Круговорот веществ в природе. Абиогенный и биологический круговорот веществ


Биологический круговорот веществ - последовательная, беспрерывная циркуляция химических элементов, которая происходит за счет солнечного излучения и поддерживается совокупностью организмов, объединенных посредством цепей питания.

(по біологічному довіднику за ред.І.Г.Підоплічко К.М., Ситника, 1974).

Биологический круговорот веществ состоит из процессов образования органических веществ из элементов, которые содержатся в воздухе, почвах, воде и последующего разложения этих веществ, в результате которого элементы переходят в минеральную форму.

Биологический круговорот веществ обеспечивает необходимые элементы внешней и внутренней среды живых организмов и поддерживает ее устойчивость. Это, прежде всего, круговорот углерода, кислорода азота, фосфора и т.д.

Круговорот веществ - многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в т.ч. в тех их слоях, которые входят в биосферу планеты. Особое значение имеет круговорот биофильных элементов - азота, фосфора серы. (по Реймерсу Н.Ф.Д., 1990).

Круговорот биологический - явление непрерывного, циклического, но неравномерного во времени и пространстве и сопровождающегося более или менее значительными потерями закономерного перераспределения вещества, энергии и информации в пределах экосистем различного иерархического уровня организации от биогеоценоза до биосферы (Н.Ф.Реймерс, 1990). Полного круговорота веществ в пределах биогеоценоза не происходит т.к. часть веществ всегда уходит за его пределы.

Круг биотического обмена большой (биосферный) - безостановочный, планетарный процесс закономерного циклического неравномерного во времени и пространстве перераспределения вещества, энергии, информации многократно входящих (кроме однонаправленного потока энергии) в непрерывно обновляющееся экологические системы биосферы (Реймерс Н.Ф., 1990).

И здесь главный параметр - коэффициент экологической эффективности. Отношение биомассы организмов к количеству потребляемого ими органического вещества иногда называют коэффициентом экологической эффективности. Этот коэффициент, как правило, не превосходит 10-20.

Интенсивность процессов обмена (метаболизм) на единицу веса живого организма обычно тем больше, чем меньше этот организм. Причина этой закономерности - существенная зависимость процесса обмена от скорости диффузии газов через поверхность организмов, которая увеличивается на единицу их биомассы по мере уменьшения размера.

Общая величина биомассы для Земли по оценкам В.А.Ковды (1969) = 3.10 (12), причем свыше 95% этой величины относится к растениям и 5% к животным. Из всего этого основная масса приходится на леса континентов.

Считая, что суммарная продуктивность растений на континентах составляет 140.10 (9) тонн, заключим, что время одного цикла кругооборота органического вещества на континентах составляет около 20 лет.(вероятно это относится к лесам) для других этот цикл короче, еще меньше для океанов - для фитопланктона несколько дней). Продолжительность одного цикла кругооборота оргвещества животных составляет несколько лет (общая биомасса животных равна около 10(11) тонн и они осваивают 10% от итоговой продуктивности растений - отсюда этот расчет). Согласно данных Хаксли (Нихley,1962) в африканских саваннах биомасса крупных диких животных может достигать 15-25 т./км.кв., в лесах умеренных широт - 1 т/км.кв., в тундре - 0,8 т/км.кв, в полупустыне - 0,35т /км.кв.

Оценка биологической массы людей и расчет потребляемой энергии в ходе их питания рассчитывается точнее.

Сейчас (при более 4 млрд.чел, биомасса людей составляет около 0,2.10^19 тонн. (а сейчас уже более 5 млрд.). Человек ежедневно потребляет 2,5.10^3 ккал энергии, тогда суммарное потребление энергии людьми составляет 1,8.10^15ккал/год. Эта величина приблизительно соответствует современной продуктивности с/х производства! т.е. в современную эпоху человек потребляет около 0,2% первичной продукции органического мира. Несколько тысяч лет назад эта цифра была значительно ниже 0,01%, а еще будет расти.

Потребляя продукцию человек расходует техническую энергию, этого нового источника тепла нашей планеты.

Поскольку в основе процесса создания органического вещества лежит поглощение автотрофными растениями углекислого газа, часто называемого углекислотой, из атмосферы и гидросферы, то его в первую очередь необходимо анализировать в глобальном биологическом круговороте. Его в атмосфере около 2,3.10^12, т.е. 0,032% всего атмосферного воздуха (объемные %). В гидросфере его больше 130.10^12 тонн. Он мало изменяется в различных географических районах и с высотой. Причина - независимость содержания углекислоты от температуры. Главные компоненты круговорота углекислоты определяются биологическими процессами, и немного - геологическими. Расход на фотосинтез за год 3.10^17 (это карбонатные). Среднее время возобновления углекислоты в атмосфере составляло около 10 лет.

А теперь перейдем к рассмотрению отдельных круговоротов в биосфере. Основной движущей силой круговоротов веществ на планете является живое вещество. Именно живое вещество, точнее его деятельность через систему круговоротов обеспечивает поступательное развитие биосферы Земли. В основе круговорота вещества и энергии лежат два противоположных процесса - созидание и разрушение. Первый обеспечивает образование живого вещества и аккумуляцию энергии, второй - разрушение сложных органических соединений и превращение их в простые минеральные: углекислый газ, воду, различные соли и т.д. Биосфера существует за счет (благодаря) непрерывному круговороту. Ранее мы уже отмечали, что энергетической основой существования биологических круговоротов является процесс фотосинтеза. В ходе этого процесса (именно он в энергетическом отношении представляет восходящую ветвь биологического круговорота) запасается огромное количество энергии (солнечной) преобразованной в потенциальную химическую энергию (химическую) органических веществ. Нисходящая ветвь (в энергетическом отношении) - это все остальные жизненные процессы, в которых происходят превращения созданных при фотосинтезе биологических соединений и использование запасенной энергии. Завершаются эти процессы окислением и минерализацией органических веществ, деградацией и превращением в тепло энергии, запасенной в химических связях этих веществ.

Биологический круговорот химических элементов в распространенных тропических сообществах

Биоклиматические условия тропической территории весьма разнообразны. Представление о тропиках как о сплошной полосе джунглей совершенно не отвечает действительности. Меняющиеся соотношения атмосферных осадков и эвапотранспирации, длитель­ности сухих и дождливых сезонов создают широкую гамму экосистем с разной степенью атмосферного увлажнения - от крайне засушливых или пустынных ландшафтов до постоянно влажных тропических лесов. При наличии сезона, на протяжении которого испаряемость превышает количество осадков, существуют разреженные светлые высокотравные леса, которые при продолжительном сухом сезоне сбрасывают листву. Для более засушливых условий типичны редкостойные группы деревьев, чередующиеся с открытыми пространствами, покрытыми травянистой растительностью. С усилением аридности деревья заменяются зарослями колючих кустарников, а пышный покров высоких злаков - низкотравной растительностью с невысокой степенью покрытия почвы.

