Свойства степеней, формулировки, доказательства, примеры. Показательная функция



Информационный бум В биологии - колонии микробов в чашке Петри Кролики в Австралии Цепные реакции – в химии В физике - радиоактивный распад, изменение атмосферного давления с изменением высоты, охлаждение тела.В физике - радиоактивный распад, изменение атмосферного давления с изменением высоты, охлаждение тела. Выбрасывание адреналина в кровь и его разрушение А так же утверждают, что количество информации удваивается каждые 10 лет.А так же утверждают, что количество информации удваивается каждые 10 лет.


(3/5) -1 a 1 3 1/2 (4/9) 0 a *81 (1/2) -3 a -n 36 1/2* 8 1/ /3 2 -3,5


Выражение 2 х 2 2 =4 2 5 = = =1/2 4 =1/16 2 4/3 = 32 4 = ,5 = 1/2 3,5 =1/2 7= 1/(8 2)= 2/16 2)=






3=1, … 1; 1,7 1,73; 1,732;1,73205; 1, ;… последовательность возрастает 2 1 ; 2 1,7 ; 2 1,73 ;2 1,732 ; 2 1,73205 ; 2 1, ;… последовательность возрастает Ограниченная, а значит сходится к одному пределу - значение 2 3


Можно определить π 0












10 10 18 Свойства функции у = а х п \ п а >10 10 10 10 10 title="Свойства функции у = а х п \ п а >10 21


Количество информации удваивается каждые 10 лет По оси Ох – по закону арифметической прогрессии:1,2,3,4…. По оси Оу – по закону геометрической прогрессии: 2 1,2 2,2 3,2 4 … График показательной функции, его называют экспонентой (от латинского exponere - выставлять напоказ)

Дата: 27.10.2016

Класс: 11Б

Тема урока Степень с иррациональным показателем.

Иррациональное выражение. Преобразования иррациональных выражений.

Цель урока:

Обобщение и систематизация знаний по данной теме

Задачи урока:

Повышение вычислительной культуры уч-ся;

Проверка уровня усвоения темы путем дифференцированного

опроса уч-ся;

Развитие интереса к предмету;

Воспитание навыков контроля и самоконтроля.

Ход урока.

I этап урока (1 минута)

Организационный момент

Учитель сообщает учащимся тему урока, цель и задачи урока (слайд№2); поясняет, как во время урока будет использоваться раздаточный материал, который находится на рабочем месте каждого ученика, обращает внимание учащихся на лист самоконтроля, в который постепенно в ходе урока будут заноситься баллы, полученные за выполнение заданий разноуровневых тестов, выполнения заданий у доски, за активную работу на уроке.

Лист самоконтроля

Вопросы

теории

Разноуровневая самостоятельная работа «Повышение вычислительной культуры»

Работа на уроке (оценка учителя)

Разноуровневый тест

«Обобщение понятия степени.»

Итог

Резуль

таты

са мо

оц ен ки

Учитель обращается к учащимся:

«В конце урока мы увидим результаты вашей самооценки. Древнегреческий поэт Нивей утверждал, что математику нельзя изучать, наблюдая, как это делает сосед.

Поэтому вы сегодня должны работать самостоятельно и объективно оценивать свои знания».

II этап урока (3 минуты)

Повторение теоретического материала по теме.

Учитель просит учащихся дать определение степени с натуральным показателем.

Звучит определение.

Определение. Степенью действительного числа а с натуральным показателем п называется произведение п множителей, каждый из которых равен а.

Учитель просит учащихся дать определение степени с целым показателем.

Звучит определение.

Определение. Если - целое отрицательное число, то , где 0 Учитель спрашивает: «Чему равна нулевая, первая степень любого действительного числа?» ; .

Учитель просит учащихся дать определение степени с рациональным

показателем. Звучит определение.

Определение. Степенью действительного числа а > 0 c рациональным показателем r = , где m - целое, n - натуральное, называется число:

Если, то.

Учитель: «Вспомните основные свойства степени».

Учащиеся перечисляют свойства степени:

Для любых действительных чисел т и п и для любых положительных а и в выполняются равенства:

1. 4.

2. 5.

Во время ответов на интерактивной доске учащиеся видят определения и свойства степени, и если надо вносят дополнения и исправления в ответы своих товарищей.

III этап урока (3 минуты)

Устная работа по решению простейших задач по теме « Основные свойства степени»

Работа с диском « Новые возможности для усвоения курса математики».

(Учебное электронное издание «Математика 5-11»/ Дрофа.)

