Приближенное значение величины и погрешности измерений. Точные и приближенные значения величин



1. Числа точные и приближенные. Числа, с которыми мы встречаемся на практике, бывают двух родов. Одни дают истинное значение величины, другие - только приблизительное. Первые называют точными, вторые - приближенными. Чаще всего удобно пользоваться приближенным числом вместо точного, тем более, что во многих случаях точное число вообще найти невозможно.




Результаты действий с числами дают: с приближенными числами приближенные числа. Например. Во время эпидемии 60% жителей Санкт-Петербурга болеют гриппом. Это приблизительно 3млн человек. с точными числами точное числа Например. В аудитории на лекции по математике 65 человек. приближенные числа Например. Средняя температура тела пациента в течение дня 37,3: утро: 37,2 ; день:36,8 ; вечер38.


Теория приближенных вычислений позволяет: 1) зная степень точности данных, оценить степень точности результатов; 2) брать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата; 3) рационализировать процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точность результата.






1) если первая (слева) из отбрасываемых цифр менее 5, то последнюю оставленную цифру не изменяют (округление с недостатком); 2) если первая отбрасываемая цифра больше 5 или равна 5, то последнюю оставленную цифру увеличивают на единицу (округление с избытком). Округление: а) до десятых 12,34 12,3; б) до сотых 3,2465 3,25; 1038,79. в) до тысячных 3,4335 3,434. г) до тысяч; При этом учитывают следующее:


Величины, наиболее часто измеряемые в медицине: масса m, длина l, скорость процесса v, время t, температура t, объём V и т.д. Измерить физическую величину – это значит сравнить её с однородной величиной, принятой за единицу. 9 Единицы измерения физических величин: О с н о в н ы е Длина - 1 м - (метр) Время - 1 с - (секунда) Масса - 1 кг - (килограмм) П р о и з в о д н ы е Объем - 1 м³ - (метр кубический) Скорость - 1 м/с - (метр в секунду)


Приставки к названиям единиц: Кратные приставки - увеличивают в 10, 100, 1000 и т.д. раз г - гекто (×100) к – кило (× 1000) М – мега (×) 1 км (километр) 1 кг (килограмм) 1 км = 1000 м = 10³ м 1 кг = 1000 г = 10³ г Дольные приставки – уменьшают в 10, 100, 1000 и т.д. раз д – деци (×0, 1) с – санти (× 0, 01) м – милли (× 0, 001) 1 дм (дециметр) 1дм = 0,1 м 1 см (сантиметр) 1см = 0,01 м 1 мм (миллиметр) 1мм = 0,001 м Кратные приставки используют при измерении больших расстояний, масс, объемов, скоростей и т. п. Дольные приставки используют при измерении малых расстояний, скоростей, масс, объёмов и т.п.


Для диагностики, лечения, профилактики заболеваний в медицине используется различная измерительная медицинская аппаратура.


Термометр. Во-первых, нужно учесть верхний и нижний пределы измерений. Нижний предел – это минимальное, а верхний – максимальное измеряемое значение. Если неизвестно предполагаемое значение измеряемой величины, лучше взять прибор с «запасом». Например, измерение температуры горячей воды не стоит проводить уличным или комнатным термометром. Лучше найти прибор с верхним пределом 100 °С. Во-вторых, нужно понять, насколько точно должна быть измерена величина. Так как погрешность измерений зависит от цены деления, для более точных измерений выбирается прибор с меньшей ценой деления.


Погрешности измерений. Для измерения разных диагностических параметров величин нужен свой прибор. Например, длину измеряют линейкой, а температуру – термометром. Но линейки, термометры, тонометры и другие приборы бывают разными, поэтому чтобы измерить какую- либо физическую величину, нужно выбрать подходящий именно для этого измерения прибор.


Цена деления прибора. Температуру тела человека нужно определять точно, лекарства вводить строго определенное количество,поэтому Цена делений шкалы измерительного прибора – важная характеристика каждого прибора. Правило для вычисления цены деления прибора.. Чтобы подсчитать цену делений шкалы, нужно: а) выбрать на шкале два ближайших оцифрованных штриха; б) сосчитать количество делений между ними; в) разность значений около выбранных штрихов разделить на количество делений.


Цена деления прибора. Цена деления (50-30)/4=5 (мл) Цена деления: (40-20)/10=2 км/ч, (20-10)/10= 1грм, (39-19)/10=2 LITR, (8-4)/10=0,4 psi, (90-50)/10= 4 темп, (4-2)/10=0,2 с


Определите цену деления приборов: 16


Абсолютная погрешность измерения. При проведении любых измерений неизбежно возникают ошибки. Эти ошибки обусловлены различными факторами. Все факторы можно разделить на три части: ошибки, вызванные несовершенством приборов; ошибки, вызванные несовершенством методов проведения измерений; ошибки обусловленные влиянием случайных факторов, от которых невозможно избавиться. Измеряя какую-либо величину, хочется знать не только её значение, но и то, насколько этому значению можно доверять, насколько оно точно. Для этого необходимо знать, насколько истинное значение величины может отличаться от измеренного. Для этих целей вводится понятие абсолютной и относительной погрешностей.


Абсолютная и относительная погрешности. Абсолютная погрешность показывает, на сколько реальное значение физической величины отличается от измеренного. Она зависит от самого прибора (инструментальная погрешность) и от процесса измерений (погрешность отсчёта по шкале). Инструментальная погрешность должна быть указана в паспорте прибора (как правило, она равна цене деления прибора). Погрешность отсчёта обычно принимают равной половине цены деления. Абсолютной погрешностью приближенной величины называется разность Δ x = |x – x 0 |, где х 0 - приближенное значение, а х – точное значение измеряемой величины или иногда вместо х употребляют А ΔА = |А – А 0 |.


Абсолютная и относительная погрешности. Пример. Известно, что -0,333 приближенное значение для -1/3. Тогда по определению абсолютной погрешности Δ x= |x – x 0 |= | -1/3+0,333 | = | -1/3+33/1000 | = | -1/300 | = 1/300. Во многих практически важных случаях нельзя найти абсолютную погрешность приближения из-за того, что неизвестно точное значение величины. Однако можно указать положительное число, больше которого эта абсолютная погрешность не может быть. Это любое число h,удовлетворяющее неравенству | Δ x | h Оно называется границей абсолютной погрешности.