Соотношения площадей разной степени атмосферного увлажне­ния на континентах неодинаковы. Засушливые области занимают подавляющую часть Австралии, значительную часть Индии, но менее распространены в Южной Америке. В экваториальной полосе Африки, ограниченной 6° с. ш. и 6° ю. ш., площади разной степе­ни атмосферного увлажнения распределяются следующим образом:

Из приведенных данных следует, что влажные леса занимают всего около "/5 экваториальной полосы Африки, а большая ее часть занята комбинацией светлых лесов и высокотравных саванн. На остальной территории распространены более или менее засушливые ландшафты, вплоть до почти пустынных, где выпадает менее 200 мм осадков в год. Согласно данным Б.Г.Розанова (1977), зона распространения всех видов тропических лесов занимает 20 448 тыс. км 2 , или 13,33% Мировой суши, саванновая зона - 14 259 тыс. км 2 (9,56%), области тропических пустынь - 4506 тыс. км 2 , или 3,02%. При этом не учитывались площади развеиваемых песков, безжизненных каме­нистых пустынь, солончаков.

Биологический круговорот элементов в тропических лесах. Пос­тоянно влажные тропические леса - самая мощная растительная формация. Обилие тепла и влаги обусловливает самую большую биомассу среди биоценозов Мировой суши - в среднем 50 000 т/км 2 сухого вещества, а в отдельных случаях до 170 000 т/км 2 . Фактором, лимитирующим рост биомассы, является необходимая для фотосинтеза световая энергия. С целью ее максимального ис­пользования под покровом деревьев высотой 30-40 м расположено еще несколько ярусов деревьев, приспособленных к рассеянному свету. Значительная часть отмирающих и опадающих листьев высо­ких деревьев перехватывается многочисленными эпифитами. По этой причине химические элементы, содержащиеся в листьях, вновь захватываются в биологический круговорот, не достигая почвы. Во влажных тропических лесах вегетация продолжается весь год. Годовая продукция в среднем равна 2500 т/км 2 .

Биогеохимическая специфика влажных тропических лесов заключается в том, что почти все количество химических элементов, необходимое для питания огромной массы растительности, содержится в самих растениях. Биогеохимический цикл массообмена сильно замкнут. Если вырубить дождевой тропический лес, то вместе с гибелью деревьев нарушится вся тысячелетиями создаваемая система биологического круговорота и под сведенным лесом останутся бесплодные земли.

Биогеохимическая ситуация в светлых листопадных тропических лесах и саваннах близка к таковой в лиственных лесах умеренного климата, но периоды подавления биогеохимических процессов обусловлены не понижением температуры, а отсутствием дождей и сезонным дефицитом влаги. Биомасса сухих саванн около 200-600 т/км 2 . Количество опада (меньше 150-200 т/км 2) отвечает условиям тропических пустынь. Биомасса листопадных тропичес­ких лесов разной степени увлажнения и высокотравных парковых саванн занимает промежуточное положение между постоянно влаж­ными лесами и сухими саваннами.

Согласно имеющимся данным Л.Е.Родина и Н.И.Базилевич (1965), распределение и динамика масс в растительности постоянно влажного тропического леса характеризуются следующими показа­телями (т/км 2):

Необходимо отметить, что концентрация химических элементов в древесине стволов и ветвей тропических деревьев, как правило, более низкая, чем в листьях, которые образуют основную массу опада. Концентрация азота в древесине редко достигает 0,5% массы сухого вещества, а в листьях - около 2%. В листьях обычно в несколько раз выше, чем в древесине, концентрация кальция, ка­лия, магния, натрия, кремния, фосфора. Содержание элементов в листьях деревьев и в травянистой растительности, обильно представленной в светлых листопадных лесах, слабо разли­чается. Концентрация большей части рассеянных элементов в лис­тьях деревьев и травах также более высокая, чем в древесине, хотя бария и особенно стронция больше в древесине.

На основании имеющихся данных мы принимаем среднее значе­ние суммы зольных элементов в биомассе постоянно влажного тро­пического леса равным 800 т/км 2 ; массу этих элементов, вовлекае­мую в биологический круговорот, равной 150 т/км 2 в год. Для светлых лесов средние значения составляют соответственно 200 и 50 т/км 2 в год. Исходя из этих цифр определены ориентировочные значения масс рассеянных элементов, ежегодно вовлекаемых в биологический круговорот.

Концентрация зольных элементов в экваториальной растительности Восточной Африки, % сухой массы (по В.В.Добровольскому 1975)

№ образца Элементы "Чистая зола" Примесь
Si А1 Fe Mn Ti Са Mg Na Р S минеральных частиц
52 2,27 0,41 0,40 0,008 0,006 0,24 0,12 0,03 0,06 0,01 7,29 3,21
76 0,05 0,01 0,02 0,001 0,001 0,29 0,02 0,01 0,02 0,04 0,79 0,40
42 1,06 1,87 1,48 0,05 0,07 0,45 0,27 0,22 0,06 0,04 9,07 11,33
210 0,69 0,01 0,08 0,02 0,001 0,08 0,08 0,05 0,08 0,06 6,32 0,68

Образцы: 52 - разреженный травянистый покров низкотравной саван­ны с преобладанием представителей родов Sporobolus, Cynodon, KyUinga, Северо-Западная Танзания.

76 - ствол Podocarpus, дождевой лес южного склона Килиманджаро, Танзания.

42 - лесная подстилка дождевого леса южного склона Килиманджаро, Танзания.

210 - стебли папируса (Cyperuspapyrus), пойма Белого Нила вблизи истока из озера Альберта, Уганда.

Массы рассеянных элементов, вовлекаемые в биологический круговорот в тропических лесах

Уровни концентрации рассеянных элементов в почвообразующем субстрате разных районов тропической суши неодинаковы. Это отражается на содержании элементов в растениях. Например, в Восточной Африке в злаковых травах, собранных на площади распространения кристаллических пород докембрийского фунда­мента, концентрация меди равна 71*10 -4 %, а в аналогичных травах на площади распространения вулканических лав - 120*10 -4 %. Кон­центрация цинка соответственно меняется от 120 до 450 10- 4 %), TiOz - от 200 до 1800 10 -4 %.

В таблице сопоставлено содержание рассеянных элементов в золе трав и ветвей деревьев (акаций) из саванн Восточной Африки. Видно, что тяжелые металлы сильнее аккумулируются в травах, а барий и стронций - в деревьях. Следует отметить, что концентра­ция последнего возрастает с усилением засушливости. В аридных районах южной Танзании мы обнаружили концентрацию стронция в золе ветвей баобаба около 4500 мкг/г, а в одном случае в ветвях акаций в 3 раза больше.