Учитель предлагает учащимся применить только что сформулированные теоретические факты к решению упражнений:

    Вычислите

2. Упростите

3) () 6)

3. Выполните действия

К компьютеру вызываются по очереди 3 ученика, они решают предложенные задачи устно, комментируя свой ответ, ссылаясь на теорию. Если задача решена правильно, то звучат аплодисменты, на экране и на доске появляется улыбающееся лицо, а если упражнение выполнено неверно, то лицо грустное, и тогда учитель предлагает взять подсказку. С помощью программы все учащиеся видят на интерактивной доске правильное решение.

IV этап урока (5 минут)

Вариант 1

Вычислите:

648

Уровень II

(2-)

7- 4

0,0640,49

0,28

Уровень III

0,3

Вариант 2

Вычислите:

4 64

Уровень II

(-2)

при а =

125 16-36

Уровень III

1,5

Учащийся должен решить задания своего уровня сложности. Если у него остается ещё время, то он может набирать дополнительные баллы, решая задания другого уровня сложности. Сильные учащиеся, прорешав задания менее сложного уровня, смогут помочь своим товарищам из другой группы в случае необходимости. (По просьбе учителя они выступают в роли консультантов).

Проверка теста с помощью инструмента « Шторка» интерактивной доски.

V этап урока (15 минут)

Разноуровневый тест тематического контроля знаний

«Обобщение понятия степени».

У доски учащиеся группы III записывают и подробно объясняют решение варианта 7 и 8

Во время выполнения работы учитель, если необходимо, помогает учащимся группы III выполнять задания и контролирует решение задач на доске.

Учащиеся двух других групп и остальные учащиеся группы III решают в это время разноуровневый тест (1 и 2 вариант)

VI этап урока (7 минут)

Обсуждение решений задач представленных на доске.

На доске учащиеся решали пять задач. Учащиеся, выполнявшие задачи у доски, комментируют свои решения, а остальные вносят, при необходимости, коррективы.

VII этап урока (5 минут) Подведение итогов урока, комментарии по домашнему заданию. Учитель еще раз обращает внимание, на те типы заданий и те теоретические факты, которые вспоминали на уроке, говорит о необходимости выучить их. Отмечает наиболее успешную работу на уроке отдельных учащихся.

1). Подсчет баллов (слайд)

Каждое задание самостоятельной работы и теста, если

оно выполнено верно, оценивается в 1 балл.

Не забудьте прибавить оценки-баллы учителя за урок…

2). Заполнение листа самоконтроля (слайд)

«5» - 15 баллов

«4» - 10 баллов

«3» - 7баллов < 7 баллов

мы надеемся, что ты очень старался,

просто сегодня – не твой день!..

Решения теста и самостоятельной работы учащиеся забирают с собой, чтобы дома сделать работу над ошибками, листы самоконтроля сдают учителю. Учитель после урока анализирует их и выставляет оценки, докладывая о результатах анализа на следующем уроке.

3). Домашнее задание:

    Работа над ошибками в тестах.

    Творческое задание для группы III : составить карточку с заданиями на применение свойств степеней для опроса на следующем уроке.

    Выучить определение и свойства

    Выполнить упражнения

Разноуровневая самостоятельная работа «Повышение вычислительной культуры»:

Вариант 1

Вычислите:

Уровень II

Степень с рациональным показателем, её свойства.

Выражение а n определено для всех а и n, кроме случая а=0 при n≤0. Напомним свойства таких степеней.

Для любых чисел а, b и любых целых чисел m и п справедливы равенства:

A m *a n =a m+n ; a m:а n =a m-n (а≠0); (а m) n = а mn ; (ab) n = a n *b n ; (b≠0); а 1 =а; а 0 =1 (а≠0).

Отметим также следующее свойство:

Если m>n, то а m >а n при а>1 и а m <а n при 0<а<1.

В этом пункте мы обобщим понятие степени числа, придав смысл выражениям типа 2 0.3 , 8 5/7 , 4 -1/2 и т. д. Естественно при этом дать определение так, чтобы степени с рациональными показателями обладали теми же свойствами (или хотя бы их частью), что и степени с целым показателем. Тогда, в частности, n-я степень числа должна быть равна а m . Действительно, если свойство

(a p) q =a pq

выполняется, то



Последнее равенство означает (по определению корня n-й степени), что число должно быть корнем п-й степени из числа а m .

Определение.

Степенью числа а>0 с рациональным показателем r=, где m — целое число, а n — натуральное (n > 1), называется число

Итак, по определению

(1)

Степень числа 0 определена только для положительных показателей; по определению 0 r = 0 для любого r>0.

Степень с иррациональным показателем.

Иррациональное число можно представить в виде предела последовательности рациональных чисел : .

Пусть . Тогда существуют степени с рациональным показателем . Можно доказать, что последовательность этих степеней является сходящейся. Предел этой последовательности называется степенью с основанием и иррациональным показателем : .