В этом случае говорят, что величина х приближенно с точностью до h равна x 0. х=х 0 ± h или х 0 - h х х 0 + h


Абсолютные инструментальные погрешности средств измерений


Оценка приборных погрешностей измеряемых величин. Для большинства измерительных приборов, погрешность прибора равна цене его деления. Исключение составляют цифровые приборы и стрелочные измерительные приборы. Для цифровых приборов погрешность указывается в их паспорте и обычно в раз превышает цену деления прибора. Для стрелочных измерительных приборов погрешность определяется их классом точности, который указывается на шкале прибора, и пределом измерений. Класс точности указывается на шкале прибора как число, которое не обведено никакими рамками. Например, на приведенном рисунке класс точности манометра равен 1,5. Класс точности показывает, сколько процентов составляет погрешность прибора от предела его измерений. Для стрелочного манометра предел измерений составляет 3 атм, соответственно погрешность измерения давления равна 1,5% от 3 атм, то есть 0,045 атм. Следует отметить, что для большинства стрелочных приборов их погрешность оказывается равной цене деления прибора. Как и в нашем примере, где цена деления барометра равна 0,05 атм.


Абсолютная и относительная погрешности. Абсолютная погрешность нужна для определения диапазона, в который может попасть истинное значение, но для оценки точности результата в целом она не очень показательна. Ведь измерение длины в 10 м с погрешностью в 1 мм безусловно является весьма точным, в то же время измерение длины в 2 мм с погрешностью в 1 мм очевидно является крайне неточным. Абсолютную погрешность измерения обычно округляют до одной значащей цифры ΔА 0,17 0,2. Численное значение результата измерений округляют так, чтобы его последняя цифра оказалась в том же разряде, что и цифра погрешности А=10,332 10,3


Абсолютная и относительная погрешности. Наряду с абсолютной погрешностью принято рассматривать и относительную погрешность, которая равна отношению абсолютной погрешности к значению самой величины. Относительной погрешностью приближённого числа называется отношение абсолютной погрешности приближённого числа к самому этому числу: Е = Δx. 100% х 0 Относительная погрешность показывает на сколько процентов от самой величины могла произойти ошибка и является показательной при оценки качества результатов эксперимента.


Пример. При измерении длины и диаметра капилляра получили l =(10,0 ±0,1)см, d=(2,5 ±0,1)мм. Какое из этих измерений точнее? При измерении длины капилляра допускается абсолютная погрешность 10мм на 100мм следовательно абсолютная погрешность10/100=0,1=10%. При измерении диаметра капилляра допустимая абсолютная погрешность 0,1/2,5=0,04=4% Следовательно измерение диаметра капилляра выполнено точнее.


Во многих случаях нельзя найти абсолютную погрешность. Следовательно и относительную погрешность. Но можно найти границу относительной погрешности. Любое число δ,удовлетворяющее неравенству | Δ x | / | x о | δ,является границей относительной погрешности. В частности, если h–граница абсолютной погрешности, то число δ= h/| x о |, является границей относительной погрешности приближения x о. Отсюда. Зная границу отн.п-и. δ можно найти границу абсолютной погрешности h. h= δ | x о |


Пример. Известно, что 2=1,41… Найти относительную точность приближенного равенства или границу отн.погрешности приближенного равенства 2 1,41. Здесь х = 2, x о = 1,41, Δ x = 2-1,41. Очевидно 0 Δ x 1,42-1,41=0,01 Δ x/ x о 0,01/1,41=1/141, Граница абс.погрешности равна 0,01, аграница относительной погрешности равна 1/141


Пример. При считывании показаний со шкалы важно, чтобы ваш взгляд падал перпендикулярно шкале прибора, при этом ошибка будет меньше. Для определения показания термометра: 1.определяем количество делений, 2. умножаем их на цену деления 3. учитываем погрешность 4.записываем окончательный результат. t = 20 °С ± 1,5 °С Это означает, что температура лежит в пределах от 18,5° до 21,5°. То есть она может быть, например, и 19, и 20 и 21 градусов Цельсия. Чтобы увеличить точность измерений, принято повторить их не менее трёх раз и вычислить среднее значение измеряемой величины


Н А Х О Ж Д Е Н И Е С Р Е Д Н Е Г О З Н А Ч Е Н И Я Результаты измерений С 1 = 34,5 С 2 = 33,8 С 3 = 33,9 С 4 = 33,5 С 5 = 54,2 а)Найдем среднее значение четырех величин с ср = (с 1 + с 2 + с 3 + с 4):4 с ср = (34,5 + 33,8 + 33,9 + 33,5):4 = 33,925 33,9 б)Найдем отклонение величины от среднего значения Δс = | c – c cp | Δc 1 = | c 1 – c cp | = | 34,5 – 33,9 | = 0,6 Δc 2 = | c 2 – c cp | = | 33,8 – 33,9 | = 0,1 Δc 3 = | c 3 – c cp | = | 33,9 – 33,9 | = 0 Δc 4 = | c 4 – c cp | = | 33,5 – 33,9 | = 0,4


В)Найдем абсолютную погрешность Δc = (c 1 + c 2 + c 3 + c 4):4 Δc = (0,6 + 0,4) :4 = 0,275 0,3 г)Найдем относительную погрешность δ = Δс: с СР δ = (0,3: 33,9) 100% = 0,9 % д) Запишем окончательный ответ с = 33,9 ± 0,3 δ = 0,9%


ДОМАШНЕЕ ЗАДАНИЕ Подготовиться к к практическому занятию по материалам лекции. Выполнить задание. Найти среднее значение и погрешность: а 1 = 3,685 а 2 = 3,247 а 3 = 3,410 а 4 = 3,309 а 5 = 3,392. Создать презентации по темам: «Округление величин в медицине», «Погрешности измерений», «Медицинская измерительная аппаратура»

Приближенные вычисления с помощью дифференциала

На данном уроке мы рассмотрим широко распространенную задачу о приближенном вычислении значения функции с помощью дифференциала . Здесь и далее речь пойдёт о дифференциалах первого порядка, для краткости я часто буду говорить просто «дифференциал». Задача о приближенных вычислениях с помощью дифференциала обладает жёстким алгоритмом решения, и, следовательно, особых трудностей возникнуть не должно. Единственное, есть небольшие подводные камни, которые тоже будут подчищены. Так что смело ныряйте головой вниз.

Кроме того, на странице присутствуют формулы нахождения абсолютной и относительной погрешность вычислений. Материал очень полезный, поскольку погрешности приходится рассчитывать и в других задачах. Физики, где ваши аплодисменты? =)

Для успешного освоения примеров необходимо уметь находить производные функций хотя бы на среднем уровне, поэтому если с дифференцированием совсем нелады, пожалуйста, начните с урока Как найти производную? Также рекомендую прочитать статью Простейшие задачи с производной , а именно параграфы о нахождении производной в точке и нахождении дифференциала в точке . Из технических средств потребуется микрокалькулятор с различными математическими функциями. Можно использовать Эксель, но в данном случае он менее удобен.

