Значение высшей степени окисления азота равно. Соединения азота


Соединения со степенью окисления –3. Соединения азота в степени окисления -3 представлены аммиаком и нитридами металлов.

Аммиак - NH 3 - бесцветный газ с характерным резким запахом. Молекула аммиака имеет геометрию тригональной пирамиды с атомом азота в вершине. Атомные орбитали азота находятся в sp 3 -гибридном состоянии. Три орбитали задействованы в образовании связей азот-водород, а четвертая орбиталь содержит неподеленную электронную пару, молекула имеет пирамидальную форму. Отталкивающее действие неподеленной пары электронов приводит к уменьшению валентного угла от ожидаемого 109,5 до 107,3 °.

При температуре -33,4 °С аммиак конденсируется, образуя жидкость с очень высокой теплотой испарения, что позволяет использовать его в качестве хладагента в промышленных холодильных установках.

Наличие у атома азота неподеленной электронной пары позволяет ему образовать еще одну ковалентную связь по донорно-акцепторному механизму. Таким образом в кислой среде происходит образование молекулярного катиона аммония - NH 4 + . Образование четвертой ковалентной связи приводит к выравниванию валентных углов (109,5 °) за счет равномерного отталкивания атомов водорода.

Жидкий аммиак хороший самоионизирующийся растворитель:

2NH 3 NH 4 + + NH 2 -

амид-анион

В нем растворяются щелочные и щелочноземельные металлы, образуя окрашенные токопроводящие растворы. В присутствии катализатора (FeCl 3) растворенный металл реагирует с аммиаком c выделением водорода и образованием амида, например:

2Na + 2NH 3 = 2NaNH 2 + H 2 ­

амид натрия

Аммиак очень хорошо растворим в воде (при 20 °С в одном объеме воды растворяется около 700 объемов аммиака). В водных растворах проявляет свойства слабого основания.

NH 3 + H 2 O ® NH 3 ×H 2 O NH 4 + + OH -

= 1,85·10 -5

В атмосфере кислорода аммиак горит с образованием азота, на платиновом катализаторе аммиак окисляется до оксида азота(II):

4NH 3 + 3O 2 = 2N 2 + 6H 2 O; 4NH 3 + 5O 2 = 4NO + 6H 2 O

Как основание аммиак реагирует с кислотами, образуя соли катиона аммония, например:

NH 3 + HCl = NH 4 Cl

Соли аммония хорошо растворимы в воде и слабо гидролизованы. В кристаллическом состоянии термически нестойки. Состав продуктов термолиза зависит от свойств кислоты, образующей соль:

NH 4 Cl ® NH 3 ­ + HCl­; (NH 4) 2 SO 4 ® NH 3 ­ + (NH 4)HSO 4

(NH 4) 2 Cr 2 O 7 ® N 2 + Cr 2 O 3 + 4H 2 O

При действии на водные растворы солей аммония щелочей при нагревании выделяется аммиак, что позволяет использовать данную реакцию как качественную на соли аммония и как лабораторный метод получения аммиака.

NH 4 Cl + NaOH = NaCl + NH 3 ­ + H 2 О

В промышленности аммиак получают прямым синтезом.

N 2 + 3H 2 2NH 3

Поскольку реакция сильно обратима, синтез ведут при повышенном давлении (до 100 мПа). Для ускорения процесс проводят в присутствии катализатора (губчатое железо, промотированное добавками) и при температуре около 500 °С.

Нитриды образуются в результате реакций многих металлов и неметаллов с азотом. Свойства нитридов закономерно изменяются в периоде. Например, для элементов третьего периода:

Нитриды s-элементов I и II групп представляют собой кристаллические солеподобные вещества, легко разлагающиеся водой с образованием аммиака.

Li 3 N + 3H 2 O = 3LiOH + NH 3

Из нитридов галогенов в свободном состоянии выделен только Cl 3 N, кислотный характер проявляется в реакции с водой:

Cl 3 N + 3H 2 O = 3HClO + NH 3

Взаимодействие нитридов разной природы приводит к образованию смешанных нитридов:

Li 3 N + AlN = Li 3 AlN 2 ; 5Li 3 N + Ge 3 N 4 = 3Li 5 GeN 3

нитридоалюминат нитридогерманат(IV) лития

Нитриды ВN, AlN, Si 3 N 4 , Ge 3 N 4 – твердые полимерные вещества с высокими температурами плавления (2000-3000 °С), они полупроводники или диэлектрики. Нитриды d-металлов - кристаллические соединения переменного состава (бертолиды), очень твердые, тугоплавкие и химически устойчивые, проявляют металлические свойства: металлический блеск, электропроводность.

Соединения со степенью окисления –2. Гидразин - N 2 H 4 - наиболее важное неорганическое соединение азота в степени окисления -2.

Гидразин представляет собой бесцветную жидкость, с температурой кипения 113,5 °С, дымящуюся на воздухе. Пары гидразина чрезвычайно ядовиты и образуют с воздухом взрывообразные смеси. Получают гидразин, окисляя аммиак гипохлоритом натрия:

2N -3 H 3 + NaCl +1 O = N 2 -2 H 4 + NaCl -1 + H 2 O

Гидразин смешивается с водой в любых соотношениях и в растворе ведет себя как слабое двухкислотное основание, образуя два ряда солей.

N 2 H 4 + H 2 O N 2 H 5 + + OH - , K b = 9,3×10 -7 ;

катион гидрозония

N 2 H 5 + + H 2 O N 2 H 6 2+ + OH - , K b = 8,5×10 -15 ;

катион дигидрозония

N 2 H 4 + HCl N 2 H 5 Cl; N 2 H 5 Cl + HCl N 2 H 6 Cl 2

хлорид гидрозония дихлорид дигидрозония

Гидразин сильнейший восстановитель:

4KMn +7 O 4 + 5N 2 -2 H 4 + 6H 2 SO 4 = 5N 2 0 + 4Mn +2 SO 4 + 2K 2 SO 4 + 16H 2 O

Несимметричный диметилгидразин (гептил) широко применяется в качестве ракетного топлива.

Соединения со степенью окисления –1. Гидроксиламин - NH 2 OH - основное неорганическое соединение азота в степени окисления -1.

Получают гидроксиламин восстановлением азотной кислоты водородом в момент выделения при электролизе:

HNO 3 + 6H = NH 2 OH + 2H 2 O

Это бесцветное кристаллическое вещество (т.пл. 33 °С), хорошо растворимое в воде, в которой проявляет свойства слабого основания. С кислотами дает соли гидроксиламмония – устойчивые бесцветные вещества, растворимые в воде.

NH 2 OH + H 2 O + + OH - , K b = 2×10 -8

ион гидроксиламмония

Атом азота в молекуле NH 2 OН проявляет промежуточную степень окисления (между -3 и +5) поэтому гидроксиламин может выступать как в роли восстановителя, так и в роли окислителя:

2N -1 H 2 OH + I 2 + 2KOH = N 0 2 + 2KI + 4H 2 O;

восстановитель

2N -1 H 2 OH + 4FeSO 4 + 3H 2 SO 4 = 2Fe 2 (SO 4) 3 + (N -3 H 4) 2 SO 4 + 2H 2 O

окислитель

NH 2 OН легко разлагается при нагревании, подвергаясь диспропорционированию:

3N -1 H 2 OH = N 0 2 + N -3 H 3 + 3H 2 O;

Соединения со степенью окисления +1. Оксид азота(I) - N 2 O (закись азота, веселящий газ). Строение его молекулы можно передать резонансом двух валентных схем, которые показывают, что рассматривать это соединение как оксид азота(I) можно только формально, реально это оксонитрид азота(V) - ON +5 N -3 .

N 2 O - бесцветный газ со слабым приятным запахом. В малых концентрациях вызывает приступы безудержного веселья, в больших дозах оказывает общее анестезирующее действие. Смесь закиси азота (80%) и кислорода (20%) использовалась в медицине для наркоза.

В лабораторных условиях оксид азота(I) можно получить разложением нитрата аммония. N 2 O, полученный данным методом, содержит примеси высших оксидов азота, которые чрезвычайно токсичны!

