Как регулировать трв чтобы понизить температуру. Методика регулирования трв


При вводе холодильной установки в действие после постройки судна или ремонта СХУ регулировка приборов автоматики осуществляется в следующей последовательности.

Первыми настраивают ТРВ. Для этого пускают в работу компрессор, и после стабилизации в камерах требуемых температур регулируют эти приборы на необходимый перегрев пара в испарителях. Регулировку начинают с ТРВ камеры самой высокой температуры. Если на испарителях этой камеры имеются регуляторы давления "до себя", то их пружины должны быть ослаблены до минимума.

После этого приступают к регулированию прессостатов. Последними регулируются регуляторы давления "до себя".

Реле контроля смазки и реле высокого давления регулируются в любой последовательности.

Настройка регуляторов перегрева

В условиях эксплуатации судна настройка терморегулирующего вентиля (ТРВ) производится только при дозаправке системы холодильным агентом. Во всех других случаях настройка ТРВ не требуется и может оказаться даже вредной. Вращая винт настройки ТРВ (рис.4.14), механик воздействует на пружину регулятора, а не на увеличение или уменьшение дроссельного отверстия.

Рис.7.1. Терморегулирующий вентиль: а - общий вид; б - схема настройки.

При настройке ТРВ следует помнить, что задача регулятора перегрева? предохранить компрессор от попадания жидкого агента в цилиндр. При этом ТРВ должен обеспечивать оптимальное заполнение жидким агентом испаритель. Лучше всего представить себе ТРВ, как регулятор уровня жидкости.

Настройка регулятора перегрева пара производится последовательно в соответствии со следующими двумя этапами:

1) Перед дозаправкой системы хладагентом ТРВ на всех испарителях (при многокамерной системе охлаждения) ставят на максимальный перегрев. Это делается для того, чтобы не произошёл гидравлический удар при пуске компрессора, в случае переполнения системы хладагентом.

Необходимо помнить, что разные конструкции ТРВ имеют разную маркировку при настройке. На судах используется в основном четыре типа маркировок ТРВ: холод - тепло; уменьшение перегрева - увеличение перегрева; уменьшение - холод - увеличение; открыт - закрыт .

Такая нечеткая маркировка ТРВ часто приводит к неправильным действиям обслуживающего персонала. Поэтому следует руководствоваться тем, что увеличение перегрева означает повышение температуры хладагента на выходе из испарителя в районе крепления термобаллона, равносильное как бы уменьшению уровня жидкого хладагента в испарителе. Для этого при маркировке "холод - тепло " вращают винт настройки в сторону, "тепло " до отказа, при маркировке "уменьшение перегрева - увеличение перегрева " винт настройки вращается в сторону увеличения перегрева; при маркировке "уменьшение - холод - увеличение " винт настройки вращают в сторону уменьшение и при "открыт - закрыт " в сторону "закрыт";

2) Производят дозаправку системы хладагентом и пробный пуск компрессора. Через 10-15 минут компрессор останавливают и осматривают испарители. Если при максимальном перегреве, установленном на ТРВ, иней во всех испарителях распространился по всасывающей трубе дальше крепления термобаллона, это означает, что система переполнена хладагентом и часть его необходимо удалить. Если в некоторых камерах иней достиг термобаллона, а в других? нет, то в последних необходимо уменьшить перегрев на ТРВ, вращая для этого винт настройки в противоположную сторону, указанную в пункте 1. Нормальной настройку ТРВ считают, когда иней удерживается в районе крепления термобаллона. Если во всех камерах иней не достигаеттермобаллона при установленном минимальном перегреве, это означает, что в систему необходимо добавить холодильный агент. Однако перед этим все ТРВ устанавливают на максимальный перегрев и, руководствуясь пунктами 1 и 2, производят настройку ТРВ с самого начала.

Основным признаком недостаточного поступления хладагента в систему является оттаивание батареи в районе установки термобаллона. Для увеличения количества хладагента, поступающего в испарительную батарею, ТРВ настраивают следующим образом: вращают регулировочный винт в сторону максимального ослабления сжатия пружины 6.