Интенсивность биологического поглощения и концентрация рассеянных элементов в золе трав и деревьев саванн Восточной Африки (по В.В.Добровольскому, 1973)

Элементы Концентрация, мкг/г Коэффициент биологического
" поглощения Кб
травы, ветви акаций, травы ветви акаций
6 проб 9 проб
Ti 1140 230 0,1 0,03
Mn 1880 943 1,9 0,9
V 59 45 0,3 0,2
Сг 28 12 0,2 0,08
39 144 0,6 2,0
Со 20 12 0,6 0,4
Си " 85 39 1,5 0,7
РЬ 34 21 1.5 0,9
Zn 118 79 1,2 0,8
Mo 57 6 7,1 0,8
Nb 59 18 0,9 0,3
Zr 165 92 0,5 0,3
Ga 36 4 1,6 0,2
Sr 450 3340 3,5 25,7
Ba 440 630 3,0 4,3

Надземная часть саванновых трав обладает высокой зольностью - от 6 до 10%, отчасти обусловленной примесью мелких частиц минеральной пыли, обнаруживаемой под микроскопом, а иногда и невооруженным глазом. Количество минеральной пыли составляет 2-3% от массы абсолютно сухого вещества надземной части трав. По-видимому, примесь минеральной пыли сказывается на повышен­ной концентрации галлия, слабо поглощаемого растениями, но содержащегося в высокодисперсном глинистом материале, энергич­но переносимом ветром. Но даже после исключения нерастворимой силикатной пыли сумма зольных элементов в саванновых злаках в 2 раза больше, чем в злаках высокогорных лугов.

Все вещества на планете находятся в процессе кругово­рота. Солнечная энергия вызывает на Земле два круговоро­та веществ: большой (геологический, биосферный) и малый (биологический).

Большой круговорот веществ в биосфере характеризует­ся двумя важными моментами: он осуществляется на про­тяжении всего геологического развития Земли и представ­ляет собой современный планетарный процесс, принимаю­щий ведущее участие в дальнейшем развитии биосферы.

Геологический круговорот связан с образованием и раз­рушением горных пород и последующим перемещением продуктов разрушения - обломочного материала и хими­ческих элементов. Значительную роль в этих процессах иг­рали и продолжают играть термические свойства поверх­ности суши и воды: поглощение и отражение солнечных лу­чей, теплопроводность и теплоемкость. Неустойчивый гид­ротермический режим поверхности Земли вместе с плане­тарной системой циркуляции атмосферы обусловливал гео­логический круговорот веществ, который на начальном этапе развития Земли, наряду с эндогенными процессами, был связан с формированием континентов, океанов и совре­менных геосфер. Со становлением биосферы в большой кру­говорот включились продукты жизнедеятельности орга­низмов. Геологический круговорот поставляет живым ор­ганизмам элементы питания и во многом определяет усло­вия их существования.

Главные химические элементы литосферы: кислород, кремний, алюминий, железо, магний, натрий, калий и дру­гие - участвуют в большом круговороте, проходя от глу­бинных частей верхней мантии до поверхности литосферы. Магматическая порода, возникшая при кристаллизации магмы, поступив на поверхность литосферы из глубин Зем­ли, подвергается разложению, выветриванию в области био­сферы. Продукты выветривания переходят в подвижное состояние, сносятся водами, ветром в пониженные места рельефа, попадают в реки, океан и образуют мощные толщи осадочных пород, которые со временем, погружаясь на глу­бину в областях с повышенной температурой и давлением, подвергаются метаморфозу, т. е. «переплавляются». При этой переплавке возникает новая метаморфическая порода, поступающая в верхние горизонты земной коры и вновь входящая в круговорот веществ (рис.).


Наиболее интенсивному и быстрому круговороту подвер­гаются легкоподвижные вещества - газы и природные во­ды, составляющие атмосферу и гидросферу планеты. Зна­чительно медленнее совершает круговорот материал литос­феры. В целом каждый круговорот любого химического элемента является частью общего большого круговорота ве­ществ на Земле, и все они тесно связаны между собой. Жи­вое вещество биосферы в этом круговороте выполняет ог­ромную работу по перераспределению химических элемен­тов, беспрерывно циркулирующих в биосфере, переходя из внешней среды в организмы и снова во внешнюю среду.

Малый, или биологический, круговорот веществ - это

циркуляция веществ между растениями, животными, гриба­ми, микроорганизмами и почвой. Суть биологического круго­ворота заключается в протекании двух противоположных, но взаимосвязанных процессов - создания органических ве­ществ и их разрушения. Начальный этап возникновения ор­ганических веществ обусловлен фотосинтезом зеленых расте­ний, т. е. образованием живого вещества из углекислого газа, воды и простых минеральных соединений с использованием энергии Солнца. Растения (продуценты) извлекают из почвы в растворе молекулы серы, фосфора, кальция, калия, маг­ния, марганца, кремния, алюминия, цинка, меди и других элементов. Растительноядные животные (консументы I по­рядка) поглощают соединения этих элементов уже в виде пи­щи растительного происхождения. Хищники (консументы II порядка) питаются растительноядными животными, потреб­ляя пищу более сложного состава, включающую белки, жи­ры, аминокислоты и другие вещества. В процессе разруше­ния микроорганизмами (редуцентами) органических ве­ществ отмерших растений и останков животных, в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениям, и начинается следую­щий виток биологического круговорота (рис. 33).


Возникновение и развитие ноосферы

Эволюция органического мира на Земле прошла несколько этапов.Первый –связан с возникновением биологического круговорота веществ в биосфере. Второй- сопровождался формированием многоклеточных организмов. Эти два этапа называют биогенезом.Третий этап связан с появлением человеческого общества, под влиянием которого в современных условиях происходит эволюция биосферы и превращение ее в сферу разума-ноосферу(от гр.-разум,-шар). Ноосфера- новое состояние биосферы, когда разумная деятельность человека становится главным фактором, обуславливающим ее развитие. Термин «»ноосфера» был введен Э. Леруа. В. И. Вернадский углубил и развил учение о ноосфере. Он писал: «Ноосфера есть новое геологическое явление на нашей планете.В ней человек становится крупной геологической силой». В. И. Вернадский выделил необходимые предпосылки для создания ноосферы:1.Человечество стало единым целым.2.Возможность мгновенного обмена информацией.3.Реальное равенство людей.4.Рост общего уровня жизни.5.Использование новых видов энергии. 6.Исключение войн из жизни общества. Создание этих предпосылок становится возможным в результате взрыва научной мысли в ХХ веке.

Тема – 6. Природа – человек: системный подход. Цель лекции: Сформировать целостное представление о системных постулатах экологии.

Основные вопросы:1.Понятие о системе и о сложных биосистемах.2.Особенности биологических систем.3.Системные постулаты: закон всеобщей связи, экологические законы Б. Коммонера, Закон больших чисел, Принцип Ле Шателье, Закон обратной связи в природе и закон константности количества живого вещества.4.Модели взаимодействий в системах «природа- человек» и « человек-экономика-биота-среда».

Экологическая система – главный объект экологии. Экология по своей сущности системна и в теоретическом облике близка к общей теории систем. Согласно общей теории систем система- это реальная или мыслимая совокупность частей, целостные свойства которой определяются взаимодействием между частями (элементами) системы. В реальной жизни,систему определяют как совокуность объектов, объединенных некоторой формой регулярного взаимодействий или взаимозависимости для выполнения заданной функции. В материальном существуют определенные иерархии-упорядоченные последовательности пространственно-временного соподчинения и усложнения систем. Все многообразия нашего мира представить в виде трех последовательно возникших иерархий. Это основная,природная, физико- химико- биологическая(Ф,Х,Б) иерархия и побочные две, возникшие на ее основе, социальная (С) и техническая (Т) иерархии. Существование последних по совокупно­сти обратных связей определенным образом влияет на основную иерархию. Объединение систем из разных иерархий приводит к «смешанным» классам систем. Так, объединение систем из физико-химической части иерархии (Ф, X - «среда») с живыми системами биологической части иерархии (Б - «биота») приводит к смешан­ному классу систем, называемых экологическими. А объединение систем из иерархий С

(«человек») и Т («техника») приводит к клас­су хозяйственных, или технико-экономических, систем.