NH 4 NO 3 ¾® N 2 O + 2H 2 O

По химическим свойствам оксид азота(I) типичный несолеобразующий оксид, с водой, кислотами и щелочами не реагирует. При нагревании разлагается с образованием кислорода и азота. По этой причине N 2 O может выступать в роли окислителя, например:

N 2 O + H 2 = N 2 + H 2 O

Соединения со степенью окисления +2. Оксид азота(II) - NO - бесцветный газ, чрезвычайно токсичен. На воздухе быстро окисляется кислородом с образованием не менее токсичного оксида азота(IV). В промышленности NO получают окислением аммиака на платиновом катализаторе или, пропуская воздух через электрическую дугу (3000-4000 °С).

4NH 3 + 5О 2 = 4NО + 6H 2 О; N 2 + O 2 = 2NO

Лабораторным методом получения оксида азота(II) является взаимодействие меди с разбавленной азотной кислотой.

3Cu + 8HNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO­ + 4H 2 O

Оксид азота(II) - несолеобразующий оксид, сильный восстановитель, легко реагирует с кислородом и галогенами.

2NO + O 2 = 2NO 2 ; 2NO + Cl 2 = 2NOCl

хлористый нитрозил

В то же время, при взаимодействии с сильными восстановителями NO выполняет функцию окислителя:

2NO + 2H 2 = N 2 + 2H 2 O; 10NO + 4Р = 5N 2 + 2Р 2 O 5

Соединения со степенью окисления +3. Оксид азота(III) - N 2 O 3 - жидкость интенсивно синего цвета (т.кр. -100 °С). Устойчив только в жидком и твердом состоянии при низких температурах. По-видимому, существует в двух формах:

Получают оксид азота(III) совместной конденсацией паров NO и NO 2 . В жидкости и в парах диссоциирует.

NO 2 + NO N 2 O 3

По свойствам типичный кислотный оксид. Реагирует с водой, образуя азотистую кислоту, с щелочами образует соли - нитриты.

N 2 O 3 + H 2 O = 2HNO 2 ; N 2 O 3 + 2NaOH = 2NaNO 2 + H 2 O

Азотистая кислота - кислота средней силы (K a = 1×10 -4). В чистом виде не выделена, в растворах существует в двух таутомерных формах (таутомеры - изомеры, находящиеся в динамическом равновесии).

нитрито-форма нитро-форма

Соли азотистой кислоты устойчивы. Нитрит-анион проявляет ярко выраженную окислительно-восстановительную двойственность. В зависимости от условий он может выполнять как функцию окислителя, так и функцию восстановителя, например:

2NaNO 2 + 2KI + 2H 2 SO 4 = I 2 + 2NO + K 2 SO 4 + Na 2 SO 4 + 2H 2 O

окислитель

KMnO 4 + 5NaNO 2 + 3H 2 SO 4 = 2MnSO 4 + 5NaNO 3 + K 2 SO 4 + 3H 2 O

восстановитель

Азотистая кислота и нитриты склонны к диспропорционированию:

3HN +3 O 2 = HN +5 O 3 + 2N +2 O + H 2 O

Соединения со степенью окисления +4. Оксид азота(IV) - NO 2 - бурый газ, с резким неприятным запахом. Чрезвычайно токсичен! В промышленности NO 2 получают окислением NO. Лабораторным методом получения NO 2 является взаимодействие меди с концентрированной азотной кислотой, а также термическое разложение нитрата свинца.

Cu + 4HNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O;

2Pb(NO 3) 2 = 2PbO + 4NO 2 + O 2

Молекула NO 2 имеет один неспаренный электрон и является стабильным свободным радикалом, поэтому оксид азота легко димеризуется.

Процесс димеризации обратим и очень чувствителен к температуре:

парамагнитен, диамагнитен,

бурый бесцветен

Диоксид азота - кислотный оксид, взаимодействует с водой, образуя смесь азотной и азотистой кислоты (смешанный ангидрид).

2NO 2 + H 2 O = HNO 2 + HNO 3 ; 2NO 2 + 2NaOH = NaNO 3 + NaNO 2 + H 2 O

Соединения со степенью окисления +5. Оксид азота(V) - N 2 O 5 - белое кристаллическое вещество. Получается дегидратацией азотной кислоты или окислением оксида азота(IV) озоном:

2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3 ; 2NO 2 + O 3 = N 2 O 5 + O 2

В кристаллическом состоянии N 2 O 5 имеет солеподобное строение - + - , в парах (т.возг. 33 °С) - молекулярное.

N 2 O 5 - кислотный оксид - ангидрид азотной кислоты:

N 2 O 5 + H 2 O = 2HNO 3

Азотная кислота - HNO 3 - бесцветная жидкость с температурой кипения 84,1 °С, при нагревании и на свету разлагается.

4HNO 3 = 4NO 2 + O 2 + 2H 2 O

Примеси диоксида азота придают концентрированной азотной кислоте желто-бурую окраску. С водой азотная кислота смешивается в любых соотношениях и является одной из сильнейших минеральных кислот, в растворе нацело диссоциирует.

Строение молекулы азотной кислоты описывается следующими структурными формулами:

Сложности с написанием структурной формулы HNO 3 вызваны тем обстоятельством, что, проявляя в данном соединении степень окисления +5, азот, как элемент второго периода, может образовать только четыре ковалентные связи.

Азотная кислота - один из сильнейших окислителей. Глубина ее восстановления зависит от многих факторов: концентрация, температура, восстановитель. Обычно при окислении азотной кислотой образуется смесь продуктов восстановления:

HN +5 O 3 ® N +4 O 2 ® N +2 O ® N +1 2 O ® N 0 2 ® +

Превалирующим продуктом окисления концентрированной азотной кислотой неметаллов и неактивных металлов является оксид азота(IV):

I 2 + 10HNO 3 (конц) = 2HIO 3 + 10NO 2 + 4H 2 O;

Pb + 4HNO 3 (конц) = Pb(NO 3) 2 + 2NO 2 + 2H 2 O

Концентрированная азотная кислота пассивирует железо и алюминий. Алюминий пассивируется даже разбавленной азотной кислотой. Азотная кислота любой концентрации не действует на золото, платину, тантал, родий и иридий. Золото и платина растворяется в царской водке - смеси концентрированной азотной и соляной кислот в соотношении 1: 3.

Au + HNO 3 + 4HCl = H + NO + 2H 2 O

Сильное окисляющее действие царской водки обусловлено образование атомарного хлора при распаде хлористого нитрозила - продукта взаимодействия азотной кислоты с хлороводородом.

HNO 3 + 3HCl = Cl 2 + NOCl + 2H 2 O;

NOCl = NO + Cl×

Эффективным растворителем малоактивных металлов является смесь концентрированной азотной и плавиковой кислот.

3Ta + 5HNO 3 + 21HF = 3H 2 + 5NO + 10H 2 O

Разбавленная азотная кислота при взаимодействии с неметаллами и малоактивными металлами восстанавливается преимущественно до оксида азота(II), например:

3P + 5HNO 3 (разб) + 2H 2 O = 3H 3 PO 4 + 5NO­;

3Pb + 8HNO 3 (разб) = 3Pb(NO 3) 2 + 2NO­ + 4H 2 O

Активные металлы восстанавливают разбавленную азотную кислоту до N 2 O, N 2 или NH 4 NO 3 , например,

4Zn + 10HNO 3 (разб) = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Основная масса азотной кислоты идет на производство удобрений и взрывчатых веществ.

Получают азотную кислоту в промышленности контактным или дуговым способом, которые отличаются первой стадией - получением оксида азота(II). Дуговой способ основан на получении NO при пропускании воздуха через электрическую дугу. В контактном способе NO получают окислением аммиака кислородом на платиновом катализаторе. Далее оксид азота(II) окисляется до оксида азота(IV) кислородом воздуха. Растворяя NO 2 в воде в присутствии кислорода получают азотную кислоту с концентрацией 60-65%.

4NO 2 + O 2 + 2H 2 O = 4HNO 3

При необходимости азотную кислоту концентрируют перегонкой с концентрированной серной кислотой. В лаборатории 100 %-ную азотную кислоту можно получить действием концентрированной серной кислоты на кристаллический нитрат натрия при нагревании.