При замене старого ТРВ, новый перед монтажом следует продуть. Струя воздуха должна свободно проходить через седло прибора при комнатной температуре. Если термочувствительная система повреждена, воздух через ТРВ не будет проходить.

Таблица 7.1 Возможные неполадки в работе ТРВ и способы их устранения

Неполадки

Устранение

ТРВ не открывается

В термочувствительной системе ТРВ нет фреона

Заменить ТРВ

ТРВ после пуска компрессора вскоре перестает пропускать жидкий агент. После оттаивания горячей

водой работает непродолжи-тельное время

Замерзание влаги

Регенерировать осушитель и включить его в жидкостную линию или добавить в систему патентной жидкости типа "Растворитель воды для холодильных систем"

ТРВ не пропускает жидкий агент

а) засорился фильтр;

б) засорилось дроссельное отверстие

а) прочистить фильтр;

б) несколько раз изменить настройку от максимального перегрева до минимального, если это не поможет, разобрать ТРВ и прочистить

Выходной штуцер ТРВ покрывается инеем

Засорился фильтр

Почистить фильтр

Слышно шипение хладагента в ТРВ

Недостаток фреона в холодильной установке

Добавить фреон

ТРВ открывается только при согревании корпуса или капилляра

Корпус находится в более холодном месте, чем термобаллон

Поднять выше корпус ТРВ

ТРВ не закрывается во время остановки

а) неправильная настройка;

б) повреждение ТРВ

а) изменить настройку

б) заменить ТРВ

В качестве единого правила для определения способа настройки ТРВ следует помнить, что:

Закрыть ТРВ - это значит увеличить перегрев хладагента, для этого необходимо зажать пружину регулировочным винтом;

Открыть ТРВ - это значит уменьшить перегрев хладагента, т.е. увеличить его подачу, для чего следует ослабить пружину.

При переходе судна в тропический район плавания, возможно оттаивание испарителя одной из камер. В этом случае необходимо ослабить пружину ТРВ этого испарителя до восстановления нормального режима работы. Если при этом из-за перераспределения хладагента оттает испаритель в другой камере, там следует также ослабить пружину ТРВ. Таким образом, можно обеспечить нормальную работу холодильной установки в тропиках без дополнительной зарядки ее хладагентом.

При регулировке ТРВ следует помнить, что один полный оборот регулировочного винта может изменить величину перегрева до 5 о С . Поэтому регулировку следует осуществлять одноразовым поворотом регулировочного винта на четверть оборота и контролировать результат через 10 - 15 минут.

Настройка температурных реле и электронных контроллеров температуры

Термостатом называется устройство, служащее для поддержания температуры в отдельной камере. Чувствительным элементом термостата является термобаллон, который находится в камере, а сам прибор располагается в тамбуре. Промежуточная связь состоит из капилляра, сильфона, рычагов, пружин, контактов и электрической цепи. Исполнительным механизмом может быть либо соленоидный вентиль (СВ) на испарителе данной камеры при многокамерной холодильной установке, либо магнитный пускатель компрессора (МПК) при одно- двухкамерной холодильной установке.

В многокамерной холодильной установке при достижении нижнего предела температуры в камере электрические контакты размыкаются, обесточивается электрическая цепь СВ и он закрывает доступ хладагента в данный испаритель. В однокамерной холодильной установке при аналогичной ситуации, разомкнутся контакты МПК, и компрессор остановится.

Термостат фирмы "Danfoss" показан на рис.4.19. В температурном реле данной конструкции имеется термочувствительный баллон, соединённый капиллярной трубкой с сильфоном прибора. Длина капилляра 1,5-2,0 м, что обеспечивает установку термобаллона в охлаждаемом помещении, а сам прибор устанавливается снаружи. Установочные шкалы диапазона и дифференциала отградуированы в градусах. При понижении температуры в помещении давление в термобаллоне падает, тогда пружина 1 с помощью системы рычагов сжимает сильфон и размыкает контакты электрической цепи, питающей соленоидный клапан. При повышении давления в баллоне контакты замыкаются и соленоидный клапан открывается. Диапазон регулирования - это интервал температур, в котором данный термостат может быть применен, а дифференциал - это зона нечувствительности термостата, то есть разность между температурами замыкания и размыкания контактов.