Практикум состоит из двух частей:

– Приближенные вычисления с помощью дифференциала функции одной переменной.

– Приближенные вычисления с помощью полного дифференциала функции двух переменных.

Кому что нужно. На самом деле можно было разделить богатство на две кучи, по той причине, что второй пункт относится к приложениям функций нескольких переменных . Но что поделать, вот люблю я длинные статьи.

Приближенные вычисления
с помощью дифференциала функции одной переменной

Рассматриваемое задание и его геометрический смысл уже освещёны на уроке Что такое производная? , и сейчас мы ограничимся формальным рассмотрением примеров, чего вполне достаточно, чтобы научиться их решать.

В первом параграфе рулит функция одной переменной. Как все знают, она обозначается через или через . Для данной задачи намного удобнее использовать второе обозначение. Сразу перейдем к популярному примеру, который часто встречается на практике:

Пример 1

Решение: Пожалуйста, перепишите в тетрадь рабочую формулу для приближенного вычисления с помощью дифференциала :

Начинаем разбираться, здесь всё просто!

На первом этапе необходимо составить функцию . По условию предложено вычислить кубический корень из числа: , поэтому соответствующая функция имеет вид: . Нам нужно с помощью формулы найти приближенное значение .

Смотрим на левую часть формулы , и в голову приходит мысль, что число 67 необходимо представить в виде . Как проще всего это сделать? Рекомендую следующий алгоритм: вычислим данное значение на калькуляторе:
– получилось 4 с хвостиком, это важный ориентир для решения.

В качестве подбираем «хорошее» значение, чтобы корень извлекался нацело . Естественно, это значение должно быть как можно ближе к 67. В данном случае: . Действительно: .

Примечание: Когда с подбором всё равно возникает затруднение, просто посмотрите на скалькулированное значение (в данном случае ), возьмите ближайшую целую часть (в данном случае 4) и возведите её нужную в степень (в данном случае ). В результате и будет выполнен нужный подбор: .

Если , то приращение аргумента: .

Итак, число 67 представлено в виде суммы

Сначала вычислим значение функции в точке . Собственно, это уже сделано ранее:

Дифференциал в точке находится по формуле:
– тоже можете переписать к себе в тетрадь.

Из формулы следует, что нужно взять первую производную:

И найти её значение в точке :

Таким образом:

Всё готово! Согласно формуле :

Найденное приближенное значение достаточно близко к значению , вычисленному с помощью микрокалькулятора.

Ответ:

Пример 2

Вычислить приближенно , заменяя приращения функции ее дифференциалом.

Это пример для самостоятельного решения. Примерный образец чистового оформления и ответ в конце урока. Начинающим сначала рекомендую вычислить точное значение на микрокалькуляторе, чтобы выяснить, какое число принять за , а какое – за . Следует отметить, что в данном примере будет отрицательным.

У некоторых, возможно, возник вопрос, зачем нужна эта задача, если можно всё спокойно и более точно подсчитать на калькуляторе? Согласен, задача глупая и наивная. Но попытаюсь немного её оправдать. Во-первых, задание иллюстрирует смысл дифференциала функции. Во-вторых, в древние времена, калькулятор был чем-то вроде личного вертолета в наше время. Сам видел, как из местного политехнического института году где-то в 1985-86 выбросили компьютер размером с комнату (со всего города сбежались радиолюбители с отвертками, и через пару часов от агрегата остался только корпус). Антиквариат водился и у нас на физмате, правда, размером поменьше – где-то с парту. Вот так вот и мучились наши предки с методами приближенных вычислений. Конная повозка – тоже транспорт.

Так или иначе, задача осталась в стандартном курсе высшей математики, и решать её придётся. Это основной ответ на ваш вопрос =)

Пример 3

в точке . Вычислить более точное значение функции в точке с помощью микрокалькулятора, оценить абсолютную и относительную погрешность вычислений.

Фактически то же самое задание, его запросто можно переформулировать так: «Вычислить приближенное значение с помощью дифференциала»

Решение: Используем знакомую формулу:
В данном случае уже дана готовая функция: . Ещё раз обращаю внимание, что для обозначения функции вместо «игрека» удобнее использовать .

Значение необходимо представить в виде . Ну, тут легче, мы видим, что число 1,97 очень близко к «двойке», поэтому напрашивается . И, следовательно: .

Используя формулу , вычислим дифференциал в этой же точке.

Находим первую производную:

И её значение в точке :

Таким образом, дифференциал в точке:

В результате, по формуле :

Вторая часть задания состоит в том, чтобы найти абсолютную и относительную погрешность вычислений.

Абсолютная и относительная погрешность вычислений

Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:
, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.


После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность:

Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений

Следующий пример для самостоятельного решения:

Пример 4

Вычислить приближенно с помощью дифференциала значение функции в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции в точке

Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах . Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций . Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.

Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:

Таким образом:

После предварительного анализа градусы необходимо перевести в радианы . Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы: (формулы можно найти в той же таблице).

Дальнейшее шаблонно:

Таким образом: (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ:

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления
с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендую просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка , куда ж без них. На вышеупомянутом уроке функцию двух переменных я обозначал через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и я постараюсь рассмотреть все встречающиеся формулировки.

Пример 8

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы предыдущего параграфа. Переменная только прибавилась. Да что говорить, сам алгоритм решения будет принципиально таким же !

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Колобок сам просится, чтобы его съели:
,

Число 3,95 представим в виде . Дошла очередь и до второй половины Колобка:
,

И не смотрите на всякие лисьи хитрости, Колобок есть – надо его съесть.

Вычислим значение функции в точке :

Дифференциал функции в точке найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: , абсолютная погрешность: , относительная погрешность:

Пример 9

Вычислить приближенное значение функции в точке с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными. Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: . Общая закономерность такова – чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10


Решение : Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: . Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .
Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

;


.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527

Найдем относительную погрешность вычислений:

Ответ: ,

Как раз иллюстрация вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Как уже отмечалось, наиболее частный гость в данном типе заданий – это какие-нибудь корни. Но время от времени встречаются и другие функции. И заключительный простой пример для релаксации:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если

Решение ближе к дну страницы. Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения.

Если честно, немного утомился, поскольку материал был нудноватый. Непедагогично это было говорить в начале статьи, но сейчас-то уже можно =) Действительно, задачи вычислительной математики обычно не очень сложны, не очень интересны, самое важное, пожалуй, не допустить ошибку в обычных расчётах.