NaNO 3 (кр) + H 2 SO 4 (конц) = HNO 3 ­ + NaHSO 4

Соли азотной кислоты - нитраты - хорошо растворимы в воде, термически неустойчивы. Разложение нитратов активных металлов (исключая литий), стоящих в ряду стандартных электродных потенциалов левее магния, приводит к образованию нитритов. Например:

2KNO 3 = 2KNO 2 + O 2

При разложении нитратов лития, магния, а также нитратов металлов, расположенных в ряду стандартных электродных потенциалов правее магния, вплоть до меди, выделяется смесь оксида азота(IV) и кислорода. Например:

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

Нитраты металлов, расположенных в конце ряда активности, разлагаются до свободного металла:

2AgNO 3 = 2Ag + 2NO 2 + O 2

Нитраты натрия, калия и аммония широко используются для производства пороха и взрывчатых веществ, а также в качестве азотных удобрений (селитры). В качестве удобрений используют также сульфат аммония, аммиачную воду и карбамид (мочевину) - полный амид угольной кислоты:

Азид водорода (динитридонитрат) - HN 3 (HNN 2) – бесцветная летучая жидкость (т.пл. –80 °С, т.кип. 37 °С) с резким запахом. Центральный атом азота находится в sp-гибридизации, степень окисления +5, соседние с ним атомы имеют степень окисления –3. Структура молекулы:

Водный раствор HN 3 – азотистоводородная кислота по силе близка к уксусной, K a = 2,6×10 -5 . В разбавленных растворах устойчива. Её получают взаимодействием гидразина и азотистой кислоты:

N 2 Н 4 + HNO 2 = HN 3 + 2Н 2 О

По окислительным свойствам HN 3 (HN +5 N 2) напоминает азотную кислоту. Так, если при взаимодействии металла с азотной кислотой образуются оксид азота(II) и вода, то с азотистоводородной кислотой – азот и аммиак. Например,

Cu + 3HN +5 N 2 = Cu(N 3) 2 + N 2 0 ­ + NH 3

Смесь HN 3 и HCl ведет себя подобно царской водке. Соли азотистоводородной кислоты - азиды. Относительно устойчивы только азиды щелочных металлов, при температуре > 300 °С они разрушаются без взрыва. Остальные распадаются со взрывом при ударе или нагревании. Азид свинца используют в производстве детонаторов:

Pb(N 3) 2 = Pb + 3N 2 0 ­

Исходным продуктом для получения азидов является NaN 3 , который образуется в результате реакции амида натрия и оксида азота(I):

NaNH 2 + N 2 O = NaN 3 + H 2 O

4.2.Фосфор

Фосфор представлен в природе одним изотопом - 31 Р, кларк фосфора равен 0,05 мол.%. Встречается в виде фосфатных минералов: Ca 3 (PO 4) 2 - фосфорит, Ca 5 (PO 4) 3 X (X = F,Cl,OH) - апатиты. Входит в состав костей и зубов животных и человека, а также в состав нуклеиновых кислот (ДНК и РНК) и аденозинфосфорных кислот (АТФ, АДФ и АМФ).

Получают фосфор восстановлением фосфорита коксом в присутствии диоксида кремния.

Ca 3 (PO 4) 2 + 3SiO 2 + 5C = 3CaSiO 3 + 2P­ + 5CO

Простое вещество - фосфор - образует несколько аллотропных модификаций, из которых основными являются белый, красный и черный фосфор. Белый фосфор образуется при конденсации паров фосфора и представляет собой белое воскоподобное вещество (т.пл. 44 °С), нерастворимое в воде, растворимое в некоторых органических растворителях. Белый фосфор имеет молекулярное строение и состоит из тетраэдрических молекул P 4 .

Напряженность связей (валентный угол P-P-P составляет всего 60 °) обусловливает высокую реакционную способность и токсичность белого фосфора (смертельная доза около 0,1 г). Поскольку белый фосфор хорошо растворим в жирах, в качестве антидота при отравлении нельзя применять молоко. На воздухе белый фосфор самопроизвольно воспламеняется, поэтому хранят его в герметически упакованной химической посуде под слоем воды.

Красный фосфор имеет полимерное строение. Получается при нагревании белого фосфора или облучении его светом. В отличие от белого фосфора малореакционноспособен и нетоксичен. Однако остаточные количества белого фосфора могут придавать красному фосфору токсичность!

Черный фосфор получается при нагревании белого фосфора под давлением 120 тыс.атм. Имеет полимерное строение, обладает полупроводниковыми свойствами, химически устойчив и нетоксичен.

Химические свойства. Белый фосфор самопроизвольно окисляется кислородом воздуха при комнатной температуре (окисление красного и черного фосфора идет при нагревании). Реакция протекает в два этапа и сопровождается свечением (хемилюминесценция).

2P + 3O 2 = 2P 2 O 3 ; P 2 O 3 + O 2 = P 2 O 5

Ступенчато происходит также взаимодействие фосфора с серой и галогенами.

2P + 3Cl 2 = 2PCl 3 ; PCl 3 + Cl 2 = PCl 5

При взаимодействии с активными металлами фосфор выступает в роли окислителя, образуя фосфиды - соединения фосфора в степени окисления -3.

3Ca + 2P = Ca 3 P 2

Кислотами-окислителями (азотная и концентрированная серная кислоты) фосфор окисляется до фосфорной кислоты.

P + 5HNO 3 (конц) = H 3 PO 4 + 5NO 2 ­ + H 2 O

При кипячении с растворами щелочей белый фосфор диспропорционирует:

4P 0 + 3KOH + 3H 2 O = P -3 H 3 ­ + 3KH 2 P +1 O 2

фосфин гипофосфит калия

VА-подгруппу образуют р-элементы: азотN , фосфор

Р , мышьякAs , сурьмаSb и висмутBi .

Элементы N, P – типичные неметаллы,

у неметаллов As и Sb появляются некоторые свойства,

присущие металлам , у висмута металлические свойства

преобладают , хотя типичным металлом он не является.

Общая формула валентных электронов у элемен-

тов VА-группы –ns 2 np 3 .

трона . За счет трех неспаренных электроноввсе элементы в простых веществах образуют три ковалентные связи , но у азота три связи объединяют 2 атома, образуя очень проч-

ную молекулу N N, а у других элементов – каждый атом связан с тремя другими с образованием молекул типа Э4 (бе-

лый фосфор и желтый мышьяк) или полимерных структур.

У азота простое вещество в любом агрегатном состоянии состоит из отдельных молекул, при обычных условиях это газ. У всех остальных элементов простые вещества

– твердые.

Степень окисления (–3) для элементов VА-группы является минимальной.Наиболее устойчива она у N , при

переходе к Bi с увеличением числа электронных слоев ее устойчивость па-

дает. Элементы N, P, As, Sb с водородом образуют гидриды типа ЭН3 ,

проявляющие основные свойства , наиболее ярко они выражены у аммиа-

Исполнитель:

Мероприятие №

ка NH3 . В подгруппе устойчивость соединений ЭН3 и их основные свойст-

ва уменьшаются.

Все элементы VА-группы проявляют высшую степень окисления +5.

Все они образуют оксиды типа Э2 O5 (оксид Bi 2 О 5 – неустойчив) , которым соответствуют кислоты,сила кислот ослабевает при движении вниз по под-

Степень окисления +5 наиболее устойчива у Р. Соединения Bi(+5) –

очень сильные окислители. Сильные окислительные свойства проявляет азотная кислота, особенно концентрированная.

У висмута более устойчива степень окисления (+3), которая также достаточно устойчива у Sb и As. Соединения N(+3), и особенно

Р(+3), проявляют сильные восстановительные свойства.

В степени окисления +3 все элементы VА-группы образуют оксиды

типа Э 2 О 3 . Оксидам N и P соответствуют слабые кислоты. Оксиды и гидрокси-

ды As и Sb – амфотерны, основной характер преобладает у оксида и гидрокси-

да Bi(+3). Таким образом , в подгруппе кислотный характер оксидов и гид-

роксидов элементов в степени окисления (+3) ослабевает, и усиливаются

основные свойства, более характерные для гидроксидов металлов.

Элементы VА-группы, помимо перечисленных степеней окисления

5, +3, –3, проявляют и другие промежуточные степени окисления.

Для азота известны все степени окисления от –1 до +5.

Азот, как и все элементы второго периода, существенно отличается от своих электронных аналогов. По этой причине, а также из-за большого числа степеней окисления и многообразия соединений, химия азота рассматри-

вается отдельно от других элементов VА–подгруппы.

