Цитоплазматическая мембрана. Цитоплазматическая мембрана (ЦПМ)


Цитоплазма

Цитоплазма образует внутреннее содержимое клетки щелочной реакции, заключенное между плазмалеммой и ядром. Способность цитоплазмы к движению - циклоз . Состоит из гиалоплазмы и находящихся в ней разнообразных внутриклеточных структур.

Цитоплазматический матрикс гиалоплазма цитозоль - водный коллоидный раствор неорганических и органических веществ: растворимые белки, полисахариды, липиды, РНК. Способна изменять свою вязкость от полужидкого золя до более плотного студнеобразного геля : чем жиже консистенция, тем интенсивнее протекают процессы жизнедеятельности. Отвечает за внутриклеточные взаимодействия, транспорт веществ; является растворителем, средой для биохимических реакций.

Органоиды - постоянные компоненты клетки, которые имеют определенное строение и выполняют определенные функции в процессе жизнедеятельности клетки. Подразделяются на мембранные, немембранные, смешанного происхождения.

Цитоплазматическая мембрана

Плазмолемма - наружная клеточная мембрана. У растений и грибов изолирует цитоплазму от клеточной оболочки. Цитоскелет представлен субмембранным комплексом из микротрубочек и микрофиламентов. Состоит из билипидного слоя с вкраплением белков: жидкостно-мозаичной модель. Липиды (45%): фосфолипиды, холестерин. Молекула состоит из ориентированной наружу гидрофильной полярной головки (1), где находится остаток фосфорной кислоты; ориентированных внутрь гидрофобных неполярных хвостов (7), которые содержат остатки жирных кислот. За счет гидрофобности, мембрана обеспечивает разделение внутренней и внешней водных сред.

В структуру мембраны входят также сложные белковые молекулы (50%):

  • - периферические белки (5) гидрофил-е мозаично располагаются по обе стороны мембраны
  • - полуинтегральные белки (2) погружены в липидный бислой на разную глубину
  • - интегральные белки (3) гидрофобн-е пронизывают мембрану насквозь. К ним относится состоящий из гидрофобных аминокислот трансмембранный альфа-спиральный белок (4).
  • - рецепторные белки распознают молекулы по принципу «свой-чужой»
  • - ферментативные белки способны переносить электроны и преобразовывать их энергию в энергию химических связей.

Функции мембранных белков: транспортная, ферментативная, рецепторная, структурная: образуют каналы и гидрофильные поры, через которые проходят полярные вещества.

На наружной части мембраны содержатся углеводы (6): гликопротеины, гликолипиды. В животных клетках на поверхности располагается надмембранный слой из цепочек гликопротеидов - гликокаликс (5%). Обеспечивает связь клетки с внешней средой, содержит рецепторы, участвует во внеклеточном пищеварении.

Функции мембран

  • 1) Ограничивающая - отделяет внутреннее пространство клетки от внешней среды.
  • 2) Компратментализация - разграничение внутреннего пространства на изолированные друг от друга отсеки.
  • 3) Энерготрансформирующая - синтез, запасание и расходование энергии АТФ.
  • 4) Каталитическая - ферментные комплексы, за счет которых идут различные интенсивные синтетические реакции.
  • 5) Рецепторная - восприятие сигналов окружающей среды; распознавание с помощью белков-рецепторов; образование межклеточных связей.
  • 6) Избирательная проницательность - мембрана является полупроницаемой, т.е через нее проходят только вещества, необходимые клетке, или те, от которых надо избавиться. Это происходит благодаря нескольким видам мембранного транспорта.

Пассивный транспорт

Без затрат энергии по градиенту концентрации, т.е из области высокой в область низкой.

  • - простая диффузия , идет непосредственно через билипидный слой
  • - диффузия через каналы , т.е. через каналообразующие белки (3)
  • - облегченная диффузия идет с помощью белков-переносчиков
  • - осмос - транспорт молекул воды, имеет большое значение в жизни клетки.

В гипертоническом растворе вода покидать клетку. Животные клетки съеживаются, а у растительной происходит отстаивание цитоплазмы от клеточной стенки - плазмолиз(2) .

В гипотоническом растворе вода проникает в клетку, и в итоге животные разрываются. Растительные клетки имеют плотную клеточную оболочку, поэтому остаются целыми. Явление заполнения клеточным содержимым всего пространства клетки - деплазмолиз(1) .

Активный транспорт

С затратами энергии АТФ при участии белков-переносчиков против градиента концентрации, т.е из области низкой в область высокой.