Рис.7.2. Реле температуры фирмы "Danfoss" типа А: 1- пружина; 2-винт установки дифференциала; 3-пружина настройки дифференциала; 4-рукоятка настройки диапазона; 5-винт настройки диапазона; 6-винт регулировки дифференциала; 7-рычаг резкого размыкания контактов; 8-пружина резкого размыкания контактов; 9-подвижный контакт;10-уплотнение для ввода кабеля

По способу настройки все термостаты можно разделить на две группы:

размыкание контактов , которые имеют формулу настройки: настройка диапазона = размыкание и настройка диапазона + дифференциал = замыкание ;

Термостаты с настройкой диапазона на замыкание контактов . Они имеют формулу настройки: настройка диапазона = замыкание , и настройка диапазона - дифференциал = размыкание .

Настройка термостатов для каждого охлаждаемого помещения производится в зависимости от хранящегося в нем вида продукта или груза в следующей последовательности:

По режимным (технологическим) таблицам хранения продуктов определяется необходимая температура в холодильной камере;

В зависимости от формулы настройки термостата рассчитывается настройка диапазона и дифференциал:

а) для термостатов на размыкание настройка диапазона соответствует нижнему значению температуры хранения продукта, а величина дифференциала даст повышение температуры до верхнего предела;

б) для термостатов на замыкание настройка диапазона соответствует верхнему значению температуры хранения, а величина дифференциала даст понижение температуры до нижнего предела;

Настройка термостата начинается с настройки диапазона, а после этогопроизводится настройка дифференциала.

Например, при хранении овощей необходимо в камере поддерживать температуру от + 2 °С до + 5 °С , поэтому при использовании термостата ТРДК-55, настраиваемого на размыкание, настройка диапазона будет + 2°С , а дифференциал - 3°С . При использовании термостата "Ранко" типа 0, настраиваемого на замыкание, настройка диапазона в этом случае будет + 5 °С , а дифференциал - 3 °С .

При использовании термостатов рекомендуется помнить следующее. Если пружина дифференциала действует против пружины настройки диапазона, прибор работает на "замыкание". Если же пружина дифференциала действует в одну сторону с пружиной настройки диапазона или дифференциал получают за счет изменения зазора, то такой прибор (термостат) работает на "размыкание" контактов.

Электронные контроллеры температуры помимо основных функций термостата могут так же выполнять функции управления процессами удаления снеговой шубы, управления компрессором, вентиляторами, соленоидными вентилями, а так же диагностического контроля за температурным режимом камеры и дистанционного програмирования температуры. На лицевой панели контроллера (рис.4.20) имеется дисплей и четыре функциональные клавиши для управления состоянием и программирования прибора.

Рис. 7.3.

При этом на лицевой панели прибора имеются соответствующие светодиоды, сигнализирующие о состоянии ассоциированных функций.

Рис. 7.4.

Технические возможности контроллера позволяют настраивать и регулировать температуру в охлаждаемом объеме, а так же процесс оттайки приборов охлаждения.

При включении прибор выполняет контроль лампочек: в течение нескольких секунд дисплей и светодиоды мигают для проверки целостности и правильности работы. Прибор имеет два главных меню: Меню "Состояние машины" и меню "Программирование". Ресурсы организованы в виде меню, доступ к которым осуществляется путем нажатия и немедленного отпускания клавиши "set" (меню "Состояние машины" или путем удерживания нажатой клавиши "set" более 5 секунд (меню "Программирование").

Для получения доступа к содержимому каждой папки, выделенной соответствующей меткой, достаточно один раз нажать клавишу "set".

Для входа в меню "Состояние машины" необходимо нажать и сразу же отпустить клавишу "set"

Если нет тревожных ситуаций, появляется метка "SEt".

Клавишами "UP" и "DOWN" можно прокручивать другие папки, содержащиеся в меню:

Pb1: папка значения термодатчика 1;

Pb2: папка значения термодатчика 2;

SEt: папка задания уставки.

При наличии аварийной ситуации при входе в меню "Состояние машины" появляется метка папки `AL".