Наиболее распространенным в природе элементом VА-группы явля-

ется фосфор. Его содержание в земной коре – 0,09 масс. %; фосфор находит-

ся главным образом в виде фосфата кальция. Содержание азота – 0,03%, ос-

новная его доля сосредоточена в атмосфере в виде N2 .Содержание азота в

Исполнитель:

Мероприятие №

воздухе по объему составляет ~ 78 %. В очень малых количествах в зем-

ной коре встречаются нитраты натрия и калия (селитры). Мышьяк, сурьма и висмут относятся к редким элементам с содержанием в земной коре 10–5 5. 10–

4 %; в природе они находятся, в основном, в виде сульфидов.

Азот и фосфор – очень важные элементы биосферы, поэтому значи-

тельная часть производимых в химической промышленности нитратов и фос-

фатов используется в качестве удобрений, которые необходимы для жизнедея-

тельности растений. В организме человека N и Р играют важную роль, – азот

входит в состав аминокислот, являющихся составной частью белков, фосфор в

форме Ca5 [(PO4 )3 OH] входит в состав костей. В человеческом организме нахо-

дится в среднем около 1,8 кг N.

Некоторые характеристики атомов элементов VА-группы приведены в

Важнейшие характеристики атомов элементов VА-группы

Электроот-

рицатель-

ность (по

атома, нм

Поллингу)

увеличение числа элек-

тронных слоев;

увеличение размера атома;

уменьшение энергии иони-

уменьшение электроотри-

цательности;

Для сравнения – электроотрицательность Н – 2,2; О – 3,44 .

Азот от других элементов подгруппы отличается очень маленьким орби-

тальным радиусом и высокой электроотрицательностью, N – третий по элек-

троотрицательности элемент, после F и О.

Исполнитель:

Мероприятие №

Валентные электроны N –2s2 2p3 .

N 2s

Азот, подобно другим элементам второго периода,

заметно отличается от элементов своей подгруппы:

атом N имеет всего 4 валентные орбитали и в соединениях может обра-

зовать только 4 ковалентные связи;

из-за очень маленького атомного радиуса азот образует очень прочные

простое вещество в любом агрегатном состоянии состоит из отдельных

очень прочных молекул N

N и отличается высокой инертностью;

по электроотрицательности N уступает только F и О;

азот проявляет все возможные степени окисления: -3, –2, -1, 0, +1, +2, +3, +4, +5.

Большое число степеней окисления и многообразие соединений делает

химию азота весьма сложной. Сложность усугубляется также характерными для многих окислительно-восстановительных реакций кинетическими затруд-

нениями, обусловленными очень прочными кратными связями между атомами

N и атомами N и О. Поэтому электродные потенциалы мало помогают в опре-

делении продуктов ОВР.

Наиболее устойчивым соединением N является простое вещество.

В водных растворах, особенно кислых, очень устойчив ион NH4 + .

Азот является составной частью воздуха, из которого N 2 и получают.

Основное количество N2 используется для синтеза аммиака, из которого затем получают другие соединения азота.Среди соединений азота самое широкое практическое применение находят аммиак, азотная кислота и их соли .

Исполнитель:

Мероприятие №

Ежегодное мировое производство NH3 составляет ~ 97 млн. т/год, азотной ки-

слоты – 27 млн. т/год. Химия этих важнейших соединений N будет рассмот-

рена в первую очередь, после обсуждения свойств простого вещества.

Простое вещество

Молекула N2 – самая прочная из всех двухатомных молекул простых веществ.Три общие электронные пары в молекуле N N располагаются на свя-

зывающих орбиталях, на разрыхляющих орбиталях электронов нет, – это при-

водит к очень высокой энергии химической связи – 944 кДж/моль (для срав-

нения, энергия связи в молекуле О2 равна – 495 кДж/моль).Прочная связь обусловливает высокую инертность молекулярного азота . С химической инертностью азота связано название этого элемента. По-гречески «азот» озна-

чает "безжизненный".

При обычных условиях N2 – это бесцветный газ без запаха и вкуса.

Температуры кипения и плавления N2 близки: –196О С, и –210О С.

Азот получают фракционной перегонкой воздуха, – для этого воздух

при низких температурах сжижают, а затем начинают повышать температуру.

Из компонентов воздуха азот имеет самую низкую температуру кипения и

образует самую легкокипящую фракцию. При фракционной перегонке одно-

временно получают кислород и инертные газы.

Основное количество N2 идет на производство аммиака, кроме того,

азот применяют для создания инертной атмосферы, в том числе при производ-

стве некоторых металлов; жидкий азот используют также в качестве охлаж-

дающего агента в лаборатории и в промышленности.

При комнатной температуре азот медленно реагирует только с Li с обра-

зованием Li3 N. При горении на воздухе магния, вместе с оксидом MgO образу-

ется и Mg3 N2 .

Нитриды. Бинарные соединения азота с элементами, менее элек-

троотрицательными, чем N, называют нитридами.

Исполнитель:

Мероприятие №

Ионные нитриды содержат анион N3– . Ионные нитриды образуют Li,

металлы II и IБ-группы ; в водных растворах они подвергаются необратимо-

му гидролизу.

Mg3 N2 + 6H2 O = 2NH3 + 3 Mg(OH)2

С металлами р-блока и некоторыми легкими неметаллами азот об-

разует ковалентные нитриды, например, AlN, BN.

Большинство d-металлов образуют с азотом при высоких температурах нестехиометрические продукты внедрения, в которых атомы N занимают пус-

тоты в кристаллических решетках металлов. Поэтому такие нитриды по внеш-

нему виду, по электро- и теплопроводности напоминают металлы, но отлича-

ются от них высокой химической инертностью, твердостью и тугоплавкостью.

Например, нестехиометрические нитриды Ta и Ti плавятся при температурах выше 3200о С.

Азот непосредственно не реагирует с галогенами, а с кислородом взаимодействует только в экстремальных условиях (при электрическом

разряде).

Наиболее важной в практическом отношении является реакция азота с H2 , в результате которой получается аммиак.

N 2 + 3H 2  2NH 3 ; H0 = –92 кДж/моль.

Экзотермичность этой реакции указывает на то, что суммарная прочность связей в молекулах аммиака выше, чем в исходных молекулах. Повышение температуры в соответствии с принципом Ле-Шателье, приводит к смещению равновесия в сторону эндотермической реакции, т.е. в направлении разложения аммиака. Однако при нормальных условиях реакция идет чрезвычайно медлен-

но, слишком велика энергия активации, необходимая для ослабления прочных связей в молекулах азота и водорода. Процесс поэтому процесс приходится вести при температуре около 5000 С. Для смещения равновесия при высокой температуре вправо повышают давление до 300 – 500 атм., при этом равнове-

Исполнитель:

Мероприятие №

сие смещается в направлении реакции, идущей с уменьшением числа молекул газа, т.е. в направление образования аммиака. Повышения скорости достигают за счет применения катализаторов. Эффективен плавленый катализатор на ос-

нове Fe3 O4 с добавками Al2 O3 и SiO2 и катализатор на основе металлического

Fe. Синтез аммиака из азота и водорода является важнейшей реакцией про-

мышленной химии азота.

Соединения азота

Аммиак и соли аммония

Азот в аммиаке и солях аммония находится в минимальной степени окисления (–3). Степень окисления (–3) достаточно устойчива у азота.

Аммиак при обычных условиях – бесцветный газ с характер-

ным резким запахом , знакомым по запаху «нашатырного спирта» (10% рас-

твора аммиака в воде). Этот газ легче воздуха, поэтому его можно собирать в перевернутые вверх дном сосуды. Аммиак легко переходит в жидкость. Для этого его достаточно при обычном давлении охладить до –33,5о С. Того же эф-

фекта можно достигнуть при комнатной температуре, но повышая давление до

7 – 8 атм. При повышенном давлении жидкий аммиак хранят в стальных балло-

нах. Испаряясь, жидкий аммиак вызывает охлаждение в окружающей среде. На этом основано его применение в холодильной технике. Легкая сжижаемость аммиака обусловлена водородными связями между его молекулами. Прочность водородных связей между молекулами аммиака обусловлена очень высокой электроотрицательностью азота.

Жидкий аммиак бесцветен, подвергается автопротолизу:

2NH3  NH4 + + NH2 –

Константа этого равновесия равна 2 . 10– 23 (при –50о С). Жидкий аммиак

является хорошим ионизирующим растворителем. Соли аммония и слабые

кислоты, например, H2 S, растворенные в жидком аммиаке, становятся сильны-

ми кислотами.