Рис. . Иерархии материальных систем:

Ф, X - физико-химическая, Б - биологическая, С - социальная, Т - техническая

Должно быть понятно, что отображенное на схеме воздействие человеческого общества на природу, опосредованное техникой и технологиями (техногенез), относится ко всей иерархии природных систем: нижняя ветвь - к абиотической среде, верхняя - к биоте биосферы. Ниже будет рассмотрена сопряженность экологических и технико-экономических сторон этого взаимодействия.

Всем системам присущи некоторые общие свойства:

1. Каждая система имеет определенную структуру, определяе­мую формой пространственно-временных связей или взаимодейст вий между элементами системы. Структурная упорядоченность сама по себе не определяет организацию системы. Систему можно на­звать организованной, если ее существование либо необходимо для поддержания некоторой функциональной (выполняющей опреде­ленную работу) структуры, либо, напротив, зависит от деятельности такой структуры.

2. Согласно принципу необходимого разнообразия система не мо­жет состоять из идентичных элементов, лишенных индивидуально­сти. Нижний предел разнообразия - не менее двух элементов (про­тон и электрон, белок и нуклеиновая кислота, «он» и «она»), верх­ний - бесконечность. Разнообразие - важнейшая информацион­ная характеристика системы. Оно отличается от числа разновидно­стей элементов и может быть измерено.3.Свойства системы невозможно постичь лишь на основании свойств ее частей. Решающее значение имеет именно взаимодейст­вие между элементами. По отдельным деталям машины перед сбор­кой нельзя судить о ее действии. Изучая по отдельности некоторые формы грибов и водорослей, нельзя предсказать существование их симбиоза в виде лишайника. Совместное действие двух или более различных факторов на организм почти всегда отличается от суммы их раздельных эффектов. Степень несводимости свойств системы к сумме свойств отдельных элементов, из которых она состоит, опре­деляет эмерджентность системы.

4.Выделение системы делит ее мир на две части - саму систе­му и ее среду. В зависимости от наличия (отсутствия) обмена веще­ством, энергией и информацией со средой принципиально возмож­ны: изолированные системы (никакой обмен невозможен); замкну­тые системы (невозможен обмен веществом); открытые системы(возможен обмен веществом и энергией). Обмен энергии определя­ет обмен информацией. В живой природе существуют только от­крытые динамические системы, между внутренними элементами ко­торых и элементами среды осуществляются переносы вещества, энергии и информации. Любая живая система - от вируса до биосферы - представляет собой открытую динамическую систему.

5. Преобладание внутренних взаимодействий в системе над внешними и лабильность системы по отношению к внешним воз­
действиям определяют ее способность к самосохранению благодаря качествам организованности, выносливости и устойчивости. Внеш­нее воздействие на систему, превосходящее силу и гибкость еевнутренних взаимодействий, приводит к необратимым изменениям
и гибели системы. Устойчивость динамической системы поддержи­вается непрерывно выполняемой ею внешней циклической работой. Для этого необходимы поток и преобразование энергии в сие. теме. Вероятность достижения главной цели системы - самосохранения (в том числе и путем самовоспроизведения) определяется кaк ее потенциальная эффективность.

6. Действие системы во времени называют ее поведением. Вызванное внешним фактором изменение поведения обозначают как реакцию системы, а изменение реакции системы, связанное с изменением структуры и направленное на стабилизацию поведения, -.как ее приспособление, или адаптацию. Закрепление адаптивных изменений структуры и связей системы во времени, при котором ее потенциальная эффективность увеличивается, рассматривается кaк развитие, или эволюция, системы. Возникновение и существование всех материальных систем в природе обусловлено эволюцией. Динамические системы эволюционируют в направлении от более вероятной к менее вероятной организации, т.е. развитие идет по пути усложнения организации и образования подсистем в структуре системы. В природе все формы поведения систем - от элементарной реакции до глобальной эволюции - существенно нелинейны. Важной особенностью эволюции сложных систем является
неравномерность, отсутствие монотонности. Периоды постепенного накопления незначительных изменений иногда прерываются резкими качественными скачками, существенно меняющими свойства системы. Обычно они связаны с так называемыми точками бифуркации - раздвоением, расщеплением прежнего пути эволюции. 0т выбора того или иного продолжения пути в точке бифуркации очень многое зависит, вплоть до появления и процветания нового мира частиц, веществ, организмов, социумов или, наоборот, гибели системы. Даже для решающих систем результат выбора часто непредсказуем, а сам выбор в точке бифуркации может быть обусловлен случайным импульсом. Любая реальная система может быть представлена в виде некоторого материального подобия или знакового образа, т.е. соответственно аналоговой или знаковой моделью системы. Моделирование неизбежно сопровождается некоторым упрощением и формализацией взаимосвязей в системе. Эта формализация может быть
осуществлена в виде логических (причинно-следственных) и/или математических (функциональных) отношений.По мере возрастания сложности систем у них появляются новые эмерджентные качества. При этом сохраняются качества более простых систем. Поэтому общее разнообразие качеств системы возрастает по мере ее усложнения (рис. 2.2).

Рис. 2.2. Закономерности изменений свойств иерархий систем с повышением их уровня (по Флейшману, 1982):

1 - разнообразие, 2 - устойчивость, 3 - эмерджентность, 4 - сложность, 5 - неидентичность, 6 - распространенность

В порядке возрастания активности по отношению к внешним воз­действиям качества системы могут быть упорядочены в следующей последовательности: 1 - устойчивость, 2 - надежность, обусловлен­ная информированностью о среде (помехоустойчивость), 3 - управляемость, 4 - самоорганизация. В этом ряду каждое последующее ка­чество имеет смысл при наличии предыдущего.

Пар Сложность структуры системы опреде­ляется числом п ее элементов и числом т

связей между ними. Если в какой-либо системе исследуется число частных дискретных состояний, то сложность системы С определя­ется логарифмом числа связей:

C=lgm. (2.1)

Системы условно классифицируются по сложности следующим образом: 1) системы, имеющие до тысячи состояний (О < 3), относятся к простым; 2) системы, имеющие до миллиона состояний (3 < С < 6), являют собой сложные системы; 3) системы с числом состояний свыше миллиона (С > 6) идентифицируются как очень сложные.

Все реальные природные биосистемы очень сложны. Даже в структуре единичного вируса число биологически значимых моле­кулярных состояний превышает последнее значение.

В данной работе предлагаем вам рассмотреть, что такое круговорот биологический. Каковы его функции и значение для нашей планеты. Также мы уделим внимание вопросу источника энергии для его осуществления.

Что еще нужно знать перед тем, как рассмотрим круговорот биологический, это то, что наша планета состоит из трех оболочек:

  • литосфера (твердая оболочка, грубо говоря, это земля, по которой мы ходим);
  • гидросфера (куда можно отнести всю воду, то есть моря, реки, океаны и так далее);
  • атмосфера (газообразная оболочка, воздух, которым мы дышим).