Да не сотрутся клавиши вашего калькулятора!

Решения и ответы:

Пример 2: Решение: Используем формулу:
В данном случае: , ,

Таким образом:
Ответ:

Пример 4: Решение: Используем формулу:
В данном случае: , ,

Если известно, что а < А, то а называют приближенным значением величины А с недостатком. Если а > А, то а называют приближенным значением величины А с избытком.

Разность точного и приближенного значений величины называется погрешностью приближения и обозначается D, т.е.

D = А – а (1)

Погрешность D приближения может быть как числом положительным, так и отрицательным.

Для того чтобы охарактеризовать отличие приближенного значения величины от точного, часто бывает достаточно указать абсолютную величину разности точного и приближенного значений.

Абсолютная величина разности между приближенным а и точным А значениями числа называется абсолютной погрешностью (ошибкой) приближения и обозначается D а :

D а = ½а А ½ (2)

Пример 1. При измерении отрезка l использовали линейку, цена деления шкалы которой равна 0,5 см. Получили приближенное значение длины отрезка а = 204 см.

Понятно, что при измерении могли ошибиться не более, чем на 0,5 см, т.е. абсолютная погрешность измерения не превышает 0,5 см.

Обычно абсолютная ошибка неизвестна, поскольку неизвестно точное значение числа А. Поэтому в качестве ошибки принимают какую-либо оценку абсолютной ошибки:

D а <= D а пред . (3)

где D а пред . – предельная ошибка (число, большее нуля), задаваемая с учетом того, с какой достоверностью известно число а.

Предельная абсолютная погрешность называется также границей погрешности . Так, в приведенном примере,
D а пред . = 0,5 см.

Из (3) получаем:

D а = ½а А ½<= D а пред . .

а – D а пред . ≤ А а + D а пред . . (4)

а – D а пред . будет приближенным значением А с недостатком,

а + D а пред приближенным значением А с избытком. Пользуются также краткой записью:

А = а ± D а пред (5)

Из определения предельной абсолютной погрешности следует, что чисел D а пред , удовлетворяющих неравенству (3), будет бесконечное множество. На практике стараются выбрать возможно меньшее из чисел D а пред , удовлетворяющих неравенству D а <= D а пред .

Пример 2. Определим предельную абсолютную погрешность числа а=3,14 , взятого в качестве приближенного значения числа π.

Известно, что 3,14<π<3,15. Отсюда следует, что

|а π |< 0,01.

За предельную абсолютную погрешность можно принять число D а = 0,01.

Если же учесть, что 3,14<π<3,142 , то получим лучшую оценку: D а = 0,002, тогда π ≈3,14 ±0,002.

4. Относительная погрешность (ошибка). Знания только абсолютной погрешности недостаточно для характеристики качества измерения.



Пусть, например, при взвешивании двух тел получены следующие результаты:

Р 1 = 240,3 ±0,1 г.

Р 2 = 3,8 ±0,1 г.

Хотя абсолютные погрешности измерения обоих результатов одинаковы, качество измерения в первом случае будет лучшим, чем во втором. Оно характеризуется относительной погрешностью.

Относительной погрешностью (ошибкой) приближения числа А называется отношение абсолютной ошибки D а приближения к абсолютной величине числа А:

Так, как точное значение величины обычно неизвестно, то его заменяют приближенным значением и тогда:

(7)

Предельной относительной погрешностью или границей относительной погрешности приближения, называется число d а пред. >0, такое, что:

d а <= d а пред. (8)

За предельную относительную погрешность можно, очевидно, принять отношение предельной абсолютной погрешности к абсолютной величине приближенного значения:

(9)

Из (9) легко получается следующее важное соотношение:

а пред. = |a | d а пред. (10)

Предельную относительную погрешность принято выражать в процентах:

Пример. Основание натуральных логарифмов для расчета принято равным е =2,72. В качестве точного значения взяли е т = 2,7183. Найти абсолютную и относительную ошибки приближенного числа.

D е = ½е е т ½=0,0017;

.

Величина относительной ошибки остается неизменной при пропорциональном изменении самого приближенного числа и его абсолютной ошибки. Так, у числа 634,7, рассчитанного с абсолютной ошибкой D = 1,3 и у числа 6347 с ошибкой D = 13 относительные ошибки одинаковы: d = 0,2.

О величине относительной ошибки можно примерно судить по количеству верных значащих цифр числа.

В самых разнообразных теоретических и прикладных исследованиях широко используются методы математического моделирования, которые сводят решение задач данной области исследования к решению адекватных (или приближенно адекватных) им математических задач. Необходимо довести решение этих задач до получения числового результата (вычисления различного рода величин, решения различных типов уравнений и т.п.). Целью вычислительной математики является разработка алгоритмов численного решения обширного круга математических задач. Методы должны быть разработаны так, чтобы их можно было эффективно реализовать с помощью современной вычислительной техники. Как правило, рассматриваемые задачи не допускают точного решения, поэтому речь идет о разработке алгоритмов, дающих приближенное решение. Для возможности замены неизвестного точного решения задачи приближенным необходимо, чтобы последнее было достаточно близко к точному. В связи с этим возникает необходимость оценки близости приближенного решения к точному и разработки приближенных методов построения приближенных решений, сколько угодно близких к точным.

Схематически вычислительный процесс заключается в том, чтобы для данной величины x (числовой, векторный и т.д.) вычислить значение некоторой функции A(x) . Разность между точным и приближенным значениями величины называют погрешностью . Точное вычисление значения A(x) обычно невозможно, и вынуждает заменить функцию (операцию) A ее приближенным представлением Ã , которое можно вычислить: вычисление величины A(x) , заменяется вычислением- Ã(x) A(x) - Ã(x) называют погрешностью метода . Способ оценки этой погрешности должен быть разработан вместе с разработкой метода вычисления величины Ã(x) . Из возможных методов построения приближения следует использовать тот, который при имеющихся средствах и возможностях дает наименьшую погрешность.

Значение величины x , то есть исходных данных, в реальных задачах получается или непосредственно из измерений, или в результате предыдущего этапа вычислений. В этих случаях определяется лишь приближенное значение x o величины x . Поэтому вместо величины Ã(x) может быть вычислено лишь приближенное ее значение Ã(x o) . Возникающую при этом погрешность A(x) - Ã(x o) называют неустранимой . В результате неизбежных в ходе вычислений округлений, вместо величины Ã(x o) вычисляется ее «округленное» значение , что приводит к появлению погрешности округления Ã(x o) - . Полная погрешность вычислиниия оказывается равной A(x) - .