Для прокрутки других папок (настройки циклов работы компрессора, вентилятора, соленоида) необходимо нажимать на клавиши "UP" и "DOWN"

Для входа внутрь папки нажать "set". Появляется метка первого видимого параметра. Для прокрутки других параметров используются клавиши "UP" и "DOWN" для изменения параметра необходимо нажать и отпустить "set" после чего задать необходимое значение клавишами "UP" и "DOWN" и подтвердить клавишей "set" После чего перейти к следующему устанавливаемому параметру.

Включение в ручном режиме цикла размораживания обеспечивается при удерживании нажатой в течение 5 секунд клавиши "UP"

Если нет условий для размораживания, (например, температура зонда испарителя превышает температуру окончания размораживания), дисплей будет мигать три (3) раза, сигнализируя, что эта операция не будет выполнена.

Регулировка прессостата

Прессостат устанавливается на всасывающей магистрали и может управлять:

а) пуском и остановкой компрессора при достижении минимального давления на всасывании;

б) включением и выключением части цилиндров компрессора, обслуживающих определенную группу камер.

Во всех случаях исходными параметрами для регулирования прессостатов является температура в самой "тяжелой", с точки зрения теплового режима, камере.

Так же, как и термостаты, прессостаты могут регулироваться на размыкание и замыкание контактов. Способ определения формулы регулирования такой же, как и для термостатов.

Настройка реле низкого и высокого давления

Приборы давления (прессостаты)предназначены для регулирования и контроля низкого давления всасывания и высокого давления нагнетания. Такие одноблочные (состоящие из одного блока) реле называют реле низкого давления (РДН ) и реле высокого давления (РДВ ) соответственно. Часто применяют общее реле давления (РД ) с двумя чувствительными элементами (блоками высокого и низкого давления) и общей контактной группой. Контакты РДН размыкаются при понижении давления всасывания ниже заданного, а контакты РДВ - при соответствующем повышении давления нагнетания.

Если в судовой холодильной установке имеется только один прессостат на всасывающем трубопроводе компрессора, то его настраивают по наиболее низкотемпературной камере (в камерах с более высокой температурой, температура создается и поддерживается при помощи термостатов). В этом случае прессостат обеспечивает наиболее рациональное действие компрессора по длительности рабочих циклов, а также предохраняет его от работы на вакууме. Исходя из таблиц режимов хранения скоропортящихся продуктов при их перевозке на морских судах, в самых низкотемпературных камерах должно быть от - 12°С до -18°С. Эти температуры служат основанием для настройки прессостатов. Расчет настройки прессостата производят поэтапно. Вначале по режимным таблицам определяют диапазоны температур хранения заданного продукта или груза (при одном прессостате принимаются самые низкие температуры из требуемых). Как указано выше, за основу настройки прессостата в этом случае надо принимать температуры от - 12°С до - 18°С.

Затем рассчитывают температуру кипения холодильного агента, обеспечивающую заданную температуру хранения продукта с учетом инерционности холодильной камеры. Опыт показывает, что для судовых провизионных кладовых компрессор нужно пускать, когда разность между температурой в самой низкотемпературной камере и температурой кипения холодильного агента в испарителе достигнет 5°С, а останавливать - когда эта разность достигнет 12°С. Таким образом, для обеспечения в камере температуры от -12°С до -18°С, компрессор должен включаться при температуре кипения агента -12 + (-5) = -17°С, и останавливаться при температуре кипения хладагента -18 +(-12) = -30°С.

Для прессостатов МР-1, МР-15 и "Ранко" типа012 формула настройки на замыкание следующая: замыкание = настройка диапазона ; размыкание = настройка диапазона? дифференциал. Следовательно, настройка диапазона будет 0,7 бар, а дифференциал? 0,6 бар. Следует помнить, что начинать настройку прессостата необходимо с настройки диапазона и только после её окончания переходить к настройке дифференциала.

На рис.4.22 представлена принципиальная схема регулирования прессостата МП 5.

Рис. 7.5.

