепенных элементов. Восстановление железнодорожного пути, сооружений, подвижного состава и техники требует текущего ремонта.

В связи с тем, что при полном и сильном разрушениях здания, сооружения и технические средства не восстанавливаются, в справочных данных и расчетах часто используют только три степени разрушений -сильную, среднюю и слабую.

При воздействии одних и тех же параметров ударной волны взрыва на различные элементы ИТК степень их разрушения будет неодинакова в связи с различной их физической устойчивостью.

Под физической устойчивостью следует понимать способность сооружения противостоять воздействию внешних нагрузок в чрезвычайной ситуации. Эта способность является свойством сооружения, которое зависит от его размеров, конструктивных и других параметров и не зависит от каких-либо внешних факторов. К таким параметрам, например, относятся: жесткость конструкции, наличие фундамента, закрепление элементов и другие прочностные свойства; материал; масса и положение центра тяжести; размеры элементов и их конфигурация; площадь опоры; расстояние между опорными частями и др.

Например, при одних и тех же внешних нагрузках наибольшим разрушениям подвергаются многоэтажные жилые здания без каркаса с несущими стенами из кирпича, панелей и блоков. Наибольшие нагрузки выдерживают массивные промышленные здания с металлическим каркасом и внутренним крановым оборудованием большой грузоподъемности, для которых устраиваются несущие колонны, что делает конструкцию здания более жесткой и прочной.

Высокие внешние нагрузки выдерживает верхнее строение железнодорожного пути, имеющее жесткую конструкцию (соединение балластного слоя, шпал и рельсов), незначительное возвышение над поверхностью земли и малый коэффициент аэродинамического сопротивления.

Среди различных видов железнодорожного подвижного состава наибольшей устойчивостью к воздействию внешних нагрузок при взрывах обладают четырехосные незагруженные платформы (малые размеры при значительной массе), груженые цистерны (малый коэффициент аэродинамического сопротивления) и локомотивы. Наименее устойчивыми являются пассажирские вагоны и крытые порожние грузовые вагоны (значительные размеры и относительно малая масса).

Сравнительная оценка устойчивости (по степеням разрушения) элементов ИТК при взрывах производится с помощью единого количественного показателя - величины избыточного давления во фронте ударной волны


Если определяющим фактором при разрушении сооружения является не избыточное давление во фронте воздушной ударной волны ΔР ф, а давление скоростного напора воздуха ΔР ск (при отсутствии опытных данных о степени разрушений сооружений при соответствующих значениях ΔР ф ), то устойчивость сооружения рассчитывается на действие давления скоростного напора ΔР ск . Расчетные значения ΔР ск пересчитываются по формуле (3.1) или графику (рис. 3.3) в ΔР ф , что позволяет сравнивать устойчивость сооружений и определять степень их разрушений с использованием единого показателя ΔР ф , (Расчеты устойчивости сооружений представлены в главе 8.)

Характер зависимости степени разрушения сооружения от величины избыточного давления во фронте ударной волны ΔР ф может быть пред-ставлен в виде графика (рис. 3.7).

Для оценки сопротивляемости сооружений и устройств действию ударной волны необходимо знать их предел устойчивости - предельное значение избыточного давления во фронте воздушной ударной волны, при превышении которого функционирование сооружений и устройств невозможно.

Рис. 3.7. Характер зависимости степени разрушения от величины избыточного давления во фронте ударной волны:

I - зона слабых разрушений; II - зона средних разрушений; III - зона сильных разрушений; IV - зона полных разрушений; - предел устойчивости сооружения;

Радиус функционирования - удаление от центра взрыва, на котором численно равно пределу устойчивости


За предел устойчивости элемента ИТК принимается нижняя граница средних разрушений (на определенном расстоянии от центра взрыва ) (рис. 3.7).

Смысл указанного положения состоит в том, что, попадая в зону I - слабых разрушений (рис. 3.7), сооружению требуется текущий ремонт, но его временное использование возможно с определенными ограничениями.

При превышении предела устойчивости сооружения (попадании его в зону II) дальнейшее использование сооружения становится невозможным без проведения среднего ремонта.

Таким образом, предел устойчивости и степень разрушения элементов ИТК количественно характеризуются граничными значениями ΔР ф, Для основных сооружений и устройств железнодорожного транспорта эти значения приведены в табл. 3.3.

Указанные в табл. 3.3 интервалы с минимальными и максимальными значениями избыточного давления, характеризующие определенную степень разрушения, учитывают возможные различия в конструкции сооружений и положении сооружений по отношению к направлению распространения фронта ударной волны.

Для железнодорожного пути и подвижного состава данные табл. 3.3 приведены для случая, когда фронт ударной волны распространяется перпендикулярно к оси пути и боковой стороне подвижного состава (наихудший вариант). При распространении ударной волны вдоль оси железнодорожного пути подвижной состав выдерживает избыточное давление (давление скоростного напора) в 1,5-2 раза больше табличных значений, а железнодорожный путь получает сильные и полные разрушения в основном в пределах радиуса воронки.

В табл. 3.3 значения величины давления во фронте ударной волны, вызывающие определенную степень разрушения, приведены для ядерного взрыва. Считается, что одинаковая степень разрушения ударной волной от ядерного взрыва и взрыва ВМ, ГВС или УВГ имеет место, если давление во фронте ударной волны взрыва этих взрывоопасных веществ примерно в 1,5 раза выше давления во фронте ударной волны ядерного взрыва. (Для ВМ, ГВС и УВГ табличные данные увеличиваются в 1,5 раза).

В отличие от городов и объектов экономики, содержащих, как правило, однотипные элементы - здания, на объектах железнодорожного (транспорта размещаются многообразные виды сооружений и устройств,

обеспечивающие движение поездов и имеющие неодинаковую устойчивость. По этой причине на объектах железнодорожного транспорта в зоне аварийных взрывов невозможно выделить общие зоны полных, сильных, средних и слабых разрушений. Для каждого вида сооружений эти зоны будут иметь свои размеры.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...