Исполнитель:

Мероприятие №

Аммиак хорошо растворим в воде . Высокую растворимость аммиака в воде (до 700 объемов NH3 в одном объеме воды) также объясняют образовани-

ем водородных связей, но уже с молекулами воды. Концентрированный рас-

твор содержит 25 массовых % аммиака и имеет плотность 0,91 г/см3 . Молярная концентрация NH3 в концентрированных водных растворах достигает ~13

Молекула NH3 имеет пирамидальное строение, которое объясняют sp3 -

гибридизацией валентных атомных орбиталей азота. Одна из вершин тетраэд-

ра занята неподеленной парой электронов. Связь N –– H довольно прочная,

энергия связи составляет 389 кДж/моль, длина связи – 0,1 нм, угол между свя-

зями –108,3о . При присоединении катиона H+ за счет неподеленной электрон-

ной пары N, образуется тетраэдрический очень устойчивый ион аммония

NH4 + .

Наличие неподеленной электронной пары у N в молекуле NH3 , обу-

славливает многие характерные для аммиака свойства.

Молекула NH3 является хорошим донором электронной пары(ДЭП),

т.е. основанием по Льюису, и очень хорошим акцептором протонов A(Н+ ),

т.е. основанием по Бренстеду:

NH3 + H+  NH4 + . NH3 акцептирует протон, подобно ионам ОН– : OH– + H+  H2 O

Акцепторные свойства NH3 слабее, чем у аниона OH– . Константа протолиза для NH3 равна 1,8. 109 , а для иона OH– – 1014 .

Реакции с кислотами – это наиболее характерные для NH3 реакции.

Способность аммиака к образованию донорно-акцепторных связей на-

столько велика, что он может отрывать ионы водорода от такого прочного со-

единения, как вода.

NH3 + H–– OH  NH4 + ), и количество продуктов NH4 + и OH– мало по сравнению с равновесной концентрацией аммиака. Водные растворы аммиака ведут себя подобно слабым основаниям. По устоявшейся традиции аммиак часто обозна-

чают формулой NH4 OH и называют гидроксидом аммония, однако молекул

NH4 OH в растворе нет. Щелочную реакцию водного раствора NH3 часто опи-

сывают не приведенным выше равновесием, а как диссоциацию молекул

NH4 OH:

NH4 OH NH4 + + OH–

Константа этого равновесия равна 1,8 . 10–5 . В одном литре одномолярно-

го раствора аммиака концентрация ионов NH4 + и OH– составляет 3,9. 10–3

моль/л, рН = 11,6.

Равновесие между аммиаком и OH– способны сильно сместить вправо катионы некоторых металлов, образующие с ионами OH– нерастворимые гидроксиды.

FeCl3 + 3NH3 + 3Н–ОН  Fe(OH)3  + 3NH4 Cl.

Аммиак можно использовать для получения нерастворимых оснований .

При действии кислот на водные растворы аммиака образуются соли аммония.

NH3 + HCl = NH4 Cl

Почти все соли аммония бесцветны и растворимы в воде.

Равновесие NH3 + H+  NH4 + сильно смещено вправо (К = 1,8. 109 ),

это означает, что, NH3 является сильным акцептором протонов, а катион NH 4 +

является слабым донором H + , т.е. кислотой по Бренстеду. При добавлении щелочи к солям аммония образуется аммиак, который легко определить по за-

NH4 Cl + NaOH = NH3 + H2 O + NaCl.

Этой реакцией обычно пользуются для обнаружения ионов аммония в растворе.

Исполнитель:

Мероприятие №

Подобные реакции можно использовать для лабораторного получения

NH3 .

Хлорид аммония (его называют «нашатырь») при высоких температурах реагирует с оксидами на поверхности металлов, как кислота, обнажая чистый металл. На этом же основано использование твердой соли NH4 Cl при пайке металлов. «Кислотный» H+ из иона NH4 + способен окислять очень активные металлы, например, Mg.

Mg + 2NH4 Cl = H2 + MgCl2 + 2NH3

Характерным свойством солей аммония является их термическая неус-

тойчивость. При нагревании они довольно легко разлагаются. Продукты раз-

ложения определяются свойствами кислотного аниона. Если анион проявляет окислительные свойства, то происходит окисление NH4 + и восстановление аниона-окислителя.

NH4 NO2 = N2 + 2H2 O

NH4 NO3 = N2 О + 2H2 O или 2NH4 NO3 = N2 + O2 + 4H2 O

(NH4 )2 Cr2 O7 = N2 + Cr2 O3 + 4H2 O

Из солей летучих кислот выделяется аммиак и кислота (или ее ангид-

рид), а в случае нелетучих кислот (например, Н3 РО4 ) – только NH3 . NH4 HCO3 = NH3 + H2 O + CO2

Гидрокарбонат аммония NH4 HCO3 применяют в хлебопекарной про-

мышленности, образующиеся газы придают тесту необходимую пористость.

Соли аммония используют в производстве взрывчатых веществ и в

качестве азотных удобрений . Аммонал, применяемый в практике взрывных работ, представляет собой смесь соли NH4 NO3 (72%), порошка Al (25%) и уг-

ля (3%). Эта смесь взрывается только после детонации.

Второй тип реакций, в которых NH3 проявляет свойства донора элек-

тронной пары – это образование амминных комплексов. Аммиак в роли лиганда присоединяется к катионам многих d-элементов , образуя химиче-

Исполнитель:

Мероприятие №

Азот — элемент 2-го периода V А-группы Периодической системы, порядковый номер 7. Электронная формула атома [ 2 He]2s 2 2p 3 , характерные степени окисления 0,-3, +3 и +5, реже +2 и +4 и др. состояние N v считается относительно устойчивым.

Шкала степеней окисления у азота:
+5 — N 2 O 5 , NO 3 , NaNO 3 , AgNO 3

3 – N 2 O 3 , NO 2 , HNO 2 , NaNO 2 , NF 3

3 — NH 3 , NH 4 , NH 3 * H 2 O, NH 2 Cl, Li 3 N, Cl 3 N.

Азот обладает высокой электроотрицательностью (3,07), третий после F и O. Проявляет типичные неметаллические (кислотные) свойства, образуя при этом различные кислородсодержащие кислоты, соли и бинарные соединения, а так же катион аммония NH 4 и его соли.

В природе – семнадцатый по химической распространенности элемент (девятый среди неметаллов). Жизненно важный элемент для всех организмов.

N 2

Простое вещество. Состоит из неполярных молекул с очень устойчивой ˚σππ-связью N≡N, этим объясняется химическая инертность элемента при обычных условиях.

Бесцветный газ без вкуса и запаха, конденсируется в бесцветную жидкость (в отличие от O 2).

Главная составная часть воздуха 78,09% по объему, 75,52 по массе. Из жидкого воздуха азот выкипает раньше, чем кислород. Малорастворим в воде (15,4 мл/1 л H 2 O при 20 ˚C), растворимость азота меньше, чем у кислорода.

При комнатной температуре N 2 , реагирует с фтором и в очень малой степени – с кислородом:

N 2 + 3F 2 = 2NF 3 , N 2 + O 2 ↔ 2NO

Обратимая реакция получения аммиака протекает при температуре 200˚C, под давлением до 350 атм и обязательно в присутствии катализатора (Fe, F 2 O 3 , FeO, в лаборатории при Pt)

N 2 + 3H 2 ↔ 2NH 3 + 92 кДж

В соответствии с принципом Ле-Шателье увеличение выхода аммиака должно происходить при повышении давления и понижении температуры. Однако скорость реакции при низких температурах очень мала, поэтому процесс ведут при 450-500 ˚C, достигая 15%-ного выхода аммиака. Непрориагировавшие N 2 и H 2 возвращают в реактор и тем самым увеличивают степень протекания реакции.

Азот химически пассивен по отношению к кислотам и щелочам, не поддерживает горения.

Получение в промышленности – фракционная дистилляция жидкого воздуха или удаление из воздуха кислорода химическим путем, например по реакции 2C(кокс) + O 2 = 2CO при нагревании. В этих случаях получают азот, содержащий так же примеси благородных газов (главным образом аргон).