При понижении давления во всасывающем трубопроводе P t усилие снизу на рычаг 2 от давления во всасывающем трубопроводе уменьшается и под воздействием пружины настройки 4 вся подвижная система пойдет вниз, а рычаг 2 будет поворачиваться против часовой стрелки. Этому давлению оказывает сопротивление растянутая пружина дифференциала 6. Размыкание контактов произойдет при соблюдении неравенства:

P t н - P Q , где Р н - усилие пружины настройки, P Q - усилие пружины дифференциала.

Это свидетельствует о том, что прибор регулируется на замыкание, то есть давление замыкания контактов регулируется главной пружиной. Дифференциал показывает, на какую величину должно понизиться давление во всасывающем трубопроводе, чтобы контакты разомкнулись, компрессор либо группа цилиндров отключились.

Р замыкания контактов = Р настройки;

Р размыкания контактов = Р настройки - Р дифференциала;

Р дифференциала = Р н - Р рк .

Следует помнить, что начинать настройку прессостата необходимо с настройки и только после окончания её переходить к настройке дифференциала (винт 10. ).

Настройка реле высокого давления (РВД) осуществляется в заводских условиях на давление превышающий рабочий на 20...30 %. Для R-134а оно составляет 1,2...1,3 Мпа, для R-22 - 1,8...2,0 Мпа.

Рис.7.6.

В эксплуатации раз в два месяца зачищают контакты прибора. При этом вся установка должна быть обесточена.

Настройка реле контроля смазки

Реле контроля смазкивырабатывает разность давлений масла в картере и создаваемого масляным насосом компрессора. Прибор отличается от реле давления тем, что чувствительные элементы двух блоков воздействуют одновременно на общую контактную систему в противоположных направлениях. Регулируемая величина (разность давлений масла) может быть ниже заданной при пуске компрессора и при аварийной ситуации. В связи с этим в реле контроля смазки имеется элемент выдержки времени, который позволяет запустить компрессор при бездействующем реле.

Принципиальная схема и схема подключения реле контроля смазки РКС-1Б приведены на рис.7.7.

Рис.7.7

а - принципиальная схема; б - схема подключения; в - общий вид.

Верхний сильфон 6 сообщен трубкой с картером компрессора, а нижний 1 - с напорной масляной системой, находящейся под давлением, создаваемым масляным насосом 9. Донышки сильфонов соединены штоком 2. При нормальной работе смазочной системы сила, действующая на нижний сильфон, больше силы, действующей на верхний плюс усилие сжатой пружины 3. Тогда шток 2 находится в верхнем, а угловой рычаг 8 в правом (верхнем) положении и контакты микровыключателя7 замкнуты. При снижении дифференциального давления (разности указанных давлений) до величины, установленной на шкале диапазона 4 шток 2 опускается вниз, пружина 3 поворачивает рычаг 8 против часовой стрелки, контакты размыкаются и компрессор останавливается. При повышении разности давлений контакты замыкаются.

Прибор РКС-1Б настраивают вращением муфты 5 до размыкания контактов при дифференциальном давлении от 0.02 до 0,25 МПа. Нерегулируемый дифференциал равен 0,05 МПа. Автоматический пуск компрессора осуществляется при нулевом дифференциальном давлении. Поэтому в электрической схеме пускателя компрессора предусматриваются различные устройства (чаще всего реле времени), которые обеспечивают пуск компрессора при разомкнутых контактах РКС, но автоматически останавливают компрессор, если за определенное время (от 45 до 90 секунд ) дифференциальное давление не поднимется до установленной величины. Повторный пуск компрессора в этом случае невозможен и запуск его производят вручную на электрощите. Такая особенность схемы повторного подключения прибора обеспечивает повышенное внимание обслуживающего персонала к возникающей неисправности. Таким образом, РКС выполняет функции прибора защиты. Отдельные марки РКС зарубежного производства имеют регулируемый дифференциал; некоторые из них снабжены кнопкой возврата: после срабатывания реле на размыкание контактов, компрессор может быть пущен только после того, как нажатием этой кнопки подвижные части прибора возвращены в рабочее положение.

Регулирование реле контроля смазки (РКС) может производиться в любой последовательности и даже при неработающем компрессоре. Проверка в работе осуществляется при работающем компрессоре. Для этого открытием регулировочного клапана масляной системы увеличивают сброс масла в картер компрессора и снижает разность давлений до минимально допустимой величины. Фиксируют ту разность, при которой останавливается компрессор.