Между всеми слоями есть четкие границы, но они без какого-либо труда способны проникать друг в друга.

Круговорот веществ

Все эти слои составляют биосферу. Что такое круговорот биологический? Это когда вещества перемещаются по всей биосфере, а именно в почве, воздухе, в живых организмах. Это бесконечная циркуляция и называется биологическим круговоротом. Важно знать и то, что все начинается и заканчивается в растениях.

Под скрывается неимоверно сложный процесс. Какие-либо вещества из почвы и атмосферы попадают в растения, затем в другие живые организмы. Тогда в телах, которые их поглотили, начинают активно вырабатывать другие сложные соединения, после чего последние выбираются наружу. Можно сказать, что это процесс, в котором выражается взаимосвязь всего на нашей планете. Организмы взаимодействуют между собой, только так мы и существуем по сей день.

Атмосфера не всегда была такой, какой мы ее знаем. Ранее наша воздушная оболочка очень сильно отличалась от нынешней, а именно была насыщена углекислым газом и аммиаком. Как же тогда появились люди, которые для дыхания используют кислород? Нам стоит поблагодарить зеленые растения, которые смогли привести состояние нашей атмосферы в нужный для человека вид. Воздух и растения поглощаются травоядными животными, они же входят в меню хищников. Когда животные умирают, то их остатки перерабатывают микроорганизмы. Именно так получается гумус, необходимый для роста растений. Как видите, круг замкнулся.

Источник энергии

Круговорот биологический невозможен без энергии. Что или кто является источником энергии для организации этого взаимообмена? Конечно, наш источник тепловой энергии звезда Солнце. Биологический круговорот просто невозможен без нашего источника тепла и света. Солнце нагревает:

  • воздух;
  • почву;
  • растительность.

Во время нагрева происходит испарение воды, которая начинает скапливаться в атмосфере в виде облаков. Вся вода в итоге вернется на поверхность Земли в виде дождя или снега. После ее возвращения она пропитывает почву, и ее всасывают корни различных деревьев. Если вода успела проникнуть очень глубоко, то она пополняет запасы грунтовых вод, а некоторая часть и вовсе возвращается в реки, озера, моря и океаны.

Как известно, при дыхании мы поглощаем кислород, а выдыхаем углекислый газ. Так вот, солнечная энергия нужна деревьям и для того, чтобы переработать углекислый газ и вернуть в атмосферу кислород. Этот процесс имеет название фотосинтез.

Циклы биологического круговорота

Начнем этот раздел с понятия «биологический процесс». Он представляет собой повторяющееся явление. Мы можем наблюдать которые и состоят из биологических процессов, постоянно повторяющихся с определенными промежутками.

Биологический процесс можно увидеть везде, он присущ всем организмам, живущим на планете Земля. Также он является частью всех уровней организации. То есть и внутри клетки, и в биосфере мы можем эти процессы наблюдать. Мы можем выделить несколько видов (циклов) биологических процессов:

  • внутрисуточные;
  • суточные;
  • сезонные;
  • годичные;
  • многолетние;
  • многовековые.

Наиболее ярко выражены годичные циклы. Мы их наблюдаем всегда и везде, стоит только немного над этим вопросом задуматься.

Вода

Сейчас предлагаем вам рассмотреть биологический круговорот в природе на примере воды, самого распространенного соединения нашей планеты. Она обладает многими возможностями, что позволяет ей участвовать во многих процессах как внутри организма, так и за его пределами. От круговорота Н 2 О в природе зависит жизнь всего живого. Без воды нас бы не было, а планета была бы похожа на безжизненную пустыню. Она способна участвовать во всех жизненно важных процессах. То есть можно сделать такой вывод: всем живым существам планеты Земля просто необходима чистая вода.

Но вода всегда в результате каких-либо процессов загрязняется. Как же тогда обеспечить себя неиссякаемым запасом чистой питьевой воды? Об этом побеспокоилась природа, нам стоит поблагодарить за это существование того самого круговорота воды в природе. Мы уже ранее рассмотрели, как это все происходит. Вода испаряется, собирается в облака и выпадает осадками (дождь или снег). Этот процесс принято называть «гидрологический цикл». Он основан на четырех процессах:

  • испарение;
  • конденсация;
  • выпадение осадков;
  • сток вод.

Можно выделить два вида круговорота воды: большой и малый.

Углерод

Теперь мы рассмотрим, как происходит биологический в природе. Важно знать и то, что он по процентному содержанию веществ занимает лишь 16-е место. Может встречаться в виде алмазов и графита. А процентное содержание его в каменном угле превышает девяносто процентов. Углерод даже входит в состав атмосферы, но его содержание очень мало, примерно 0,05 процента.

В биосфере благодаря углероду создается просто масса различных органических соединений, нужных всему живому на нашей планете. Рассмотрим процесс фотосинтеза: растения поглощают углекислоту из атмосферы и перерабатывают ее, в результате мы имеем разнообразные органические соединения.

Фосфор

Значение биологического круговорота достаточно велико. Даже если мы возьмем фосфор, то он содержится в большом количестве в костях, необходим для растений. Главный источник - это апатит. Его можно встретить в магматической породе. Живые организмы способны его доставать из:

  • почвы;
  • водных ресурсов.

Он содержится и в организме человека, а именно входит в состав:

  • белков;
  • нуклеиновой кислоты;
  • костной ткани;
  • лецитинов;
  • фитинов и так далее.

Именно фосфор необходим для накопления энергии в организме. Когда организм гибнет, то он возвращается в почву или в море. Это способствует образованию пород, богатых фосфором. Это имеет большое значение в биогенном цикле.

Азот

Сейчас мы рассмотрим круговорот азота. Перед этим мы отметим то, что он составляет порядка 80 % всего объема атмосферы. Согласитесь, эта цифра довольно внушительна. Кроме того что он является основой состава атмосферы, азот встречается в растительных и животных организмах. Мы его можем встретить в форме белков.

Что же касается круговорот азота, то можно сказать так: из атмосферного азота образуются нитраты, которые синтезируются растениями. Процесс создания нитратов принято называть фиксацией азота. Когда растение умирает и гниет, то азот, содержащийся в нем, попадает в почву в виде аммиака. Последний перерабатывается (окисляется) организмами, живущими в почвах, так появляется азотная кислота. Она способна вступить в реакцию с карбонатами, которыми насыщена почва. Кроме этого, нужно упомянуть и то, что азот выделяется и в чистом виде в результате гниения растений или в процессе горения.

Сера

Как и многие другие элементы, очень тесно связан с живыми организмами. Сера попадает в атмосферу в результате извержения вулканов. Сульфидную серу могут перерабатывать микроорганизмы, так на свет появляются сульфаты. Последние поглощаются растениями, сера входит в состав эфирных масел. Что касается организма, то серу мы можем встретить в:

  • аминокислотах;
  • белках.
Глава 6

^ БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ

Общее понятие о биологическом круговороте веществ

Биологический круговорот веществ как форма развития планеты Земля

Элементы биогеохимического круговорота веществ в природе

Параметры биогеохимического круговорота на суше

Биологический круговорот и почвообразование

^ ОБЩЕЕ ПОНЯТИЕ

Биологический круговорот веществ представляет собой совокупность процессов поступления химических элементов из почвы и атмосферы в живые организмы, биохимического синтеза новых сложных соединений и возвращения элементов в почву и атмосферу с ежегодным спадом части органического вещества. Биологический круговорот веществ не является полностью компенсированным замкнутым циклом, поэтому в ходе его почва обогащается гумусом и азотом, элементами минерального питания (так называемыми биогенными элементами), что создает благоприятную основу для существования растительных организмов.