В лаборатории небольшие количества химически чистого азота можно получить по реакции конмутации при умеренном нагревании:

N -3 H 4 N 3 O 2(T) = N 2 0 + 2H 2 O (60-70)

NH 4 Cl(p) + KNO 2 (p) = N 2 0 + KCl +2H 2 O (100˚C)

Применяется для синтеза аммиака. Азотной кислоты и других азотсодержащих продуктов, как инертная среда проведения химических и металлургических процессов и хранения огнеопасных веществ.

NH 3

Бинарное соединение, степень окисления азота равна – 3. Бесцветный газ с резким характерным запахом. Молекула имеет строение незавершенного тетраэдра [: N(H) 3 ] (sp 3 -гибридизация). Наличие у азота в молекуле NH 3 донорской пары электронов на sp 3 -гибридной орбитали обуславливает характерную реакцию присоединения катиона водорода, при этом образуется катион аммония NH 4 . Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей. Термически неустойчив. Хорошо растворим в воде (более 700 л/1 л H 2 O при 20˚C); доля в насыщенном растворе равна 34% по массе и 99% по объему, pH= 11,8.

Весьма реакционноспособный, склонен к реакциям присоединения. Сгорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N -3) и окислительные (за счет H +1) свойства. Осушается только оксидом кальция.

Качественные реакции – образование белого «дыма» при контакте с газообразным HCl, почернение бумажки, смоченной раствором Hg 2 (NO3) 2 .

Промежуточный продукт при синтезе HNO 3 и солей аммония. Применяется в производстве соды, азотных удобрений, красителей, взрывчатых веществ; жидкий аммиак – хладагент. Ядовит.
Уравнения важнейших реакций:

2NH 3(г) ↔ N 2 + 3H 2
NH 3(г) + H 2 O ↔ NH 3 * H 2 O (р) ↔ NH 4 + + OH —
NH 3(г) + HCl (г) ↔ NH 4 Cl (г) белый «дым»
4NH 3 + 3O 2 (воздух) = 2N 2 + 6 H 2 O (сгорание)
4NH 3 + 5O 2 = 4NO+ 6 H 2 O (800˚C, кат. Pt/Rh)
2 NH 3 + 3CuO = 3Cu + N 2 + 3 H 2 O (500˚C)
2 NH 3 + 3Mg = Mg 3 N 2 +3 H 2 (600 ˚C)
NH 3(г) + CO 2(г) + H 2 O = NH 4 HCO 3 (комнатная температура, давление)
Получение. В лаборатории – вытеснение аммиака из солей аммония при нагревании с натронной известью: Ca(OH) 2 + 2NH 4 Cl = CaCl 2 + 2H 2 O +NH 3
Или кипячение водного раствора аммиака с последующим осушением газа.
В промышленности аммиак получают из азота с водородом. Выпускается промышленностью либо в сжиженном виде, либо в виде концентрированного водного раствора под техническим названием аммиачная вода .



Гидрат аммиака NH 3 * H 2 O . Межмолекулярное соединение. Белый, в кристаллической решетке – молекулы NH 3 и H 2 O, связанные слабой водородной связью. Присутствует в водном растворе аммиака, слабое основание (продукты диссоциации – катион NH 4 и анион OH). Катион аммония имеет правильно-тетраэдрическое строение (sp 3 -гибридизация). Термически неустойчив, полностью разлагается при кипячении раствора. Нейтрализуется сильными кислотами. Проявляет восстановительные свойства (за счет N -3) в концентрированном растворе. Вступает в реакцию ионного обмена и комплексообразования.

Качественная реакция – образование белого «дыма» при контакте с газообразным HCl. Применяется для создания слабощелочной среды в растворе, при осаждении амфотерных гидроксидов.
В 1 М растворе аммиака содержится в основном гидрат NH 3 *H 2 O и лишь 0,4% ионов NH 4 OH (за счет диссоциации гидрата); таким образом, ионный «гидроксид аммония NH 4 OH» практически не содержится в растворе, нет такого соединения и в твердом гидрате.
Уравнения важнейших реакций:
NH 3 H 2 O (конц.) = NH 3 + H 2 O (кипячение с NaOH)
NH 3 H 2 O + HCl (разб.) = NH 4 Cl + H 2 O
3(NH 3 H 2 O) (конц.) + CrCl 3 = Cr(OH) 3 ↓ + 3 NH 4 Cl
8(NH 3 H 2 O) (конц.) + 3Br 2(p) = N 2 + 6 NH 4 Br + 8H 2 O (40-50˚C)
2(NH 3 H 2 O) (конц.) + 2KMnO 4 = N 2 + 2MnO 2 ↓ + 4H 2 O + 2KOH
4(NH 3 H 2 O) (конц.) + Ag 2 O = 2OH + 3H 2 O
4(NH 3 H 2 O) (конц.) + Cu(OH) 2 + (OH) 2 + 4H 2 O
6(NH 3 H 2 O) (конц.) + NiCl 2 = Cl 2 + 6H 2 O
Разбавленный раствор аммиака (3-10%-ный) часто называют нашатырным спиртом (название придумано алхимиками), а концентрированный раствор (18,5 – 25%-ный) – аммиачный раствор (выпускается промышленностью).

Оксиды азота

Монооксид азота NO

Несолеобразующий оксид. Бесцветный газ. Радикал, содержит ковалентную σπ-связь (N꞊O) , в твердом состоянии димер N 2 О 2 со связью N-N. Чрезвычайно термически устойчив. Чувствителен к кислороду воздуха (буреет). Малорастворим в воде и не реагирует с ней. Химически пассивен по отношению к кислотам и щелочам. При нагревании реагирует с металлами и неметаллами. весьма реакционноспособная смесь NO и NO 2 («нитрозные газы»). Промежуточный продукт в синтезе азотной кислоты.
Уравнения важнейших реакций:
2NO + O 2 (изб.) = 2NO 2 (20˚C)
2NO + C(графит) = N 2 + CО 2 (400- 500˚C)
10NO + 4P(красный) = 5N 2 + 2P 2 O 5 (150- 200˚C)
2NO + 4Cu = N 2 + 2 Cu 2 O (500- 600˚C)
Реакции на смеси NO и NO 2:
NO + NO 2 +H 2 O = 2HNO 2 (p)
NO + NO 2 + 2KOH(разб.) = 2KNO 2 + H 2 O
NO + NO 2 + Na 2 CO 3 = 2Na 2 NO 2 + CО 2 (450- 500˚C)
Получение в промышленности : окисление аммиака кислородом на катализаторе, в лаборатории — взаимодействие разбавленной азотной кислоты с восстановителями:
8HNO 3 + 6Hg = 3Hg 2 (NO 3) 2 + 2NO + 4 H 2 O
или восстановлении нитратов:
2NaNO 2 + 2H 2 SO 4 + 2NaI = 2NO + I 2 ↓ + 2 H 2 O + 2Na 2 SO 4


Диоксид азота NO 2

Кислотный оксид, условно отвечает двум кислотам — HNO 2 и HNO 3 (кислота для N 4 не существует). Бурый газ, при комнатной температуре мономер NO 2 , на холоду жидкий бесцветный димер N 2 О 4 (тетраоксид диазота). Полностью реагирует с водой, щелочами. Очень сильный окислитель, вызывает коррозию металлов. Применяется для синтеза азотной кислоты и безводных нитратов, как окислитель ракетного топлива, очиститель нефти от серы и катализатор окисления органических соединений. Ядовит.
Уравнение важнейших реакций:
2NO 2 ↔ 2NO + O 2
4NO 2 (ж) + H 2 O = 2HNO 3 + N 2 О 3 (син.) (на холоду)
3 NO 2 + H 2 O = 3HNO 3 + NO
2NO 2 + 2NaOH(разб.) = NaNO 2 + NaNO 3 + H 2 O
4NO 2 + O 2 + 2 H 2 O = 4 HNO 3
4NO 2 + O 2 + KOH = KNO 3 + 2 H 2 O
2NO 2 + 7H 2 = 2NH 3 + 4 H 2 O (кат. Pt, Ni)
NO 2 + 2HI(p) = NO + I 2 ↓ + H 2 O
NO 2 + H 2 O + SO 2 = H 2 SO 4 + NO (50- 60˚C)
NO 2 + K = KNO 2
6NO 2 + Bi(NO 3) 3 + 3NO (70- 110˚C)
Получение: в промышленности — окислением NO кислородом воздуха, в лаборатории – взаимодействие концентрированной азотной кислоты с восстановителями:
6HNO 3 (конц.,гор.) + S = H 2 SO 4 + 6NO 2 + 2H 2 O
5HNO 3 (конц.,гор.) + P (красный) = H 3 PO 4 + 5NO 2 + H 2 O
2HNO 3 (конц.,гор.) + SO 2 = H 2 SO 4 + 2 NO 2

Оксид диазота N 2 O

Бесцветный газ с приятным запахом («веселящий газ»), N꞊N꞊О, формальная степень окисления азота +1, плохо растворим в воде. Поддерживает горение графита и магния:

2N 2 O + C = CO 2 + 2N 2 (450˚C)
N 2 O + Mg = N 2 + MgO (500˚C)
Получают термическим разложением нитрата аммония:
NH 4 NO 3 = N 2 O + 2 H 2 O (195- 245˚C)
применяется в медицине, как анастезирующее средство.