Терморегулирующий вентиль (ТРВ) состоит из термочувствительной системы (1), отделенной от корпуса вентиля мембраной, соединяющей термочувствительную систему с термобаллоном (2), корпуса вентиля с седлом (3) и регулировочной пружины (4).

Принцип работы ТРВ

Работа ТРВ зависит от трех основных параметров:
  • P1 - давления в термобалоне, действующего на верхнюю поверхность мембраны (открытие вентиля);
  • P2 - давления кипения, действующего на нижнюю поверхность мембраны (закрытие вентиля);
  • P3 - давления регулировочной пружины, также действующего на нижнюю поверхность мембраны (закрытие вентиля).
Регулирование, выполняемое вентилем, достигается за счет поддержания равновесия между давлением в термобаллоне и суммой давлений и пружины. Пружина обеспечивает регулировку перегрева.

Перегрев измеряется в месте крепления термобаллона на всасывающем : он равен разности между температурой термобаллона и температурой (или давлением) кипения в точке крепления термобаллона. Выраженный в К, перегрев служит сигналом для регулировки впрыска жидкости в через ТРВ.

Переохлаждение определяется как разность между температурой жидкого хладагента и температурой (или давлением) конденсации на входе в ТРВ. Переохлаждение выражается в К. Оно необходимо во избежание образования паровых пузырей в жидкости на входе в ТРВ, поскольку их наличие снижает производительность ТРВ и затрудняет подачу жидкости в испаритель. В большинстве случаев избежать паровых пузырей можно при переохлаждении 4-5 К.

В установках с жидкостными распределителями всегда следует использовать ТРВ с линией внешнего уравнивания. Потери давления в каналах распределителя и в самом распределителе, как правило, составляют около 1 бар. ТРВ с внешней уравнительной линией рекомендуются для установок с испарителями большой производительности или теплообменниками пластинчатого типа, где потери давления часто превышают давление, соответствующее 2 К.

Наполнители

Термочувствительная система ТРВ обычно содержит наполнитель одного из трех типов:
  1. Универсальный наполнитель.
  2. Наполнитель MOP (Maximum Operating Pressure - максимальное рабочее давление).
  3. Наполнитель МОР с балластом.
наиболее часто применяются в установках, где отсутствуют ограничения по давлению и температура термобаллона всегда выше температуры термочувствительной системы. Они также широко используются при высоких температурах и давлениях кипения.

В количество жидкости в термобаллоне таково, что какой бы ни была температура термобаллона по отношению к температуре термочувствительной системы, в термобаллоне всегда будет оставаться жидкость.

Используются в моноблочных агрегатах, в которых при пуске установки желательно ограничивать давление всасывания (авторефрижераторы, воздушные кондиционеры).

ТРВ с заправкой МОР имеют небольшое количество жидкости в термобаллоне. Это означает, что вентиль или термочувствительная система всегда должны быть более теплыми, чем термобаллон. В противном случае начинается перетекание наполнителя из термобаллона в полость термочувствительной системы и ТРВ перестает работать.

В термобаллонах с наполнителем МОР количество жидкости ограничено. МОР (максимальное рабочее давление) - это максимально допустимое в магистралях всасывания и/или кипения давление всасывания и/или кипения соответственно. При достижении МОР жидкость в термобаллоне испаряется. Когда давление всасывания повышается, вентиль начинает закрываться, как только это давление приблизится к давлению МОР менее, чем на 0,3-0,4 бар. При достижении давления МОР вентиль полностью закроется.

Предназначены для холодильных установок, имеющих высокодинамичные испарители, например, воздушных кондиционеров, или для пластинчатых теплообменников с высокой интенсивностью . ТРВ, заправленные наполнителем МОР с балластом, обеспечивают работу испарителя при перегреве на 2-4°К ниже, чем это достигается с другими типами наполнителя.

При использовании наполнителя с балластом внутри термобаллона содержится материал с высокой пористостью, т.е. с большим отношением площади поверхности к массе. Этот материал создает демпфирующий эффект при регулировке, обеспечивающий медленное открытие ТРВ при повышении температуры термобаллона и быстрое закрытие при ее понижении.