Биологическое, биохимическое и геохимическое значение процессов, осуществляемых в биологическом круговороте веществ, впервые показал В. В. Докучаев, создав учение о зонах природы. Далее оно было раскрыто в трудах В. И. Вернадского, Б. Б. Полынова, Д. Н. Прянишникова, В. Н. Сукачева, Н. П. Ремезова, Л. Е. Родина, Н. И. Базилевич, В. А. Ковды и других исследователей.

Международный союз биологических наук (International Union of Biological Sciences) осуществил широкую программу исследований биологической продуктивности биогеоценозов суши и водоемов. Для руководства этими исследованиями была создана Международная биологическая программа (International Biological Programme). С целью унификации применяемых в современной литературе терминов и понятий по Международной Биопрограмме была проведена определенная работа. Прежде чем мы приступим к изучению природных биологических круговоротов веществ, необходимо дать пояснения к наиболее часто употребляемым терминам.

Биомасса - масса живого вещества, накопленная к данному моменту времени.

^ Биомасса растений (синоним - фитомасса) - масса живых и отмерших, но сохранивших свое анатомическое строение к данному моменту организмов растительных сообществ на любой площади.

^ Структура биомассы - соотношение подземной и надземной частей растений, а также однолетних и многолетних, фотосинтезирующих и нефотосинтезирующих частей растений.

Ветошь - отмершие части растений, сохранившие механическую связь с растением.

^ Опад - количество органического вещества растений, отмерших в надземных и подземных частях на единице площади за единицу времени.

Подстилка - масса многолетних отложений растительных остатков разной степени минерализации.

Прирост - масса организма или сообщества организмов, накопленная на единице площади за единицу времени.

^ Истинный прирост - отношение величины прироста к величине опада за единицу времени на единице площади.

Первичная продукция - масса живого вещества, создаваемая автотрофами (зелеными растениями) на единице площади за единицу времени.

^ Вторичная продукция - масса органического вещества, создаваемая гетеротрофами на единице площади за единицу времени.

Емкость биологического круговорота - количество химических элементов, находящихся в составе массы зрелого биоценоза (фитоценоза).

Интенсивность биологического круговорота - количество химических элементов, содержащихся в приросте фитоценоза на единице площади в единицу времени.

Скорость биологического круговорота - промежуток времени, в течение которого элемент проходит путь от поглощения его живым веществом до выхода из состава живого вещества. Определяют с помощью меченых атомов.

По Л. Е. Родину, Н. И. Базилевич (1965), полный цикл биологического круговорота элементов слагается из следующих составляющих.


  1. Поглощение ассимилирующей поверхностью растений из атмосферы углерода, а корневыми системами из почвы - азота, зольных элементов и воды, закрепление их в телах растительных организмов, поступление в почву с отмершими растениями или их частями, разложение опада и высвобождение заключенных в них элементов.

  2. Отчуждение частей растений питающимися ими животными, превращение их в телах животных в новые органические соединения и закрепление части из них в животных организмах, последующее поступление их в почву с экскрементами животных или с их трупами, разложение и тех и других и высвобождение заключенных в них элементов.

  3. Газообмен между ассимилирующей поверхностью растений и атмосферой, между корневой системой и почвенным воздухом.

  4. Прижизненные выделения надземными органами растений и в особенности корневыми системами некоторых элементов непосредственно в почву.
Для познания круговорота веществ в рамках биогеоценоза необходимо охватить исследованиями все группы организмов: растения, животных, микрофлору и микрофауну. Не все составляющие биологического круговорота изучены в равной степени, наиболее полно исследованы динамика органического вещества и биологический круговорот азота и зольных элементов, осуществляемый растительным покровом.

^ БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ КАК ФОРМА РАЗВИТИЯ ПЛАНЕТЫ ЗЕМЛЯ

Структура биосферы в самом общем виде представляет собой два крупнейших природных комплекса первого ранга - континентальный и океанический. Растения, животные и почвенный покров образуют на суше сложную мировую экологическую систему. Связывая и перераспределяя солнечную энергию, углерод атмосферы, влагу, кислород, водород, азот, фосфор, серу, кальций и другие биофильные элементы, эта система формирует биомассу и генерирует свободный кислород.

Водные растения и океан образуют другую мировую экологическую систему, выполняющую на планете те же функции связывания солнечной энергии, углерода, азота, фосфора и других биофилов путем образования фитобиомассы, высвобождения кислорода в атмосферу.

Существует три формы накопления и перераспределения космической энергии в биосфере. ^ Суть первой из них в том, что растительные организмы, а через пищевые цепи и связанные с ними животные и бактерии вовлекают в свои ткани многие соединения. Эти соединения содержат Н 2 , О 2 , N, P, S, Са, К, Mg, Si, Al, Mn и другие биофилы, многие микроэлементы (I, Co, Cu, Zn и т.д.). При этом происходит селекция легких изотопов (С, Н, О, N, S) от более тяжелых. Прижизненно и посмертно организмы суши, водной и воздушной среды, находясь в состоянии непрерывного обмена с окружающей средой, воспринимают и отдают широкий и разнообразный спектр минеральных и органических соединений. Суммарная масса и объем продуктов прижизненного обмена организмов и среды (метаболитов) превышают биомассу живого вещества в несколько раз.

^ Вторая форма накопления, удержания и перераспределения космической энергии Солнца на планете в ее биосфере проявляется через нагревание водных масс, образование и конденсацию паров, выпадение атмосферных осадков и движение поверхностных и грунтовых вод по уклону от областей питания к областям испарения. Неравномерное нагревание воздуха и воды вызывает планетарные перемещения водных и воздушных масс, формирование градиентов плотности и давления, океанические течения и грандиозные процессы атмосферной циркуляции.

Эрозия, химическая денудация, транспорт, перераспределение, осаждение и накопление механических и химических осадков на суше и в океане являются третьей формой передачи и превращения этой энергии.

Все эти три планетарных процесса тесно переплетаются; образуя общеземной круговорот и систему локальных круговоротов вещества. Таким образом, за миллиарды лет биологической истории планеты сложились великий биогеохимический круговорот и дифференциация химических элементов в природе. Они создали современную биосферу и являются основой ее нормального функционирования.

^ ЭЛЕМЕНТЫ БИОГЕОХИМИЧЕСКОГО КРУГОВОРОТА ВЕЩЕСТВ В ПРИРОДЕ

Элементами биогеохимического круговорота веществ являются следующие составляющие.


  1. Регулярно повторяющиеся или непрерывно текущие процессы притока энергии, образование и синтез новых соединений.

  2. Постоянные или периодические процессы переноса или перераспределения энергии и процессы выноса и направленного перемещения синтезированных соединений под влиянием физических, химических и биологических агентов.