Триоксид диазота N 2 O 3

При низких температурах –синяя жидкость, ON꞊NO 2 , формальная степень окисления азота +3. При 20 ˚C на 90% разлагается на смесь бесцветного NO и бурого NO 2 («нитрозные газы», промышленный дым – «лисий хвост»). N 2 O 3 – кислотный оксид, на холоду с водой образует HNO 2 , при нагревании реагирует иначе:
3N 2 O 3 + H 2 O = 2HNO 3 + 4NO
Со щелочами дает соли HNO 2, например NaNO 2 .
Получают взаимодействием NO c O 2 (4NO + 3O 2 = 2N 2 O 3) или с NO 2 (NO 2 + NO = N 2 O 3)
при сильном охлаждении. «Нитрозные газы» и экологически опасны, действуют как катализаторы разрушения озонового слоя атмосферы.

Пентаоксид диазота N 2 O 5

Бесцветное, твердое вещество, O 2 N – O – NO 2 , степень окисления азота равна +5. При комнатной температуре за 10 ч разлагается на NO 2 и O 2 . Реагирует с водой и щелочами как кислотный оксид:
N 2 O 5 + H 2 O = 2HNO 3
N 2 O 5 + 2NaOH = 2NaNO 3 + H 2
Получают дегидротацией дымящейся азотной кислоты:
2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3
или окислением NO 2 озоном при -78˚C:
2NO 2 + O 3 = N 2 O 5 + O 2


Нитриты и нитраты

Нитрит калия KNO 2 . Белый, гигроскопичный. Плавится без разложения. Устойчив в сухом воздухе. Очень хорошо растворим в воде (образуя бесцветный раствор), гидролизуется по аниону. Типичный окислитель и восстановитель в кислотной среде, очень медленно реагирует в щелочной среде. Вступает в реакции ионного обмена. Качественные реакции на ион NO 2 — обесцвечивание фиолетового раствора MnO 4 и появление черного осадка при добавлении ионов I. Применяется в производстве красителей, как аналитический реагент на аминокислоты и йодиды, компонент фотографических реактивов.
уравнение важнейших реакций:
2KNO 2 (т) + 2HNO 3 (конц.) = NO 2 + NO + H 2 O + 2KNO 3
2KNO 2 (разб.)+ O 2 (изб.) → 2KNO 3 (60-80 ˚C)
KNO 2 + H 2 O + Br 2 = KNO 3 + 2HBr
5NO 2 — + 6H + + 2MnO 4 — (фиол.) = 5NO 3 — + 2Mn 2+ (бц.) + 3H 2 O
3 NO 2 — + 8H + + CrO 7 2- = 3NO 3 — + 2Cr 3+ + 4H 2 O
NO 2 — (насыщ.) + NH 4 + (насыщ.)= N 2 + 2H 2 O
2NO 2 — + 4H + + 2I — (бц.) = 2NO + I 2 (черн.) ↓ = 2H 2 O
NO 2 — (разб.) + Ag + = AgNO 2 (светл.желт.)↓
Получение в промышленности – восстановлением калийной селитры в процессах:
KNO 3 + Pb = KNO 2 + PbO (350-400˚C)
KNO 3 (конц.) + Pb(губка) + H 2 O = KNO 2 + Pb(OH) 2 ↓
3 KNO 3 + CaO + SO 2 = 2 KNO 2 + CaSO 4 (300 ˚C)

H итрат калия KNO 3
Техническое название калийная, или индийская соль, селитра. Белый, плавится без разложения при дальнейшем нагревании разлагается. Устойчив на воздухе. Хорошо растворим в воде (с высоким эндо -эффектом, = -36 кДж), гидролиза нет. Сильный окислитель при сплавлении (за счет выделения атомарного кислорода). В растворе восстанавливается только атомарным водородом (в кислотной среде до KNO 2 , в щелочной среде до NH 3). Применяется в производстве стекла, как консервант пищевых продуктов, компонент пиротехнических смесей и минеральных удобрений.

2KNO 3 = 2KNO 2 + O 2 (400- 500 ˚C)

KNO 3 + 2H 0 (Zn, разб. HCl) = KNO 2 + H 2 O

KNO 3 + 8H 0 (Al, конц. KOH) = NH 3 + 2H 2 O + KOH (80 ˚C)

KNO 3 + NH 4 Cl = N 2 O + 2H 2 O + KCl (230- 300 ˚C)

2 KNO 3 + 3C (графит) + S = N 2 + 3CO 2 + K 2 S (сгорание)

KNO 3 + Pb = KNO 2 + PbO (350 — 400 ˚C)

KNO 3 + 2KOH + MnO 2 = K 2 MnO 4 + KNO 2 + H 2 O (350 — 400 ˚C)

Получение : в промышленности
4KOH (гор.) + 4NO 2 + O 2 = 4KNO 3 + 2H 2 O

и в лаборатории:
KCl + AgNO 3 = KNO 3 + AgCl↓






Существуют химические элементы, проявляющие разные степени окисления, что позволяет образовывать в ходе химических реакций большое количество соединений с определенными свойствами. Зная электронное строение атома, можно предположить, какие вещества будут образовываться.

Степени окисления азота могут варьировать от -3 до +5, что указывает на многообразие соединений на его основе.

Характеристика элемента

Азот относится к химическим элементам, расположенным в 15 группе, во втором периоде в периодической системе Менделеева Д. И. Ему присвоены порядковый номер 7 и сокращенное буквенное обозначение N. В нормальных условиях сравнительно инертный элемент, для проведения реакций необходимы специальные условия.

В природе встречается в виде двухатомного бесцветного газа атмосферного воздуха с объемной долей более 75%. Содержится в составе белковых молекул, кислот нуклеиновых и азотсодержащих веществ неорганического происхождения.

Структура атома

Чтобы определить степень окисления азота в соединениях, необходимо знать его ядерную структуру и изучить электронные оболочки.

Природный элемент представлен двумя устойчивыми изотопами, с числом их массы 14 или 15. В первом ядре содержится 7 нейтроновых и 7 протоновых частиц, а во втором − на 1 нейтроновую частицу больше.

Существуют искусственные разновидности его атома с массой 12-13 и 16-17, обладающие нестабильными ядрами.

При изучении электронной структуры атомарного азота видно, что имеется две электронные оболочки (внутренняя и внешняя). На 1s-орбитали содержится одна пара электронов.

На второй внешней оболочке присутствует всего пять отрицательно заряженных частиц: две на 2s-под-уров-не и три на 2p-орбитале. Ва-лент-ный энер-ге-ти-че-ский уровень не имеет свободных ячеек, что указывает на невозможность разделения его элек-трон-ной пары. Орбиталь 2р считается заполненной электронами только наполовину, что позволяет присоединить 3 отрицательно заряженные частицы. В таком случае степень окисления азота равна -3.

Учитывая строение орбиталей, можно сделать вывод, что данный элемент с координационным числом 4 максимально связывается только с четырьмя другими атомами. Для образования трех связей используется об-мен-ный ме-ха-низ-м, еще одна формируется до-нор-но-ак-цеп-тор-ным способом.

Степени окисления азота в разных соединениях

Максимальное количество отрицательных частиц, которое способен присоединить его атом, равняется 3. В таком случае проявляется степень его окисления равная -3, присущая соединениям типа NH 3 или аммиаку, NH 4 + или аммонию и нитридам Me 3 N 2 . Последние вещества формируются при повышении температуры путем взаимодействия азота с атомами металлов.