  • 1) Натри-калиевый насос за один цикл работы выкачивает из клетки 3Na + и закачивает 2К + . Энергия для данного процесса появляется в ходе расщепления АТФ мембранным белком.
  • 2) Экзоцитоз - процесс выведения веществ из клетки: непереваренных остатков пищи или необходимых для жизнедеятельности веществ. Передача нервных импульсов основана на выделении из клетки медиаторов.
  • 3) Эндоцитоз - поглощение клеткой крупных частиц и макромолекул. При этом мембрана образует впячивания, а затем формирует фагосомы - пузырьки, в которых заключены поглощаемые объекты. Затем они сливаются с лизосомой и образует пищеварительную вакуоль фаголизосому , где под действием ферментов её содержимое расщепляется, а затем усваивается клеткой. Различают два вида эндоцитоза:
    • - фагоцитоз - поглощение твердых частиц. Из-за плотной клеточной оболочки в клетках растений и грибов фагоцитоз практически невозможен. Характерно для простейших и лейкоцитов. Явление фагоцитоза открыто Мечниковым в 1882г.
    • - пиноцитоз - поглощение жидкостей. Наблюдается в эпителиальных клетках кишечника и эндотелиальных клетках кровеносных сосудов. Таким путем в клетку могут попасть вирусы.
    • *Тонопласт отграничивает крупную растительную вакуоль от цитоплазмы.

Органиоды - обязательные, постоянные компоненты клетки, без которых невозможна ее жизнедеятельность.

Включения - необязательные, непостоянные компоненты клетки, без которых возмлжна ее жизнедеятельность: капли масла в семенах подсолнечника, зерна крахмала в картофеле, кристаллы оксолата в клетках бегонии.

Цитоплазматическая мембрана, отделяющая цитоплазму от клеточной стенки, называется плазмалеммой (плазматической мембраной), а отделяющая ее от вакуоли - тонопластом (элементарной мембраной).

В настоящее время пользуются жидкостно-мозаичной моделью мембраны (рис. 1.9), в соответствии с которой мембрана состоит из бислоя липидных молекул (фосфолипидов) с гидрофильными головками и 2 гидрофобными хвостами, обращенными внутрь слоя. Помимо липидов в состав мембран входят белки.

Различают 3 типа мембранных белков, «плавающих» в билипидном слое: интегральные белки, пронизывающие всю толщу бислоя; полуинтегральные, пронизывающие бислой неполностью; перифери- ческие, прикрепляющиеся с внешней или внутренней стороны мембраны к другим мембранным белкам. Мембранные белки выполняют различные функции: одни из них являются ферментами, другие выполняют роль переносчиков специфических молекул через мембрану или образуют гидрофильные поры, через которые могут проходить полярные молекулы.

Одним из основных свойств клеточных мембран является их полупроницаемость: они пропускают воду, но не пропускают растворенные в ней вещества, т. е. обладают избирательной проницаемостью.

Рис. 1.9. Схема строения биологической мембраны:

А - внеклеточное пространство; Б - цитоплазма; 1 - бимолекулярный слой липидов; 2 - периферический белок; 3 - гидрофильная область интегрального белка; 4 - гидрофобная область интегрального белка; 5 - углеводная цепь

Транспорт через мембраны

В зависимости от затрат энергии транспорт веществ и ионов через мембрану делится на пассивный, не требующий затрат энергии, и активный, связанный с потреблением энергии. К пассивному транспорту относятся такие процессы, как диффузия, облегченная диффузия, осмос.

Диффузия - это процесс проникновения молекул через липидный бислой по градиенту концентраций (из области большей концентрации в область меньшей). Чем меньше молекула и чем более неполярная, тем быстрее она диффундирует через мембрану.

При облегченной диффузии прохождению вещества через мембрану помогает какой-либо транспортный белок. Таким образом, в клетку поступают различные полярные молекулы, такие, как сахара, амино- кислоты, нуклеотиды и др.

Осмос - это диффузия воды через полупроницаемые мембраны. Осмос вызывает передвижение воды из раствора с высоким водным потенциалом в раствор - с низким водным потенциалом.

Активный транспорт - это перенос молекул и ионов через мембрану, сопровождаемый энергетическими затратами. Активный транспорт идет против градиента концентрации и электрохимического градиента и использует энергию АТФ. В основе механизма активного транспорта веществ лежит работа протонного насоса (Н+ и К+) у растений и грибов, которые сохраняют внутри клетки высокую концентрацию К+ и низкую - Н+ (Na+ и К+ - у животных). Энергия, необходимая для работы этого насоса, поставляется в виде АТФ, синтезируемой в процессе клеточного дыхания.

Известна еще одна разновидность активного транспорта - эндо- и экзоцитоз. Это 2 активных процесса, с помощью которых различные молекулы транспортируются через мембрану в клетку (эндоцитоз ) либо из нее (экзоцитоз) .

При эндоцитозе вещества попадают в клетку в результате инвагинации (впячивания) плазматической мембраны. Образующиеся при этом пузырьки, или вакуоли, переносятся в цитоплазму вместе с заключенными в них веществами. Поглощение больших частиц, таких, как микроорганизмы или обломки клеток, называется фагоцитозом. В этом случае образуются крупные пузырьки, называемые вакуолями. Поглощение жидкостей (суспензий, коллоидных растворов) или растворенных веществ с помощью небольших пузырьков носит название пиноцитоз.