Зафиксируем положительное число а и поставим в соответствие каждому числу . Тем самым получим числовую функцию f(x) = a x , определенную на множестве Q рациональных чисел и обладающую ранее перечисленными свойствами. При а=1 функция f(x) = a x постоянна, так как 1 x =1 для любого рационального х.



Нанесем несколько точек графика функции у =2 x предварительно вычислив с помощью калькулятора значения 2 x на отрезке [—2; 3] с шагом 1/4 (рис. 1, а), а затем с шагом 1/8 (рис. 1, б).Продолжая мысленно такие же построения с шагом 1/16, 1/32 и т. д., мы видим, что получающиеся точки можно соединить плавной кривой, которую естественно считать графиком некоторой функции, определенной и возрастающей уже на всей числовой прямой и принимающей значения в рациональных точках (рис. 1, в). Построив достаточно большое число точек графика функции , можно убедиться в том, что аналогичными свойствами обладает и эта функция (отличие состоит в том, что функция убывает на R).

Эти наблюдения подсказывают, что можно так определить числа 2 α и для каждого иррационального α, что функции, задаваемые формулами y=2 x и будут непрерывными, причем функция у=2 x возрастает, а функция убывает на всей числовой прямой.

Опишем в общих чертах, как определяется число a α для иррациональных α при а>1. Мы хотим добиться того, чтобы функция у = a x была возрастающей. Тогда при любых рациональных r 1 и r 2 , таких, что r 1 <α должно удовлетворять неравенствам a r 1 <а α <а r 1 .

Выбирая значения r 1 и r 2 , приближающиеся к х, можно заметить, что и соответствующие значения a r 1 и a r 2 будут мало отличаться. Можно доказать, что существует, и притом только одно, число у, которое больше всех a r 1 для всех рациональных r 1 и меньше всех a r 2 для всех рациональных r 2 . Это число у по определению есть а α .

Например, вычислив с помощью калькулятора значения 2 x в точках х n и х` n , где х n и х` n — десятичные приближения числа мы обнаружим, что, чем ближе х n и х` n к , тем меньше отличаются 2 x n и 2 x` n .

Так как , то



и, значит,



Аналогично, рассматривая следующие десятичные приближения по недостатку и избытку, приходим к соотношениям

;

;

;

;

.

Значение вычисленное на калькуляторе, таково:

.

Аналогично определяется число a α для 0<α<1. Кроме того полагают 1 α =1 для любого α и 0 α =0 для α>0.

Показательная функция.


При a > 0, a = 1, определена функция y = a x , отличная от постоянной. Эта функция называется показательной функцией с основанием a .

y = a x при a > 1:

Графики показательных функций с основанием 0 < a < 1 и a > 1 изображены на рисунке.

Основные свойства показательной функции y = a x при 0 < a < 1:

  • Область определения функции - вся числовая прямая.
  • Область значений функции - промежуток (0; + ) .
  • Функция строго монотонно возрастает на всей числовой прямой, то есть, если x 1 < x 2 , то a x 1 > a x 2 .
  • При x = 0 значение функции равно 1.
  • Если x > 0 , то 0 < a < 1 и если x < 0, то a x > 1.
  • К общим свойствам показательной функции как при0 < a < 1, так и при a > 1 относятся:
    • a x 1 a x 2 = a x 1 + x 2 , для всех x 1 и x 2.
    • a − x = ( a x ) − 1 = 1 a x для любого x .
    • n a x = a

ЧАСТЬ II. ГЛАВА 6
ПОСЛЕДОВАТЕЛЬНОСТИ ЧИСЕЛ

Понятие о степени с иррациональным показателем

Пусть а- какое-нибудь положительное число и а - иррациональное.
Какой смысл следует придать выражению а*?
Чтобы сделать изложение более наглядным, проведем его на частном
примере. Именно, положим а - 2 и а = 1 , 624121121112 . . . .
Здесь, а - бесконечная десятичная дробь, составленная по такому
закону: начиная с четвертого десятичного знака, для изображения а
употребляются только цифры 1 и 2, и при этом количество’ цифр 1,
записываемых подряд перед цифрой 2, все время увеличивается на
одну. Дробь а непериодическая, так как иначе количество цифр 1,
записываемых подряд в его изображении, было бы ограниченным.
Следовательно, а - иррациональное число.
Итак, какой же смысл следует придать выражению
21,в2Ш1Ш1Ш11Ш11Ш. . . р
Чтобы ответить на этот вопрос, составим последовательности значений
а с недостатком и избытком с точностью до (0,1)*. Получим
1,6; 1,62; 1,624; 1,6241; …, (1)
1,7; 1,63; 1,625; 1,6242; . . . (2)
Составим соответствующие последовательности степеней числа 2:
2М. 2М*; 21*624; 21’62*1; …, (3)
21Д. 21»63; 2*»62Ву 21,6Ш; . (4)
Последовательность (3) возрастает, так как возрастает последовательность
(1) (теорема 2 § 6).
Последовательность (4) убывает, так как убывает последовательность
(2).
Каждый член последовательности (3) меньше каждого члена последовательности
(4), и, таким образом, последовательность (3) ограничена
сверху, а последовательность (4) ограничена снизу.
На основании теоремы о монотонной ограниченной последовательности
каждая из последовательностей (3) и (4) имеет предел. Если

384 Понятие о степени с иррациональным показателем. .