Наибольшее количество отрицательно заряженных частиц, которое способен отдать элемент, приравнивается к 5.

Два атома азота способны соединяться между собой с образованием устойчивых соединений со степенью окисления -2. Такая связь наблюдается в N 2 H 4 или гидразинах, в азидах различных металлов или MeN 3 . Атом азота присоединяет на свободные орбитали 2 электрона.

Существует степень окисления -1, когда данный элемент получает только 1 отрицательную частицу. Например, в NH 2 OH или гидроксиламине он заряжен отрицательно.

Бывают положительного знака степени окисления азота, когда с внешнего энергетического слоя забираются электронные частицы. Варьируют они от +1 до +5.

Заряд 1+ имеется у азота в N 2 O (одновалентном оксиде) и в гипонитрите натрия с формулой Na 2 N 2 O 2 .

В NO (двухвалентном оксиде) элемент отдает два электрона и заряжается положительно (+2).

Существует степень окисления азота 3 (в соединении NaNO 2 или нитриде и еще в трехвалентном оксиде). В таком случае отщепляется 3 электрона.

Заряд +4 бывает в оксиде с валентностью IV или его димере (N 2 O 4).

Положительный знак степени окисления (+5) проявляется в N 2 O 5 или в пятивалентном оксиде, в азотной кислоте и ее производных солях.

Соединения из азота с водородом

Природные вещества на основе двух вышеуказанных элементов напоминают органические углеводороды. Только азотоводороды теряют свою устойчивость при увеличении количества атомарного азота.

К наиболее значимым водородным соединениям относят молекулы аммиака, гидразина и азотистоводородной кислоты. Их получают путем взаимодействия водорода с азотом, а в последнем веществе присутствует еще кислород.

Что такое аммиак

Его еще называют нитридом водорода, а его химическая формула обозначается как NH 3 с массой 17. В условиях с нормальной температурой и давлением аммиак имеет форму бесцветного газа с резким нашатырным запахом. По плотности он в 2 раза реже воздуха, легко растворяется в водной среде за счет полярного строения его молекулы. Относится к малоопасным веществам.

В промышленных объемах аммиак получают с помощью каталитического синтеза из водородных и азотных молекул. Существуют лабораторные методы получения из аммонийных солей и натрия нитрита.

Строение аммиака

В составе молекулы пирамидальной присутствует один азот и 3 атома водорода. Расположены они по отношению друг к другу под углом 107 градусов. В молекуле, имеющей форму тетраэдра, азот расположен по центру. За счет трех неспаренных p-электронов он соединяется полярными связями ковалентной природы с 3 атомарными водородами, у которых имеются по 1 s-электрону. Так образуется аммиачная молекула. В данном случае азот проявляет степень окисления -3.

У данного элемента находится еще неподеленная пара электронов на внешнем уровне, которая создает связь ковалентную с ионом водорода, имеющим положительный заряд. Один элемент является донором отрицательно заряженных частиц, а другой акцептором. Так образуется аммонийный ион NH 4 + .

Что такое аммоний

Его относят к положительно заряженным полиатомным ионам или катионам.Аммоний еще причисляют к химическим веществам, которые не могут существовать в форме молекулы. Он состоит из аммиака и водорода.

Аммоний с положительным зарядом в присутствии различных анионов с отрицательным знаком способен образовывать аммонийные соли, в которых ведет себя подобно металлам с валентностью I. Также при его участии синтезируются аммониевые соединения.

Многие соли аммония существуют в виде кристаллических бесцветных веществ, которые хорошо растворяются водой. Если соединения иона NH 4 + образованы летучими кислотами, то в условиях нагревания происходит их разложение с выделением газообразных веществ. Последующее их охлаждение приводит к обратимому процессу.

Стабильность таких солей зависит от силы кислот, из которых они образованы. Устойчивые соединения аммония соответствуют сильному кислотному остатку. Например, стабильный аммония хлорид производится из соляной кислоты. При температуре до 25 градусов такая соль не разлагается, что нельзя сказать о карбонате аммония. Последнее соединение часто используется в кулинарии для подъема теста, заменяя пищевую соду.

Кондитеры карбонат аммония называют просто аммонием. Такую соль применяют пивовары для улучшения брожения пивных дрожжей.

Качественной реакцией для обнаружения ионов аммония является действие гидроксидов щелочных металлов на его соединения. В присутствие NH 4 + происходит высвобождение аммиака.

Химическая структура аммония

Конфигурация его иона напоминает правильный тетраэдр, по центру которого находится азот. Атомы водорода расположены по вершинам фигуры. Чтобы рассчитать степень окисления азота в аммонии, нужно помнить, что общий заряд катиона равен +1, а у каждого иона водорода отсутствует по одному электрону, а их всего 4. Суммарный водородный потенциал составляет +4. Если из заряда катиона вычесть заряд всех ионов водорода, то получим: +1 - (+4) = -3. Значит, азот имеет степень окисления -3. В данном случае он присоединяет три электрона.

Что такое нитриды

Азот способен соединяться с более электроположительными атомами металлической и неметаллической природы. В результате образуются соединения схожие с гидридами и карбидами. Такие вещества азотсодержащие называют нитриды. Между металлом и азотным атомом в соединениях выделяют ковалентную, ионную и промежуточную связи. Именно такая характеристика лежит в основе их классификации.

К нитридам ковалентным относят соединения, в химической связи которых электроны не переходят от атомарного азота, а образуют вместе с заряженными отрицательно частицами других атомов общее электронное облако.

Примером таких веществ являются водородные нитриды, типа аммиачных и гидразиновых молекул, а также азотные галогениды, к которым относят трихлориды, трибромиды и трифториды. У них общая электронная пара одинаково принадлежит двум атомам.

К нитридам ионным относят соединения с химической связью, образованной переходом электронов от элемента металла на свободные уровни у азота. В молекулах таких веществ наблюдается полярность. Нитриды имеют степень окисления азота 3-. Соответственно, общий заряд металла будет 3+.

К таким соединениям относят нитриды магния, лития, цинка или меди, за исключением щелочных металлов. Они обладают высокой температурой плавления.

К нитридам с промежуточной связью относятся вещества, у которых распределены равномерно атомы металлов и азота и отсутствует четкое смещение электронного облака. К таким инертным соединениям принадлежат нитриды железа, молибдена, марганца и вольфрама.

Описание оксида трехвалентного азота

Его еще называют ангидридом, полученным из кислоты азотистой, имеющей формулу HNO 2 . Учитывая степени окисления азота (3+) и кислорода (2-) в триоксиде, получается соотношение атомов элементов 2 к 3 или N 2 O 3 .

Жидкая и газообразная форма ангидрида - это весьма неустойчивые соединения, они легко распадаются на 2 разных оксида с валентностью IV и II.

Азот - едва ли не самый распространенный химический элемент во всей Солнечной Системе. Если быть конкретнее, то азот занимает 4 место по распространенности. Азот в природе - инертный газ.

Этот газ не имеет ни цвета, ни запаха, его очень трудно растворить в воде. Однако соли-нитраты имеют свойство очень хорошо реагировать с водой. Азот имеет малую плотность.

Азот - удивительный элемент. Есть предположение, что свое название он получил из древнегреческого языка, что в переводе с него значит «безжизненный, испорченный». Отчего же такое негативное отношение к азоту? Ведь нам известно, что он входит в состав белков, а дыхание без него практически невозможно. Азот играет важную роль в природе. Но в атмосфере этот газ инертен. Если его взять таким, какой он есть в первозданном виде, то возможно множество побочных эффектов. Пострадавший может даже умереть от удушья. Ведь азот оттого и называется безжизненным, что не поддерживает ни горения, ни дыхания.

При обычных условиях такой газ реагирует только с литием, образовывая такое соединение, как нитрид лития Li3N. Как мы видим, степень окисления азота в таком соединении равна -3. С остальными металлами и конечно же, реагирует тоже, однако лишь при нагревании или при использовании различных катализаторов. К слову говоря, -3 - низшая степень окисления азота, так как только 3 электрона нужны для полного заполнения внешнего энергетического уровня.

Этот показатель имеет разнообразные значения. Каждая степень окисления азота имеет свое соединение. Такие соединения лучше просто запомнить.

5 - высшая степень окисления у азота. Встречается в и во всех солях-нитратах.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...