Представим полную погрешность в виде

A(x) - = [A(x) - ] + [ - Ã(x o) ] +

+ [Ã(x o) - ] (1)

Последнее равенство показывает, что полная погрешность вычисления равна сумме погрешности метода, неустранимой погрешности и погрешности округления. Первые две составляющие погрешности можно оценить до начала вычислений. Погрешность округления оценивается лишь в ходе вычислений.

Рассмотрим следующие задачи:

а) характеристика точности приближенных чисел

б) оценка точности результата при известной точности исходных данных (оценка неустранимой погрешности)

в) определение необходимой точности исходных данных для обеспечения заданной точности результата

г) согласование точности исходных данных и вычислений с возможностями имеющихся вычислительных средств.

4 Погрешности измерений

4.1 Истинные и действительные значения физических величин. Погрешность измерения. Причины возникновения погрешностей измерений

При анализе измерений следует четко разграничивать два понятия: истинные значения физических величин и их эмпирические проявления - результаты измерений.

Истинные значения физических величин - это значения, идеальным образом отражающие свойства данного объекта как в количественном, так и в качественном отношении. Они не зависят от средств измерений и являются той абсолютной истиной, к которой стремятся при измерениях.

Напротив, результаты измерений являются продуктами познания. Представляя собой приближенные оценки значений величин, найденные в результате измерений, они зависят от метода измерений, от средств измерений и других факторов.

Погрешностью измерения называется разница между результатом измерения х и истинным значением Q измеряемой величины:

Δ= x – Q (4.1)

Но поскольку истинное значение Q измеряемой величины неизвестно, то для определения погрешности измерения в формулу (4.1) вместо истинного значения подставляют так называемое действительное значение.

Под действительным значением измеряемой величины понимается ее значение, найденное экспериментально и настолько приближающееся к истинному, что для данной цели оно может быть использовано вместо него.

Причинами возникновения погрешностей являются: несовершенство методов измерений, средств измерений и органов чувств наблюдателя. В отдельную группу следует объединить причины, связанные с влиянием условий проведения измерений. Последние проявляются двояко. С одной стороны, все физические величины, играющие какую-либо роль при проведении измерений, в той или иной степени зависят друг от друга. Поэтому с изменением внешних условий изменяются истинные значения измеряемых величин. С другой стороны, условия проведения измерений влияют и на характеристики средств измерений и физиологические свойства органов чувств наблюдателя и через их посредство становятся источником погрешностей измерений.

4.2 Классификация погрешностей измерений в зависимости от характера их изменения

Описанные причины возникновения погрешностей являются совокупностью большого числа факторов, под влиянием которых складывается суммарная погрешность измерения. Их можно объединить в две основные группы.

К первой группе можно отнести факторы, проявляющиеся нерегулярно и неожиданно исчезающие или проявляющиеся с интенсивностью, которую трудно предвидеть. К ним относятся, например, малые флуктуации влияющих величин (температуры, давления окружающей среды и т.п.). Доля, или составляющая, суммарной погрешности измерения, возникающая под действием факторов этой группы, определяет случайную погрешность измерения.

Таким образом, случайная погрешность измерения - составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины.

При создании средств измерений и организации процесса измерения в целом интенсивность проявления факторов, определяющих случайную погрешность измерения, удается свести к общему уровню, так что все они влияют более или менее одинаково на формирование случайной погрешности. Однако некоторые из них, например, внезапное падение напряжения в сети электропитания, могут проявиться неожиданно сильно, в результате чего погрешность примет размеры, явно выходящие за границы, обусловленные ходом измерительного эксперимента. Такие погрешности в составе случайной погрешности называются грубыми . К ним тесно примыкают промахи - погрешности, зависящие от наблюдателя и связанные с неправильным обращением со средствами измерений, неверным отсчетом показаний или ошибками при записи результатов.

Ко второй группе можно отнести факторы, постоянные или закономерно изменяющиеся в процессе измерительного эксперимента, например, плавные изменения влияющих величин. Составляющая суммарной погрешности изме­рения, возникающая под действием факторов этой группы, определяет система­тическую погрешность измерения.

Таким образом, систематическая погрешность измерения - составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины.

В процессе измерения описанные составляющие погрешности проявляются одновременно, и суммарную погрешность можно представить в виде суммы

, (4.2)

где - случайная,a Δ s - систематическая погрешности.

Для получения результатов, минимально отличающихся от истинных значений величин, проводят многократные наблюдения за измеряемой величиной с последующей обработкой опытных данных. Поэтому большое значение имеет изучение погрешности как функции номера наблюдения, т.е. времени A (t). Тогда отдельные значения погрешностей можно будет трактовать как набор значений этой функции:

Δ 1 = Δ(t 1), Δ 2 = Δ(t 2),..., Δ n = Δ(t n).

В общем случае погрешность является случайной функцией времени, которая отличается от классических функций математического анализа тем, что нельзя сказать, какое значение она примет в момент времени t i . Можно указать лишь вероятности появления ее значений в том или ином интервале. В серии экспериментов, состоящих из ряда многократных наблюдений, мы получаем одну реализацию этой функции. При повторении серии при тех же значениях величин, характеризующих факторы второй группы, неизбежно получаем новую реализацию, отличающуюся от первой. Реализации отличаются друг от друга из-за влияния факторов первой группы, а факторы второй группы, одинаково проявляющиеся при получении каждой реализации, придают им некоторые общие черты (рисунок 4.1).

Погрешность измерений, соответствующая каждому моменту времени t i , на­зывается сечением случайной функции Δ(t). В каждом сечении можно найти среднее значение погрешности Δ s (t i), относительно которого группируются погрешности в различных реализациях. Если через полученные таким образом точки Δ s (t i) провести плавную кривую, то она будет характеризовать общую тенденцию изменения погрешности во времени. Нетрудно заметить, что средние значения Δ s (tj) определяются действием факторов второй группы и представляют собой систематическую погрешность измерения в момент времени t i , а отклонения Δ j (t j) от среднего значения в сечении t i , соответствующие j-й реализации, дают значение случайной погрешности. Таким образом, имеет место равенство

(4.3)

Рисунок 4.1

Предположим, что Δ s (t i) = 0, т.е. систематические погрешности тем или иным способом исключены из результатов наблюдений, и будем рассматривать только случайные погрешности, средние значения которых равны нулю в каждом сечении. Предположим, что случайные погрешности в различных сечениях не зависят друг от друга, т.е. знание случайной погрешности в одном сечении не дает нам никакой дополнительной информации о значении, принимаемом этой реализацией в любом сечении, и что все теоретико-вероятностные особенности случайных погрешностей, являющихся значениями одной реализации во всех сечениях, совпадают между собой. Тогда случайную погрешность можно рассматривать как случайную величину, а ее значения при каждом из многократных наблюдений одной и той же физической величины – как результаты независимых наблюдений над ней.