Обратный эндоцитозу процесс называется экзоцитозом. Многие вещества выводятся из клетки в специальных пузырьках или вакуолях. Примером может служить вывод из секреторных клеток их жидких секретов; другой пример - это участие пузырьков диктиосом в формировании клеточной оболочки.

ПРОИЗВОДНЫЕ ПРОТОПЛАСТА

Вакуоль

Вакуоль - это резервуар, ограниченный одинарной мембраной - тонопластом. В вакуоли содержится клеточный сок - концентрированный раствор различных веществ, таких, как минеральные соли, сахара, пигменты, органические кислоты, ферменты. В зрелых клетках вакуоли сливаются в одну, центральную.

В вакуолях хранятся различные вещества, в том числе конечные продукты обмена. От содержимого вакуоли в сильной степени зависят осмотические свойства клетки.

В связи с тем что вакуоли содержат крепкие растворы солей и других веществ, клетки растений постоянно осмотически поглощают воду и создают гидростатическое давление на клеточную стенку, называемое тургорным. Тургорному давлению противостоит равное ему по величине давление клеточной стенки, направленное внутрь клетки. Большинство растительных клеток существуют в гипотонической среде. Но если такую клетку поместить в гипертонический раствор, вода по законам осмоса начнет выходить из клетки (для выравнивания водного потенциала по обе стороны мембраны). Вакуоль при этом сократится в объеме, ее давление на протопласт уменьшится, и мембрана начнет отходить от клеточной стенки. Явление отхождения протопласта от клеточной стенки называется плазмолизом. В природных условиях такая потеря тургора в клетках приведет к увяданию растения, опусканию листьев и стеблей. Однако этот процесс обратим: если клетку поместить в воду (например, при поливе растения), возникает явление, обратное плазмолизу - деплазмолиз (см. рис. 1.10).


Рис. 1.10. Схема плазмолиза:

А - клетка в состоянии тургора (в изотоническом растворе); Б - начало плазмолиза (клетка, помещенная в 6% раствор КNО3); В - полный плазмолиз (клетка, помещенная в 10% раствор КNО3); 1 - хлоропласт; 2 - ядро; 3 - клеточная стенка; 4 - протопласт; 5 - центральная вакуоль

Включения

Клеточными включениями являются запасные и экскреторные вещества.

Запасные вещества (временно выключенные из обмена) и вместе с ними отбросы (экскреторные вещества) часто называют эргастическими веществами клетки. К запасным веществам относят запасные белки, жиры и углеводы. Эти вещества накапливаются в течение вегетационного периода в семенах, плодах, подземных органах растения и в сердцевине стебля.

Запасные вещества

Запасные белки, относящиеся к простым белкам - протеинам, чаще откладываются в семенах. Осаждающиеся белки в вакуолях образуют зерна округлой или эллиптической формы, называемые алейроновыми. Если алейроновые зерна не имеют заметной внутренней структуры и состоят из аморфного белка, их называют простыми. Если в алейроновых зернах среди аморфного белка встречаются кристаллоподобная структура (кристаллоид) и блестящие бесцветные тельца округлой формы (глобоиды), такие алейроновые зерна называют сложными (см. рис. 1.11). Аморфный белок алейронового зерна представлен гомогенным непрозрачным белком желтоватого цвета, набухающим в воде. Кристаллоиды имеют характерную для кристаллов ромбоэдрическую форму, но в отличие от истинных кристаллов составляющий их белок набухает в воде. Глобоиды состоят из кальциево-магниевой соли, содержат фосфор, нерастворимы в воде и не дают реакцию на белки.

Рис. 1.11. Сложные алейроновые зерна:

1 - поры в оболочке; 2 - глобоиды; 3 - аморфная белковая масса; 4 - кристаллоиды, погруженные в амфорную белковую массу

Запасные липиды обычно располагаются в гиалоплазме в виде капель и встречаются почти во всех растительных клетках. Это основной тип запасных питательных веществ большинства растений: наиболее богаты ими семена и плоды. Жиры (липиды) - наиболее калорийное запасное вещество. Реактивом на жироподобные вещества является судан III, окрашивающий их в оранжевый цвет.

Углеводы входят в состав каждой клетки в виде растворимых в воде сахаров (глюкозы, фруктозы, сахарозы) и нерастворимых в воде полисахаридов (целлюлозы, крахмала). В клетке углеводы играют роль источника энергии для реакций обмена веществ. Сахара, связываясь с другими биологическими веществами клетки, образуют гликозиды, а полисахариды с белками - гликопротеины. Состав углеводов растительной клетки значительно более разнообразен, чем у животных клеток, за счет разнообразного состава полисахаридов клеточной оболочки и сахаров клеточного сока вакуолей.