  3. Направленные ритмические или периодические процессы последовательного преобразования: разложения, деструкции синтезированных ранее соединений под влиянием биогенных или абиогенных воздействий среды.
4. Постоянное или периодическое образование простейших минеральных и органоминеральных компонентов в газообразном, жидком или твердом состоянии, которые играют роль исходных компонентов для новых, очередных циклов круговорота веществ.

В природе протекают как биологические циклы веществ, так и абиогенные циклы.

^ Биологические циклы - обусловлены во всех звеньях жизнедеятельностью организмов (питание, пищевые связи, размножение, рост, передвижение метаболитов, смерть, разложение, минерализация).

^ Абиогенные циклы - сложились на планете намного раньше биогенных. Они включают весь комплекс геологических, геохимических, гидрологических, атмосферных процессов.

В добиогенный период планеты в геологических, гидрологических, геохимических, атмосферных круговоротах определяющая роль принадлежала водной и воздушной миграции и аккумуляции. В условиях развитой биосферы круговорот веществ направляется совместным действием биологических, геологических и геохимических факторов. Соотношение между ними может быть разным, но действие обязательно совместным! Именно в этом смысле употребляются термины - биогеохимический круговорот веществ, биогеохимические циклы.

Ненарушенные биогеохимические циклы носят почти круговой, почти замкнутый характер. Степень повторяющегося воспроизводства циклов в природе очень велика и, вероятно, как считает В. А. Ковда, достигает 90- 98%. Тем самым поддерживается известное постоянство и равновесие состава, количества и концентрации компонентов, вовлеченных в круговорот, а также генетическая и физиологическая приспособленность и гармоничность организмов и окружающей среды. Но неполная замкнутость биогеохимических циклов в геологическом времени приводит к миграции и дифференциации элементов и их соединений в пространстве и в различных средах, к концентрированию или рассеянию элементов. Именно поэтому мы наблюдаем биогенное накопление азота и кислорода в атмосфере, биогенное и хемогенное накопление соединений углерода в земной коре (нефть, уголь, известняки).

^ ПАРАМЕТРЫ БИОГЕОХИМИЧЕСКОГО КРУГОВОРОТА НА СУШЕ

Обязательными параметрами для изучения биогеохимических циклов в природе являются следующие показатели.


  1. Биомасса и ее фактический прирост (фито-, зоо-, микробная масса отдельно).

  2. Органический опад (количество, состав).

  3. Органическое вещество почвы (гумус, неразложившиеся органические остатки).

  4. Элементный вещественный состав почв, вод, воздуха, осадков, фракций биомассы.

  5. Наземные и подземные запасы биогенной энергии.

  6. Прижизненные метаболиты.

  7. Число видов, численность, состав.

  8. Продолжительность жизни видов, динамика и ритмика жизни популяций и почв.

  9. Эколого-метеорологическая обстановка среды: фон и оценка вмешательства человека.

  1. Охват точками наблюдений водораздела, склонов, террас, долин рек, озер.

  2. Количество загрязнителей, их химические, физические, биологические свойства (особенно СО, СО 2 , SO 2 , Р, NO 3 , NH 3 Hg, Pb, Cd, H 2 S, углеводороды).
Для оценки характера биогеохимического круговорота экологи, почвоведы, биогеохимики используют следующие показатели.

1. Содержание зольных веществ, углерода и азота в биомассе (надземной, подземной, фито-, зоо-, микробной). Содержание этих элементов может быть выражено в % или в г/м 2 , т/га поверхности. Главными составными элементами живого вещества по массе являются О (65-70%) и Н (10%). На все остальные приходится 30-35%: С, N, Са (1- 10%); S, Р, К, Si (0,1-1%); Fe, Na, Cl, Al, Mg (0,01-0,1%).

Химический состав фитомассы сильно варьирует. Особенно различен состав фитомассы хвойных и лиственных лесов, травянистой растительности и галофитов (табл.13).

Таблица 13 - Минеральный состав различных групп растений суши


Тип растительности

Зольность, %

Годовой оборот минеральных

Компонентов, кг/га


Преобладающие компоненты

Хвойные леса

3-7

100-300

Si, Са, Р, Мg, К

Лиственные леса

5-10

460-850

Са, К, Р, Al, Si

Тропические леса

3-4

1000-2000

Са, К, Мg, Al

Луга, степи

5-7

800-1200

Si, Са, К, S, Р

Галофитные сообщества

20-45

500-1000

Cl, SO 4 , Na, Мg, К

Индивидуальная значимость того или иного химического элемента оценивается коэффициентом биологического поглощения (КБП). Рассчитывают его по формуле:

  1. В 1966 году В. А. Ковда предложил использовать для характеристики средней продолжительности общего цикла углерода отношение учтенной фитобиомассы к годичному фотосинтетическому приросту фитомассы. Этот коэффициент характеризует среднюю продолжительность общего цикла синтеза - минерализации биомассы в данной местности (или на суше в целом). Расчеты показали, что для суши в целом этот цикл укладывается в период 300-400 и не более 1000 лет. Соответственно с этой средней скоростью идет освобождение минеральных соединений, связанных в биомассе, образование и минерализация гумуса в почве.

  2. Для общей оценки биогеохимического значения минеральных компонентов живого вещества биосферы В. А. Ковда предложил сопоставлять запас минеральных веществ биомассы, количество минеральных веществ, ежегодно вовлекаемых в оборот с приростом и опадом, с годовым химическим стоком рек. Оказалось, что эти величины близки: 10 8-9 зольных веществ вовлекается в прирост и опад и 10 9 - в годовой химический сток рек.
Большая часть веществ, растворенных в речных водах, прошла через биологический круговорот системы растения - почвы до того, как она влилась в геохимическую миграцию с водой в направлении океана или внутриматериковых впадин. Сопоставление проводят, рассчитывая индекс биогеохимического круговорота:

Индекс БГХК = S б / S Х,

Где S б - сумма элементов (или количество одного элемента) в годовом приросте биомассы; S x - сумма этих же элементов (или одного элемента), выносимых водами рек данного бассейна (или части бассейна).

Оказалось, что индексы биогеохимического круговорота очень сильно варьируют в различных климатических условиях, под покровом различных растительных сообществ, при различных условиях естественного дренажа.

4. Н. И. Базилевич, Л. Е. Родин (1964) предложили рассчитывать коэффициент, характеризующий интенсивность разложения опада и длительность сохранения подстилки в условиях данного биогеоценоза:

По данным Н. И. Базилевич и Л. Е. Родина, индексы интенсивности разложения фитомассы наибольшие в тундре и болотах севера, наименьшие (примерно равны 1) - в степях и полупустынях.

5. Б. Б. Полынов (1936) предложил рассчитывать индекс водной миграции:

ИВМ = Х Н2О / Х зк,

Где ИВМ - индекс водной миграции; Х Н2О - количество элемента в минеральном остатке выпаренной речной или грунтовой воды; X зк - содержание этого же элемента в земной коре или породе.