В таких условиях случайная погрешность измерений определяется как разность между исправленным результатом измерения Х И (результатом, не содержащем систематическую погрешность) и истинным значением Q измеряемой величины:

Δ = X И –Q 4.4)

причем исправленным будет результат измерений, из которого будут исключены систематические погрешности.

Подобные данные получают обычно при поверке средств измерений путем измерения заранее известных величин. При проведении же измерений целью является оценка истинного значения измеряемой величины, которое до опыта неизвестно. Результат измерения включает в себя помимо истинного значения еще и случайную погрешность, следовательно, сам является случайной величиной. В этих условиях фактическое значение случайной погрешности, полученное при поверке, еще не характеризует точности измерений, поэтому неясно, какое же значение принять за окончательный результат измерения и как охарактеризовать его точность.

Ответ на эти вопросы можно получить, используя при обработке результатов наблюдений методы математической статистики, имеющие дело именно со случайными величинами.

4.3 Классификация погрешностей измерений в зависимости от причин их возникновения

В зависимости от причин возникновения различают следующие группы погрешностей: методические, инструментальные, внешние и субъективные.

Во многих методах измерений можно обнаружить методическую погрешность ,являющуюся следствием тех или иных допущений и упрощений, применения эмпирических формул и функциональных зависимостей. В некоторых случаях влияние таких допущений оказывается незначительным, т.е. намного меньше, чем допускаемые погрешности измерений; в других случаях оно превышает эти погрешности.

Примером методических погрешностей являются погрешности метода измерений электрического сопротивления при помощи амперметра и вольтметра (рисунок 4.2). Если сопротивление R x определять по формуле закона Ома R x =U v /I a , где U v - падение напряжения, измеренное вольтметром V; I а - сила тока, измеренная амперметром А, то в обоих случаях будут допущены методические погрешности измерений.

На рисунке 4.2,а сила тока I а, измеренная амперметром, будет больше силы тока в сопротивлении R x на значение силы тока I v в вольтметре, включаемом параллельно сопротивлению. Сопротивление R x , вычисленное с помощью приведенной формулы, окажется меньше действительного. На рисунке 4.2,6 напряжение, измеренное вольтметром V, окажется больше падения напряжения U r в сопротивлении R x на значение U a (падение напряжения на сопротивлении амперметра А). Сопротивление, вычисленное по формуле закона Ома, окажется больше сопротивления R x на значение R a (сопротивление амперметра). Поправки в обоих случаях можно легко вычислить, если знать сопротивление вольтметра и амперметра. Поправки можно не вносить в том случае, если они значительно меньше допускаемой погрешности измерения сопротивления R x , например, если в первом случае сопротивление вольтметра значительно б

ОльшеR x , а во втором случае R a значительно меньше R x .

Рисунок 4.2

Другим примером появления методической погрешности является измерение объема тел, форма которых принимается геометрически правильной, путем измерения размеров в одном или в недостаточном числе мест, например, измерение объема помещения путем измерения длины, ширины и высоты только в трех направлениях. Для точного определения объема следовало бы определить длину и ширину помещения по каждой стене, вверху и внизу, измерить высоту по углам и в середине и, наконец, углы между стенами. Этот пример иллюстрирует возможность появления существенной методической погрешности при не­обоснованном упрощении метода.

Как правило, методическая погрешность является систематической погрешностью.

Инструментальная погрешность - это составляющая погрешности из-за несовершенства средств измерений. Классическим примером такой погрешно­сти является погрешность измерительного прибора, вызванная неточной гра­дуировкой его шкалы. Очень важно четко разграничивать погрешности измере­ний и инструментальные погрешности. Несовершенство средств измерений яв­ляется лишь одним из источников погрешности измерения и определяет только одну из ее составляющих − инструментальную погрешность. В свою очередь инструментальная погрешность является суммарной, составляющие которой − погрешности функциональных узлов − могут быть как систематическими, так и случайными.

Внешняя погрешность - составляющая погрешности измерения, вызывае­мая отклонением одной или нескольких влияющих величин от нормальных значений или выходом их за пределы нормальной области (например, влияние температуры, внешних электрических и магнитных полей, механических воздействий и т.п.). Как правило, внешние погрешности определяются дополнительными погрешностями применяемых средств измерений и являются систематическими. Однако при нестабильности влияющих величин они могут стать случайными.

Субъективная (личная) погрешность обусловлена индивидуальными особенностями экспериментатора и может быть как систематической, так и случайной. При применении современных цифровых средств измерений субъективной погрешностью можно пренебречь. Однако при отсчете показаний стрелочных приборов такие погрешности могут быть и значительными из-за неправильного отсчета десятых долей деления шкалы, асимметрии, возникающей при установке штриха посередине между двумя рисками, и т.п. Например, погрешности, которые делает экспериментатор при оценивании десятых долей деления шкалы прибора, могут достигать 0,1 деления. Эти погрешности проявляются в том, что для разных десятых долей деления разным экспериментаторам свойственны различные частоты оценок, причем каждый экспериментатор сохраняет присущее ему распределение в течение длительного времени. Так, один экспериментатор чаще, чем следует, относит показания к линиям, обра­зующим края деления, и к значению 0,5 деления. Другой - к значениям 0,4 и 0,6 деления. Третий предпочитает значения 0,2 и 0,8 деления и т.д. В целом, имея в виду случайного экспериментатора, распределение погрешностей отсчитывания десятых долей деления можно считать равномерным с границами ±0,1 деления.

4.4 Формы представления погрешности измерения. Точность измерений

Погрешность измерения может быть представлена в форме абсолютной погрешности, выражаемой в единицах измеряемой величины и определяемой по формуле (4.1), или относительной погрешности, определяемой как отношение абсолютной погрешности к истинному значению измеряемой величины:

δ = Δ/Q. (4.5)

В случае выражения случайной погрешности в процентах, отношение Δ/Q умножается на 100 %. Кроме того, в формуле (4.5) допускается вместо истинного значения Q использовать результат измерения х.

Широко применяется также понятие точность измерений − характеристика, отражающая близость их результатов к истинному значению измеряемой величины. Другими словами, высокая точность соответствует малым погрешностям измерений. Поэтому количественно точность измерений можно оценить величиной, обратной модулю относительной погрешности

3.2. Округление

Одним из источников получения приближенных чисел является о кругление. Округляют как точные, так и приближенные числа.