Главнейшим и наиболее распространенным запасным углеводом является полисахарид крахмал. Первичный ассимиляционный крахмал образуется в хлоропластах. Ночью, при прекращении фотосинтеза, крахмал гидролизуется до сахаров и транспортируется в запасающие ткани - клубни, луковицы, корневища. Там в особых типах лейкопластов - амилопластах - часть сахаров откладывается в виде зерен вторичного крахмала. Для крахмальных зерен характерна слоистость, что объясняется различным содержанием воды из-за неравномерного поступления крахмала в течение суток. В темных слоях воды больше, чем в светлых. Зерно с одним центром крахмалообразования в центре амилопласта называют простым концентрическим, если центр смещен - простым эксцентрическим. Зерно с несколькими крахмалообразующими центрами - сложное. У полусложных зерен новые слои откладываются вокруг нескольких крахмалообразующих центров, а затем формируются общие слои и покрывают крахмалообразующие центры (см. рис. 1.12). Реактивом на крахмал является раствор йода, дающий синее окрашивание.


Рис. 1.12. Крахмальные зерна картофеля (А):

1- простое зерно; 2 - полусложное; 3 - сложное; пшеницы (Б), овса (В)

Экскреторные вещества (продукты вторичного обмена)

К клеточным включениям относятся и экскреторные вещества, например кристаллы оксалата кальция (одиночные кристаллы, рафиды - игольчатые кристаллы, друзы - сростки кристаллов, кристалли- ческий песок - скопление множества мелких кристаллов) (см. рис. 1.13). Реже кристаллы состоят из карбоната кальция или кремнезема (цистолиты ; см. рис. 1.14). Цистолиты откладываются на клеточной стенке, вдающейся внутрь клетки в виде гроздьев винограда, и характерны, например, для представителей семейства крапивных, листьев фикуса.

В отличие от животных, выводящих избыток солей вместе с мочой, растения не имеют развитых органов выделения. Поэтому считается, что кристаллы оксалата кальция являются конечным продуктом метаболизма протопласта, образующимся как приспособление для выведения из обмена излишков кальция. Как правило, эти кристаллы накапливаются в органах, которые растение периодически сбрасывает (листья, кора).

Рис. 1.13. Формы кристаллов оксалата кальция в клетках:

1, 2 - рафида (недотрога; 1- вид сбоку, 2 - на поперечном срезе); 3 - друза (опунция); 4 - кристаллический песок (картофель); 5 - одиночный кристалл (ваниль)

Рис. 1.14. Цистолит (на поперечном срезе листа фикуса):

1 - кожица листа; 2 - цистолит


Эфирные масла скапливаются в листьях (мята, лаванда, шалфей), цветках (шиповник), плодах (цитрусовые) и семенах растений (укроп, анис). Эфирные масла не принимают участия в обмене веществ, но их широко используют в парфюмерии (розовое, жасминное масла), пищевой промышленности (анисовое, укропное масла), медицине (мятное, эвкалиптовое масла). Резервуарами для скопления эфирных масел могут быть желёзки (мята), лизигенные вместилища (цитрусовые), железистые волоски (герань).

Смолы - это комплексные соединения, образующиеся в процессе нормальной жизнедеятельности или в результате разрушения тканей. Они образуются эпителиальными клетками, выстилающими смоляные ходы, как побочный продукт обмена веществ, часто с эфирными маслами. Могут накапливаться в клеточном соке, цитоплазме в виде капель или во вместилищах. Они нерастворимы в воде, непроницаемы для микроорганизмов и благодаря своим антисептическим свойствам повышают сопротивляемость растений болезням. Применяются смолы в медицине, а также при изготовлении красок, лаков и смазочных масел. В современной промышленности заменяются синтетическими материалами.

Клеточная стенка

Жесткая клеточная стенка, окружающая клетку, состоит из целлюлозных микрофибрилл, погруженных в матрикс, в состав которого входят гемицеллюлозы и пектиновые вещества. Клеточная стенка обеспечивает механическую опору клетке, защиту протопласта и сохранение формы клетки. При этом клеточная стенка способна к растяжению. Являясь продуктом жизнедеятельности протопласта, стенка может расти только в контакте с ним. Через клеточную стенку происходит передвижение воды и минеральных солей, но для высокомолекулярных веществ она полностью или частично непроницаема. При отмирании протопласта стенка может продолжать выполнять функцию проведения воды. Наличие клеточной стенки более чем все другие признаки отличает растительные клетки от животных. Архитектуру клеточной стенки в значительной степени определяет целлюлоза. Мономером целлюлозы является глюкоза. Пучки молекулы целлюлозы формируют мицеллы, которые объединяются в более крупные пучки - микрофибриллы. Реактивом на целлюлозу является хлор-цинк-йод (Cl-Zn-I), дающий сине-фиолетовое окрашивание.