теперь, окажется, что разность последовательностей (4) и (3) сходится
к нулю, то из этого будет вытекать, что обе эти последовательности,
имеют общий предел.
Разность первых членов последовательностей (3) и (4)
21-7 - 21’* = 2|,в (20*1 - 1) < 4 (У 2 - 1).
Разность вторых членов
21’63 - 21,62 = 21,62 (2°’01 - 1) < 4 (l0 j/2f - 1) и т. д.
Разность п-х членов
0,0000. ..0 1
2>.««…(2 » - 1) < 4 (l0“/ 2 - 1).
На основании теоремы 3 § 6
lim 10″ / 2 = 1.
Итак, последовательности (3) и (4) имеют общий предел. Этот
предел является единственным вещественным числом, которое больше
всех членов последовательности (3) и меньше всех членов последовательности
(4), его и целесообразно считать точным значением 2*.
Из сказанного вытекает, что и вообще целесообразно принять
следующее определение:
Опр е д е л ение. Если а^> 1, то степенью числа а с иррациональным
показателем а называется такое действительное число,
которое больше всех степеней этого числа, показатели которых есть
рациональные приближения а с недостатком, и меньше всех степеней
этого числа, показатели которых - рациональные приближения а с
избытком.
Если а<^ 1, то степенью числа а с иррациональным показателем а
называется такое действительное число, которое больше всех степеней
этого числа, показатели которых - рациональные приближения а
с избытком, и меньше всех степеней этого числа, показатели которых
- рациональные приближения а с недостатком.
.Если а- 1, то степенью его с иррациональным показателем а
является 1.
Пользуясь понятием предела, это определение можно сформулировать
так:
Степенью положительного числа с иррациональным показателем
а называется предел, к которому стремится последовательность
рациональных степеней этого числа при условии, что последовательность
показателей этих степеней стремится к а, т. е.
аа = lim аЧ
Ъ — *
13 Д, К. Фатщеев, И. С. Со минский


В этой статье мы разберемся, что такое степень числа . Здесь мы дадим определения степени числа, при этом подробно рассмотрим все возможные показатели степени, начиная с натурального показателя, заканчивая иррациональным. В материале Вы найдете массу примеров степеней, покрывающих все возникающие тонкости.

Навигация по странице.

Степень с натуральным показателем, квадрат числа, куб числа

Для начала дадим . Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для a , которое будем называть основанием степени , и n , которое будем называть показателем степени . Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

Определение.

Степень числа a с натуральным показателем n - это выражение вида a n , значение которого равно произведению n множителей, каждый из которых равен a , то есть, .
В частности, степенью числа a с показателем 1 называется само число a , то есть, a 1 =a .

Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи a n таков: «a в степени n ». В некоторых случаях также допустимы такие варианты: «a в n -ой степени» и «n -ая степень числа a ». Для примера возьмем степень 8 12 , это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа , например, 7 2 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа , к примеру, 5 3 можно прочитать как «пять в кубе» или сказать «куб числа 5 ».

Пришло время привести примеры степеней с натуральными показателями . Начнем со степени 5 7 , здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: 4,32 является основанием, а натуральное число 9 – показателем степени (4,32) 9 .

Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2) 3 и −2 3 . Выражение (−2) 3 – это степень −2 с натуральным показателем 3, а выражение −2 3 (его можно записать как −(2 3) ) соответствует числу, значению степени 2 3 .

Заметим, что встречается обозначение степени числа a с показателем n вида a^n . При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 4 9 . А вот еще примеры записи степеней при помощи символа «^ »: 14^(21) , (−2,1)^(155) . В дальнейшем мы преимущественно будем пользоваться обозначением степени вида a n .

Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к .

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , где m – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили , то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данных m , n и a выражение имеет смысл, то степенью числа a с дробным показателем m/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

    Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

    Определение.

    Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .

    Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

    Определение.

    Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
    При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

    Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условие a≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

    Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является , считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

    При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

    Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

    Определение.

    Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

    Поясним, зачем степень с сократимым дробным показателем предварительно заменяется степенью с несократимым показателем. Если бы мы просто определили степень как , и не оговорились о несократимости дроби m/n , то мы бы столкнулись с ситуациями, подобными следующей: так как 6/10=3/5 , то должно выполняться равенство , но , а .

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...