Расчет индексов водной миграции показал, что наиболее подвижные мигранты в биосфере - Cl, S, В, Вr, I, Са, Na, Mg, F, Sr, Zn, U, Mo. Наиболее пассивны в этом отношении - Si, К, Р, Ва, Mn, Rb, Cu, Ni, Co, As, Li, Al, Fe.

^ БИОЛОГИЧЕСКИЙ КРУГОВОРОТ И ПОЧВООБРАЗОВАНИЕ

Данные геологии и палеоботаники позволили В. А. Ковде в общих чертах представить важнейшие этапы развития почвообразовательного процесса в связи с историей развития растений и растительного покрова (1973). Начало почвообразовательного процесса на Земле связано с появлением автотрофных бактерий, способных к самостоятельному существованию в наиболее неблагоприятных гидротермических условиях. Этот первоначальный процесс воздействия низших организмов на горные породы земной коры В. Р. Вильяме назвал первичным почвообразовательным процессом. Автотрофные бактерии, открытые С. Н. Виноградовым в конце XIX века, представляют собой простейшие одноклеточные организмы, насчитывающие около сотни видов. Они обладают способностью очень быстрого размножения: 1 особь в течение суток может дать триллионы организмов. К числу современных автотрофов относятся серобактерии, железобактерии и др., играющие чрезвычайно важную роль во внутрипочвенных процессах. Время появления автотрофных бактерий уходит, по-видимому, в докембрий.

Таким образом, первый синтез органического вещества и биологические циклы С, S, N, Fe, Mn, О 2 , H 2 в земной коре были связаны с деятельностью автотрофных бактерий, использующих кислород минеральных соединений. В возникновении почвообразовательного процесса, возможно, наряду с автотрофными бактериями играли какую-то роль и неклеточные формы жизни типа вирусов и бактериофагов. Конечно, это не был почвообразовательный процесс в современном виде, так как не было корневых растений, не было скоплений гумусовых соединений и биогенного механизма. И, по-видимому, правильнее говорить о первичном биогеохимическом выветривании горных пород под воздействием низших организмов.

В докембрии появились одноклеточные сине-зеленые водоросли. С силура и девона распространились многоклеточные водоросли - зеленые, бурые, багряные. Почвообразовательный процесс усложнился, ускорился, начался в заметных количествах синтез органического вещества, и наметилось расширение малого биологического круговорота О, Н, N, S и др. элементов питания. По-видимому, как считает В.А. Ковда, почвообразовательный процесс на этих стадиях сопровождался накоплением биогенного мелкозема. Стадия первоначального почвообразования была очень длительной и сопровождалась медленным, но непрерывным накоплением биогенного мелкозема, обогащенного органическим веществом и элементами, вовлекаемыми в биологический круговорот: Н, О, С, N, P, S, Са, К, Fe, Si, A1. На этой стадии уже мог проходить биогенный синтез вторичных минералов: алюмо- и феррисиликатов, фосфатов, сульфатов, карбонатов, нитратов, кварца, а почвообразование было приурочено к мелководным областям. На суше оно имело скальный и болотный характер.

В кембрии появились и псилофиты - низкорослые растения кустарникового типа, не имевшие даже корней. Они получили некоторое распространение в силуре и значительное развитие в девоне. В это же время появляются хвощи и папоротники - обитатели влажных низменностей. Таким образом, относительно развитая форма почвообразовательного процесса началась с силура и девона, т.е. около 300-400 млн. лет назад. Однако дернового процесса не наблюдалось, так как не было травянистой растительности. Зольность папоротников и плаунов не высокая (4-6%), хвощей гораздо выше (20%). В составе золы преобладали К (30%), Si (28%) и С1 (10%). Грибная микрофлора способствовала вовлечению в биологический круговорот Р и К, а лишайники - Са, Fe, Si. Вероятно образование кислых почв (каолинито-вых аллитных, бокситовых) и гидроморфных почв, обогащенных соединениями железа.

Развитый почвообразовательный процесс сложился, по-видимому, лишь в конце палеозоя (карбон, пермь). Именно к этому времени относят ученые появление сплошного растительного покрова на суше. Кроме папоротников, плаунов, хвощей появились голосемянные растения. Преобладали ландшафты лесов и болот, сформировалась зональность климата на фоне господства теплого тропического и субтропического. Следовательно, в этот период преобладали болотный и лесной тропический почвообразовательные процессы.

Продолжался этот режим примерно до середины пермского периода, когда постепенно наступило похолодание и иссушение климата. Сухость и похолодание способствовали дальнейшему развитию зональности. Именно в этот период (вторая половина перми, триас) широкое развитие получили голосемянные хвойные растения. В высоких широтах в это время шло образование кислых подзолистых почв, в низких - почвообразование шло по пути развития желтоземов, красноземов, бокситов. Невысокая зольность (около 4%), ничтожное содержание Cl, Na, высокое содержание в золе хвои Si (16%), Са (2%), S (6%), К (6,5%) привели к расширению участия в биологическом круговороте и в почвообразовании роли Са, S, Р и уменьшению роли Si, К, Na, C1.

В юре появляются диатомовые водоросли, а в следующем за ней меловом периоде - покрытосемянные цветковые растения. С середины мелового периода широкое распространение получают лиственные породы - клен, дуб, береза, ива, эвкалипт, орех, бук, граб. Под их пологом начинает ослабевать подзолообразовательный процесс, так как в составе опада этих растений велика доля Са, Mg, К.

В третичную эпоху на Земном шаре преобладала тро пическая флора: пальмы, магнолии, секвойя, бук, каштан. Минеральный состав веществ, вовлекаемых в кругово рот этими лесами, характеризовался значительным участием Са, Mg, К, Р, S, Si, Al. Создавались тем самым экологические предпосылки для появления и развития травянистой растительности: уменьшение кислотности почв и пород, накопление элементов питания.

Громадное принципиальное значение в изменении характера почвообразовательных процессов имела смена господства древесной растительности травянистой. Мощная корневая система деревьев вовлекала в биологический круговорот значительную массу минеральных веществ, мобилизуя их для последующего поселения травянистой растительности. Кратковременность жизни травянистой растительности и сосредоточенность корневых масс в самых верхних слоях почвы обеспечивают под покровом трав пространственную концентрацию биологического круговорота минеральных веществ в менее мощной толще горизонтов с аккумуляцией в них элементов зольного питания. Таким образом, начиная со 2-й половины мелового периода, в третичном и особенно в четвертичном периодах под влиянием господства травянистой растительности распространился дерновый процесс почвообразования.

Итак, роль живого вещества и биологического круговорота в геологической истории Земли и развитии почвообразовательного процесса непрерывно возрастала. Но и почвообразование постепенно становилось одним из главных звеньев биологического круговорота веществ.


  1. Почва обеспечивает постоянное взаимодействие большого геологического и малого биологического круговоротов веществ на земной поверхности. Почва - связующее звено и регулятор взаимодействия двух этих глобальных циклов вещества.

  2. Почва - аккумулирует в себе органическое вещество и связанную с ним химическую энергию, химические элементы, тем самым регулируя скорость биологического круговорота веществ.

  3. Почва, обладая способностью динамично воспроизводить свое плодородие, регулирует биосферные процессы. В частности, плотность жизни на Земле наряду с климатическими факторами во многом определяется географической неоднородностью почвы.
Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...