Целлюлозный каркас клеточной стенки заполнен нецеллюлозными молекулами матрикса. В состав матрикса входят полисахариды, называемые гемицеллюлозами; пектиновые вещества (пектин), очень близкие к гемицеллюлозам, и гликопротеиды. Пектиновые вещества, сливаясь между соседними клетками, образуют срединную пластинку, которая располагается между первичными оболочками соседних клеток. При растворении или разрушении срединной пластинки (что происходит в мякоти созревших плодов) возникает мацерация (от лат. maceratio - размягчение). Естественную мацерацию можно наблюдать у многих перезрелых плодов (арбуз, дыня, персик). Искусственную мацерацию (при обработке тканей щелочью или кислотой) используют для приготовления различных анатомических и гистологических препаратов.

Клеточная стенка в процессе жизнедеятельности может подвергаться различным видоизменениям - одревеснению, опробковению, ослизнению, кутинизации, минерализации (см. табл. l.4).


Таблица 1.4.


Похожая информация.


Биологические мембраны. Цитоплазматическая мембрана: строение, свойства, функции.

Для клеток характерен мембранный принцип строения.

Биологическая мембрана – тонкая пленка, белково-липидная структура, толщиной 7 - 10 нм, расположенная на поверхности клеток (клеточная мембрана), образующая стенки большинства органоидов и оболочку ядра.

В 1972 г. С. Сингером и Г. Николсом была предложена жидкостно-мозаичная модель строения клеточной мембраны. Позднее она была практически подтверждена. При рассмотрении в электронном микроскопе можно увидеть три слоя. Средний, светлый, составляет основу мембраны - билипидный слой, образованный жидкими фосфолипидами («липидное море»). Молекулы мембранных липидов (фосфолипиды, гликолипиды, холестерол и др.) имеют гидрофильные головки и гидрофобные хвосты, поэтому упорядоченно ориентированы в бислое. Два темных слоя – это белки, располагающиеся относительно бислоя липидов по-разному: периферические (прилегающие )- большинство белков, находятся на обеих поверхностях липидного слоя; полуинтегральные (полупогруженные ) – пронизывают только один слой липидов; интегральные (погруженные ) – проходят через оба слоя. У белков имеются гидрофобные участки, взаимодействующие с липидами, и гидрофильные – на поверхности мембраны в контакте с водным содержимым клетки, или тканевой жидкостью.

Функции биологических мембран :

1) отграничивает содержимое клетки от внешней среды и содержимое органоидов, ядра от цитоплазмы;

2) обеспечивают транспорт веществ в клетку и из нее, в цитоплазму из органоидов и наоборот;

3) участвуют в получении и преобразовании сигналов из окружающей среды, узнавании веществ клеток и т.д.;

4) обеспечивают примембранные процессы;

5) участвуют в преобразовании энергии.

Цитоплазматическая мембрана (плазмалемма, клеточная мембрана, плазматическая мембрана) – биологическая мембрана, окружающая клетку; основная, универсальная для всех клеток составная часть поверхностного аппарата. Толщина ее около 10 нм. Имеет характерное для биологических мембран строение. В цитоплазматической мембране гидрофильные головки липидов обращены к наружной и внутренней сторонам мембраны, а гидрофробные хвосты – внутрь мембраны. Периферические белки связаны с полярными головками липидных молекул гидростатическими взаимодействиями. Они не образуют сплошного слоя. Периферические белки связывают плазмалемму с над- или субмембранными структурами поверхностного аппарата. Некоторые молекулы липидов и белков плазмалемма животных клеток имеют ковалентные связи с молекулами олиго- иполисахаридов, которые расположены на наружной поверхности мембраны. Сильно разветвленные молекулы образуют с липидами и белками гликолипиды и гликопротеиды соответственно. Сахаридный слой - гликокаликс (лат. гликис – сладкий и калюм – толстая кожа) покрывает всю поверхность клетки и представляет собой надмембранный комплекс животной клетки. Олигосахаридные и полисахаридные цепи (антенны) выполняют ряд функций: распознавания внешних сигналов; сцепления клеток, их правильной ориентации при образовании тканей; иммунного ответа, где гликопротеиды играют роль иммунного ответа.

Рис. Строение плазмалеммы

Химический состав плазмолеммы: 55% - белки, 35-40% - липиды, 2-10% - углеводы.

Наружная клеточная мембрана образует подвижную поверхность клетки, которая может иметь выросты и выпячивания, совершает волнообразные колебательные движения, в ней постоянно перемещаются макромолекулы. Клеточная поверхность неоднородна: структура ее в разных участках неодинакова, неодинаковы и физиологические свойства этих участков. В плазмалемме локализованы некоторые ферменты (около 200), поэтому действие факторов внешней среды на клетку опосредуется ее цитоплазматической мембраной. Поверхность клетки обладает высокой прочностью и эластичностью, легко и быстро восстанавливается после небольших повреждений.