Округлением данного числа до некоторого его разряда называют замену его новым числом, которое получается из данного путемотбрасывания всех его цифр, записанныхправее цифры этого разряда, или путем замены его нулями. Этинули обычноподчеркивают или пишут их меньшими . Для обеспечения наибольшей близости округленного числа к округляемому следует пользоваться такимиправилами :

чтобы округлить число до единицы определенного разряда, надо отбросить все цифры, стоящие после цифры этого разряда, а в целом числе заменить их нулями. При этом учитывают следующее:

1 ) если первая (слева) из отбрасываемых цифрменее 5 , то последнюю оставленную цифру не изменяют (округление снедостатком );

2 ) если первая отбрасываемая цифрабольше 5 или равна 5 , то последнюю оставленную цифру увеличивают на единицу (округление сизбытком ).*

Например :

Округлить :Ответы:

а ) до десятых 12,34; 12,34 ≈ 12,3;

б ) до сотых 3,2465; 1038,785; 3,2465 ≈ 3,25; 1038,785 ≈ 1038,79;

в ) до тысячных 3,4335; 3,4335 ≈ 3,434;

г ) до тысяч 12 375, 320 729. 12 375 ≈ 12000 ; 320 729 ≈ 321 000.

(* Несколько лет назад в случае отбрасывания одной лишь цифры 5 пользовались«правилом четной цифры»: последнюю цифру оставляли без изменения, если она четная, и увеличивали на единицу, если нечетная. Теперь «правила четной цифры»не придерживаются: если отбрасывают одну цифру5 , то к последней оставленной цифре добавляют единицу не зависимо от того, четная она или нечетная).

3.3. Абсолютная и относительная погрешность приближенного значения величин

Абсолютное значение разности между приближенным и точным (истинным) значением величины называетсяабсолютной погрешностью приближенного значения.Например , если точное число1,214 округлить до десятых, то получим приближенное число1,2 . В данном случае абсолютная погрешность приближенного числа составит1,214 – 1,2 = 0,014 .

Но в большинстве случаев точное значение рассматриваемой величины неизвестно, а только приближенное. Тогда и абсолютная погрешность неизвестна. В этих случаях указывают границу , которую она не превышает. Это число называютграничной абсолютной погрешностью. Говорят, что точное значение числа равно его приближенному значению с погрешностью меньшей, чем граничная погрешность.Например , число23,71 есть приближенное значение числа23,7125 с точностью до0,01 , так как абсолютная погрешность приближения равна0,0025 и меньше0,01 . Здесь граничная абсолютная погрешность равна0,01 .*

(* Абсолютная погрешность бывает и положительной и отрицательной.Например ,1,68 ≈ 1,7 . Абсолютная погрешность равна1,68 – 1,7 ≈ - 0,02 .Граничная погрешность всегда положительна).

Граничную абсолютную погрешность приближенного числа «а » обозначают символомΔ а . Запись

Х ≈ а (Δа)

следует понимать так: точное значение величины х находится в промежутке между числамиа а и а –Δ а, которые называют соответственнонижней иверхней границей х и обозначаютН Гх иВ Гх .

Например , еслих ≈ 2,3 ( 0,1), то2,2 < х < 2,4 .

Наоборот, если 7,3 < х < 7,4 , тох ≈ 7,35 ( 0,05).

Абсолютная или граничная абсолютная погрешность не характеризуют качество выполненного измерения. Одна и та же абсолютная погрешность может считаться значительной и незначительной в зависимости от числа, которым выражается измеряемая величина.

Например , если измеряем расстояние между двумя городами с точностью до одного километра, то такая точность вполне достаточна для этого измерения, в то же время при измерении расстояния между двумя домами одной улицы такая точность будет недопустимой.

Следовательно, точность приближенного значения величины зависит не только от величины абсолютной погрешности, но и от значения измеряемой величины. Поэтому мерой точности служит относительная погрешность.

Относительной погрешностью называется отношение абсолютной погрешности к величине приближенного числа. Отношение граничной абсолютной погрешности к приближенному числу называютграничной относительной погрешностью ; обозначают её так:Δ а/а . Относительную и граничную относительную погрешности принято выражатьв процентах .

Например , если измерения показали, что расстояние между двумя пунктами больше12,3 км , но меньше12,7 км , то заприближенное значение его принимаютсреднее арифметическое этих двух чисел, т.е. ихполусумму , тогдаграничная абсолютная погрешность равнаполуразности этих чисел. В данном случаех ≈ 12,5 ( 0,2). Здесь граничнаяабсолютная погрешность равна0,2 км , а граничнаяотносительная:

Абсолютная и относительная погрешности

Абсолютной погрешностью измерения называется величина, определяемая разницей между результатом измерения x и истинным значением измеряемой величины x 0:

Δx = |x x 0 |.

Величина δ, равная отношению абсолютной погрешности измерения к результату измерения, называется относительной погрешностью:

Пример 2.1. Приближённым значением числа π является 3.14. Тогда погрешность его равна 0.00159… . Абсолютную погрешность можно считать равной 0.0016, а относительную погрешность равной 0.0016 / 3.14 = 0.00051 = 0.051 %.

Значащие цифры. Если абсолютная погрешность величины a не превышает одной единицы разряда последней цифры числа a, то говорят, что у числа все знаки верные. Приближённые числа следует записывать, сохраняя только верные знаки. Если, например, абсолютная погрешность числа 52 400 равна 100, то это число должно быть записано, например, в виде 524 · 10 2 или 0.524 · 10 5. Оценить погрешность приближённого числа можно, указав, сколько верных значащих цифр оно содержит. При подсчёте значащих цифр не считаются нули с левой стороны числа.

Например, число 0.0283 имеет три верных значащих цифры, а 2.5400 – пять верных значащих цифр.

Правила округления чисел . Если приближённое число содержит лишние (или неверные) знаки, то его следует округлить. При округлении возникает дополнительная погрешность, не превышающая половины единицы разряда последней значащей цифры (d ) округлённого числа. При округлении сохраняются только верные знаки; лишние знаки отбрасываются, причём если первая отбрасываемая цифра больше или равна d /2, то последняя сохраняемая цифра увеличивается на единицу.

Лишние цифры в целых числах заменяются нулями, а в десятичных дробях отбрасываются (как и лишние нули). Например, если погрешность измерения 0.001 мм, то результат 1.07005 округляется до 1.070. Если первая из изменяемых нулями и отбра­сываемых цифр меньше 5, остающиеся цифры не изменяются. Например, число 148 935 с точностью измерения 50 имеет округление 148 900. Если первая из заменяемых нулями или отбрасываемых цифр равна 5, а за ней не следует никаких цифр или идут нули, то округление производится до ближайшего чётного числа. Например, число 123.50 округляется до 124. Если первая из заменяемых нулями или отбрасываемых цифр больше 5 или равна 5, но за ней следует значащая цифра, то последняя остающаяся цифра увеличивается на единицу. Например, число 6783.6 округляется до 6784.