Строение плазматической мембраны определяет ее свойства:

Пластичность (текучесть), позволяет мембране менять свою форму и размеры;

Способность к самозамыканию, дает возможность мембране восстанавливать целостность при разрывах;

Избирательная проницаемость, обеспечивает прохождение различных веществ через мембрану с разной скоростью.

Основные функции цитоплазматической мембраны:

· определяет и поддерживает форму клетки (формообразовательная );

· отграничивает внутренне содержимое клетки (барьерная), играя роль механического барьера ; собственно барьерную функцию обеспечивает билипидный слой, не давая содержимому растекаться и препятствуя проникновению в клетку чужеродных веществ;

· защищает клетку от механических воздействий (защитная) ;

· регулирует обмен веществ между клеткой и окружающей средой, обеспечивая постоянство внутриклеточного состава (регуляторная) ;

· распознает внешние сигналы, «узнает» определенные вещества (например, гормоны) (рецепторная ); некоторые белки плазмалеммы (рецепторы гормонов; рецепторы В-лимфоцитов; интегральные белки, выполняющие специфические ферментативные функции, осуществляющие процессы пристеночного пищеварения) способны узнавать определенные вещества и связываться с ними, таким образом рецепторные беки участвуют в отборе молекул, поступающих в клетку;

ЦИТОПЛАЗМАТИЧЕСКАЯ МЕМБРАНА. Функции. Структура

Оболочка клетки – это комплекс структур, отделяющий клетку от окружающей среды. Она состоит из наружного слоя – клеточной стенки и расположенной под ней плазматической мембраны.

Клетки животных и растений различаются по строению их наружного слоя. У растений и грибов на поверхности клеток расположена плотная оболочка - клеточная стенка . У большинства растений она состоит из целлюлозы , у грибов - из хитина . Клеточная стенка представляет собой защитную оболочку, обеспечивает форму растительных клеток, через клеточную стенку проходит вода, соли, молекулы многих органических веществ.

У животной клетки клеточной стенки нет. К цитоплазме примыкает плазматическая мембрана.

Под клеточной стенкой расположена плазматическая мембрана - плазмалемма (мембрана - кожица, пленка) , граничащая непосредственно с цитоплазмой. Толщина плазматической мембраны около 10 нм.

Учитель : Сегодня на уроке мы познакомимся со строением и функциями плазматической мембраны.

Из истории открытия мембраны

Термин «мембрана» был предложен около ста лет назад для обозначения границ клетки, но с развитием электронной микроскопии стало ясно, что клеточная мембрана входит в состав структурных элементов клетки.

О наличии же пограничной мембраны между клеткой и окружающей средой было известно задолго до появления электронного микроскопа. Физико-химики отрицали существование плазматической мембраны и считали, что это просто граница раздела между живым коллоидным содержимым и окружающей средой, но Пфеффер (немецкий ботаник и физиолог растений) в 1890 году подтвердил существование ЦПМ.

В начале прошлого века Овертон (британский физиолог и биолог) обнаружил, что скорость проникновения многих веществ в эритроциты прямо пропорциональна их растворимости в липидах. В связи с этим ученый предположил, что мембрана содержит большое количество липидов и вещества, растворяясь в ней, проходят через нее и оказываются по ту сторону мембраны.

В 1925 году Гортер и Грендель (американские биологи) выделили липиды из клеточной мембраны эритроцитов. Полученные липиды они распределили по поверхности воды толщиной в одну молекулу. Оказалось, что площадь поверхности, занятой слоем липидов, в два раза больше площади самого эритроцита. Поэтому эти ученые сделали вывод, что клеточная мембрана состоит не из одного, а из двух слоев липидов.

Даусон и Даниэлли (английские биологи) в 1935 году высказали предположение, что в клеточных мембранах липидный бимолекулярный слой заключен между двумя слоями белковых молекул.

С появлением электронного микроскопа открылась возможность познакомиться со строением мембраны, и тогда обнаружилось, что мембраны животных и растительных клеток выглядят как трехслойная структура.

В 1959 году биолог Дж. Д. Робертсон, объединив имевшиеся в то время данные, выдвинул гипотезу о строении «элементарной мембраны», в которой он постулировал структуру, общую для всех биологических мембран.

Постулаты Робертсона о строении «элементарной мембраны»:

1. Все мембраны имеют толщину около 7,5 нм.

2. В электронном микроскопе все они представляются трехслойными.

3. Трехслойный вид мембраны есть результат именно того расположения белков и полярных липидов, которое предусматривала модель Даусона и Даниэлли – центральный липидный бислой заключен между двумя слоями белка.

Эта гипотеза о строении «элементарной мембраны» претерпела различные изменения и в 1972 году Сингером и Николсоном была предложена жидкостно-мозаичная модель мембраны, которая в настоящее время является общепризнанной.

Согласно этой модели основой любой мембраны является двойной слой фосфолипидов. У фосфолипидов (соединений, содержащих фосфатную группу) молекулы состоят из полярной головки и двух неполярных хвостов.

В фосфолипидном бислое гидрофобные остатки жирных кислот обращены внутрь, а гидрофильные головки, включающие оста­ток фосфорной кислоты, – наружу.

Фосфолипидный бислой представлен как динамическая структура, липиды могут перемещаться, меняя свое положение.

Двойной слой липидов обеспечивает барьерную функцию мембраны, не давая содержимому клетки растекаться, и препятствует попаданию в клетку токсических веществ.

Мембранные белки

В липидный бислой мембраны погружены молекулы белков, они образуют подвижную мозаику. По расположению в мембране и способу взаимодействия с липидным бислоем белки можно разделить на:

- поверхностные (или периферические) мембранные белки, связанные с гидрофильной поверхностью липидного бислоя;

- интегральные (мембранные) белки, погруженные в гидрофобную область бислоя.

Интегральные белки различаются по степени погруженности их в гидрофобную область бислоя. Они могут быть полностью погружены (интегральные ) или частично погружены (полуинтегральные ), а также могут пронизывать мембрану насквозь (трансмембранные ).

Мембранные белки по своим функциям можно разделить на две группы:

- структурные белки . Они входят в состав клеточных мембран и участвуют в поддержании их структуры.

- динамические белки . Они находятся на мембранах и участвуют в происходящих на ней процессах.

Выделяют три класса динамических белков.

1. Рецепторные . С помощью этих белков клетка воспринимает различные воздействия на свою поверхность. То есть они специфически связывают такие соединения, как гормоны, нейромедиаторы, токсины на наружной стороне мембраны, что служит сигналом для изменения различных процессов внутри клетки или самой мембраны.

2. Транспортные . Эти белки транспортируют через мембрану те или иные вещества, также они образовывают каналы, через которые осуществляется транспорт различных ионов в клетку и из нее.

3. Ферментативные . Это белки-ферменты, которые находятся в мембране и участвуют в различных химических процессах.

На поверхности мембраны животных клеток образуется наружный рецепторный слой углеводов – гликокаликс . Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток.

Основные функции клеточной мембраны

1. Структурная (клеточная мембрана отделяет клетку от окружающей среды).

2. Транспортная (через клеточную мембрану осуществляется транспорт веществ, причем клеточная мембрана является высоко­избирательным фильтром).

3. Рецепторная (находящиеся на поверхности мембраны рецепторы воспринимают внешние воздействия, передают эту информацию внутрь клетки, позволяя ей быстро реагировать на изменения окружающей среды).

Другие функции мембраны

Каждый организм человека, либо животного состоит из миллиардов клеток. Клетка представляет собой сложный механизм, выполняющий определенные функции. Из субъединиц состоят все органы и ткани.

Система имеет цитоплазматическую мембрану, цитоплазму, ядро, также ряд органелл. Ядро разграничено с органеллами внутренней пленочкой. Все вместе обеспечивает жизнь тканям, а также позволяет осуществлять метаболизм.

Важную роль в функционировании играет цитоплазматическая плазма лемма или мембрана.

Само название наружная цитоплазматическая мембрана произошло от латин membrana или по другому кожица. Это разграничитель пространства между клеточными организмами.

Гипотезу строения выдвинули уже в 1935 г. В 1959 г. В. Робертсон пришел к выводу, что мембранные оболочки устроены по одному принципу.

Вследствие большого количества накопленной информации, полость приобрела жидко-мозаичную модель конструкции. Сейчас она считается признанной всеми. Именно наружная цитоплазматическая мембрана образует внешнюю оболочку единиц.

Строение

Итак, что такое плазма лемма?

Представляет собой тоненькую пленочку разграничивающую прокариоты с внутренней средой. Разглядеть ее можно только в микроскоп. В строение цитоплазматической мембраны входит би слой, который служит основой.

Би слой - это двойная прослойка, состоящая из белков и липидов. Также есть холестерол и гликолипиды, обладают амфипатричностью.

Что это значит?

Жировой организм имеет биполярную головку и гидрофильный хвостик. Первая обусловлена боязнью воды, а второй ее поглощением. Группа фосфатов имеет наружное направление от пленки, вторые направлены друг на друга.

Таким образом, происходит формирование биполярного липидного слоя. Липиды обладают высокой активностью, могут перемещаться в своем монослое, редко переходить в другие области.

Полимеры делятся на:

  • наружные,
  • интегральные,
  • пронизывающие плазма лемму.

Первые находятся только на поверхностной части пазухи. Держатся за счет электростатики с биполярными головками липидных элементов. Удерживают питательные ферменты. Интегральные внутри, они встроены в саму структуру оболочки, соединения меняют свое местоположение за счет движения эукариот. Служат своеобразным конвейером, выстроены так, что по ним идут субстраты, продукты реакции. Белковые соединения пронизывающие макрополость имеют свойства образования пор для поступления питательных элементов в организм.