Пример 2.2. При округлении числа 1284 до 1300 абсолютная погрешность составляет 1300 – 1284 = 16, а при округлении до 1280 абсолютная погрешность составляет 1280 – 1284 = 4.

Пример 2.3. При округлении числа 197 до 200 абсолютная погрешность составляет 200 – 197 = 3. Относительная погрешность равна 3/197 ≈ 0.01523 или приближённо 3/200 ≈ 1.5 %.

Пример 2.4. Продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая – 50 г. Взвешивание дало 3600 г. Это число – приближённое. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превышает 50/3600 = 1.4 %.

Погрешности решения задачи на PC

В качестве основных источников погрешности обычно рассматривают три вида ошибок. Это так называемые ошибки усечения, ошибки округления и ошибки распространения. Например, при использовании итерационных методов поиска корней нелинейных уравнений результаты являются приближёнными в отличие от прямых методов, дающих точное решение.

Ошибки усечения

Этот вид ошибок связан с погрешностью, заложенной в самой задаче. Он может быть обусловлен неточностью определения исходных данных. Например, если в условии задачи заданы какие-либо размеры, то на практике для реальных объектов эти размеры известны всегда с некоторой точностью. То же самое касается любых других физических параметров. Сюда же можно отнести неточность расчётных формул и входящих в них числовых коэффициентов.

Ошибки распространения

Данный вид ошибок связан с применением того или иного способа решения задачи. В ходе вычислений неизбежно происходит накопление или, иначе говоря, распространение ошибки. Помимо того, что сами исходные данные не являются точными, новая погрешность возникает при их перемножении, сложении и т. п. Накопление ошибки зависит от характера и количества арифметических действий, используемых в расчёте.

Ошибки округления

Это тип ошибок связан с тем, что истинное значение числа не всегда точно сохраняется компьютером. При сохранении вещественного числа в памяти компьютера оно записывается в виде мантиссы и порядка примерно так же, как отображается число на калькуляторе.

В практической деятельности человеку приходится измерять различные величины, учитывать материалы и продукты труда, производить различные вычисления. Результатами различных измерений, подсчетов и вычислений являются числа. Числа, полученные в результате измерения, лишь приблизительно, с некоторой степенью точности характеризуют искомые величины. Точные измерения невозможны ввиду неточности измерительных приборов, несовершенства наших органов зрения, да и сами измеряемые объекты иногда не позволяют определить их величину с любой точностью.

Так, например, известно, что длина Суэцкого канала 160 км, расстояние по железной дороге от Москвы до Ленинграда 651 км. Здесь мы имеем результаты измерений, произведенных с точностью до километра. Если, например, длина прямоугольного участка 29 м, ширина 12 м, то, вероятно, измерения произведены с точностью до метра, а долями метра пренебрегли,

Прежде чем произвести какое-либо измерение, необходимо решить, с какой точностью его нужно выполнить, т.е. какие доли единицы измерения надо при этом принять во внимание, а какими пренебречь.

Если имеется некоторая величина а, истинное значение которой неизвестно, а приближенное значение (приближение) этой величины равно х, то пишут а х .

При различных измерениях одной и той же величины будем получать различные приближения. Каждое из этих приближений будет отличаться от истинного значения измеряемой величины, равного, например, а, на некоторую величину, которую мы будем называть погрешностью. Определение. Если число x является приближенным значением (приближением) некоторой величины, истинное значение которой равно числу а, то модуль разности чисел, а и х называется абсолютной погрешностью данного приближения и обозначается a x : или просто a . Таким образом, по определению,

a x = a-x (1)

Из этого определения следует, что

a = x a x (2)

Если известно, о какой величине идет речь, то в обозначении a x индекс а опускается и равенство (2) записывается так:

a = x x (3)

Так как истинное значение искомой величины чаще всего бывает неизвестно, то нельзя найти и абсолютную погрешность приближения этой величины. Можно лишь указать в каждом конкретном случае положительное число, больше которого эта абсолютная погрешность быть не может. Это число называется границей абсолютной погрешности приближения величины a и обозначается h a . Таким образом, если x -- произвольное приближение величины а при заданной процедуре получения приближений, то

a x = a-x h a (4)

Из сказанного выше следует, что если h a является границей абсолютной погрешности приближения величины а , то и любое число, большее h a , также будет границей абсолютной погрешности приближения величины а .

На практике принято выбирать в качестве границы абсолютной погрешности возможно меньшее число, удовлетворяющее неравенству (4).

Решив неравенство a-x h a получим, что а заключено в границах

x - h a a x + h a (5)

Более строгое понятие границы абсолютной погрешности можно дать следующим образом.

Пусть X -- множество всевозможных приближений х величины а при заданной процедуре получения приближении. Тогда любое число h , удовлетворяющее условию a-x h a при любом хХ , называется границей абсолютной погрешности приближений из множества X . Обозначим через h a наименьшее из известных чисел h . Это число h a и выбирают на практике в качестве границы абсолютной погрешности.

Абсолютная погрешность приближения не характеризует качества измерений. Действительно, если мы измеряем с точностью до 1 см какую-либо длину, то в том случае, когда речь идет об определении длины карандаша, это будет плохая точность. Если же с точностью до 1 см определить длину или ширину волейбольной площадки, то это будет высокая точность.

Для характеристики точности измерения вводится понятие относительной погрешности.

Определение. Если a x : есть абсолютная погрешность приближения х некоторой величины, истинное значение которой равно числу а , то отношение a x к модулю числа х называется относительной погрешностью приближения и обозначается a x или x .

Таким образом, по определению,

Относительную погрешность обычно выражают в процентах.

В отличие от абсолютной погрешности, которая чаще всего бывает размерной величиной, относительная погрешность является безразмерной величиной.

На практике рассматривают не относительную погрешность, а так называемую границу относительной погрешности: такое число Е a , больше которого не может быть относительная погрешность приближения искомой величины.

Таким образом, a x Е a .

Если h a -- граница абсолютной погрешности приближений величины а , то a x h a и, следовательно,

Очевидно, что любое число Е , удовлетворяющее условию, будет границей относительной погрешности. На практике обычно известны некоторое приближение х величины а и граница абсолютной погрешности. Тогда за границу относительной погрешности принимают число

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...