Ядро

В любой единице есть ядро, это ее основа. Цитоплазматическая мембрана также имеет органеллу, строение которого будет описано далее.

Ядерная структура включает пленку, сок, место сборки рибосом и хроматин. Оболочка разделена около ядерным пространством, оно окружено жидкостью.

Функции органеллы делятся на две основных:

  1. замыкание структуры в органелле,
  2. регулирование работы ядра и жидкого содержимого.

Ядро состоит из пор, каждая обусловливается наличием тяжелых поровых сочетаний. Их объем может говорить об активной двигательной способности эукариотов. Например, высокая активность незрелых содержит большее количество поровых областей. Ядерным соком служат белки.

Полимеры представляют соединение матрикса и нуклеоплазмы. Жидкость содержится внутри ядерной пленки, обеспечивает работоспособность генетического содержимого организмов. Белковый элемент выполняет защиту и прочность субъединиц.

В самом ядрышке созревают рибосомальные РНК. Сами гены РНК находятся на определенной области нескольких хромосом. В них происходит формирование маленьких организаторов. Внутри создаются сами ядрышки. Зоны в митозных хромосомах представлены сужениями, название вторичные перетяжки. При исследовании электроникой различают фазы фиброзного и грануляционного происхождения.

Развитие ядра

Другое обозначение фибриллярный, происходит из белковых и огромных полимеров-предыдущих версий р-РНК. В дальнейшем они образуют меньшие по размеру элементы зрелой р-РНК. Когда фибрилла созревает, она становится зернистой по структуре или рибонуклеопротеиновой гранулой.

Входящий в строение хроматин обладает окрашивающими свойствами. Присутствует в нуклеоплазме ядра, служит формой интерфазы жизнедеятельности хромосом. Состав хроматина, это нити ДНК и полимеры. Вместе они составляют комплекс нуклеопротеидов.

Гистоны выполняют функции организации пространства в структуре ДНК-молекулы. Дополнительно хромосомы включают органические вещества, ферменты, содержащие полисахариды, частицы металлов. Хроматин делится на:

  1. эухроматин,
  2. гетерохроматин.

Первый обусловлен низкой плотностью, поэтому считать генетические данные с таких эукариотов невозможно.

Второй вариант обладает компактными свойствами.

Структура

Сама конституция оболочки неоднородна. За счет постоянных движений на ней появляются наросты, выпуклости. Внутри это обусловлено движениями макромолекул и их выходом в другой слой.

Поступление самих веществ происходит 2 путями:

  1. фагоцитозом,
  2. пиноцитозом.

Фагоцитоз выражается во впячивании твердых частиц. Пиноцитозом называют выпуклости. Путем выпячивания, края областей смыкаются захватив жидкость между эукариотами.

Пиноцитоз осуществляет механизм проникновения соединений внутрь оболочки. Диаметр вакуоли составляет от 0,01 до 1,3 мкм. Далее вакуоль начинает погружение в цитоплазменный слой и от шнуровку. Связь между пузырьками играет роль транспортировки полезных частиц, расщеплении ферментов.

Цикл пищеварения

Весь круг пищеварительной функции разделяется на следующие этапы:

  1. попадание компонентов в организм,
  2. распад ферментов,
  3. попадание в цитоплазму,
  4. выведение.

Первая фаза подразумевает поступление веществ в тело человека. Далее они начинаются распадаться при помощи лизосом. Разделенные частички проникают в цитоплазменное поле. Непереваренные остатки просто выходят наружу естественным способом. Впоследствии пазуха становится плотной, начинается превращение в зернистые гранулы.

Функции мембраны

Итак, какие же функции она выполняет?

Главными будут:

  1. защитная,
  2. переносная,
  3. механическая,
  4. матричная,
  5. перенос энергии,
  6. рецепторная.

Защита выражается в барьере между субъединицей и внешней средой. Пленка служит регулятором обмена между ними. В результате последний может быть активным, либо пассивным. Происходит избирательность необходимых веществ.

При транспортной функции через оболочку передаются соединения от одного механизма к другому. Именно этот фактор влияет на доставку полезных соединений, выведение продуктов метаболизма и распада, секреторные компоненты. Вырабатываются градиенты ионного характера, благодаря чему идет поддержка ph и уровень концентрации ионов.

Последние две миссии относятся к вспомогательным. Работа на матричном уровне направлена на правильное расположение белковой цепочки внутри полости, их грамотное функционирование. За счет механической фазы клетка обеспечена в автономном режиме.

Перенос энергии происходит в результате фотосинтеза в зеленых пластидах, дыхательных процессов в клеточках внутри полости. В работе участвуют также белки. За счет нахождения в мембране белки снабжают макроклетку способностью воспринимать сигналы. Импульсы переходят от одной клетки-мишени к остальным.

К особым свойствам мембраны относят генерацию, осуществление биопотенциала, распознавание клеток, а то есть маркировка.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...