Сокращение МОР часто переводят также как «Motor Overload Protection», т.е. «Защита двигателя от перегрузки».

При выборе ТРВ необходимо руководствоваться следующими исходными данными:
  • тип хладагента;
  • производительность испарителя;
  • давление кипения;
  • давление конденсации;
  • степень переохлаждения;
  • потери давления в вентиле;
  • линия внутреннего или внешнего уравнивания давления.
На мембранную головку термочувствительной системы ТРВ нанесена лазерная маркировка вентиля. Буква в маркировке означает тип хладагента, для работы с которым предназначен данный терморегулирующий вентиль:
  • L - R410A
  • N - R134a
  • S - R404A/R507
  • X - R22
  • Z - R407° C

В маркировке указывается тип ТРВ (и его кодовый номер), диапазон температуры кипения, точка MOP, тип хладагента, допустимое рабочее давление PB/MWP. В вентилях ТЕ20 и ТЕ55 номинальная производительность ТРВ указывается на этикетке, прикрепленной к вентилю.

На сменных клапанных узлах вентилей Т2 и ТЕ2 указывается размер этих узлов (например, 06), а также номер недели и последняя цифра года изготовления (например, 279). Размер клапанного узла указывается также на крышке его пластикового контейнера.

Верхняя маркировка клапанного узла вентилей ТЕ 5 и ТЕ 12 указывает, для какого вентиля предназначен данный клапанный узел. Нижняя маркировка (на рисунке 01) указывает размер клапанного узла.

Нижняя маркировка клапанного узла вентилей ТЕ 20 и ТЕ 55 (50/35 TR N/B) указывает номинальные производительности данного узла в двух диапазонах температур кипения N и B и тип хладагента (50/35 TR соответствует 175 кВт в диапазоне N и 123 кВт в диапазоне В).

ТРВ устанавливается перед испарителем на жидкостном трубопроводе, а термобаллон крепится на трубопроводе линии всасывания как можно ближе к испарителю. При использовании линии внешнего уравнивания ее трубопровод врезается во всасывающую магистраль сразу после термобаллона.

Термобаллон рекомендуется устанавливать на горизонтальной части всасывающего трубопровода в зоне первой трети окружности трубопровода (см. рисунок). Размещение термобаллона зависит от размеров всасывающего трубопровода. Примечание: Никогда не устанавливайте термобаллон в нижней части трубопровода, так как наличие масла на дне трубопровода может исказить показания термобаллона.

Термобаллон должен контролировать температуру на линии всасывания, поэтому устанавливать его нужно таким образом, чтобы избежать влияния посторонних источников тепла или холода. Если есть опасность попадания на термобаллон потока горячего воздуха, его нужно теплоизолировать.

Крепежный хомутик должен плотно и надежно фиксировать термобаллон на трубопроводе линии всасывания, обеспечивая хороший тепловой контакт термобаллона и трубопровода. Конструкция винта крепежного хомутика позволяет монтажнику легко передавать момент кручения от отвертки на винт, не оказывая усилия на шлиц винта. Более того, конструкция шлица исключает опасность его повреждения.

Во избежание появления ложных команд в контуре регулирования не устанавливайте термобаллон за промежуточным теплообменником.

То же самое может быть, если термобаллон установлен вблизи агрегатов, имеющих значительную массу.

Как уже отмечалось, термобаллон следует устанавливать на горизонтальном участке всасывающей магистрали сразу после испарителя. Не устанавливайте термобаллон на коллекторе или вертикальном участке трубопровода после масляной ловушки.

Термобаллон следует всегда монтировать перед любыми жидкостными ловушками.

С настройками, выполненными при отправке с завода, ТРВ может работать практически во всех установках. Если возникает необходимость дополнительной регулировки, нужно использовать регулировочный винт. При вращении винта вправо (по часовой стрелке) перегрев повышается, при вращении влево (против часовой стрелки) - понижается.

Для ТРВ типа Т2/ТЕ2 полный оборот винта изменяет температуру перегрева примерно на 4К при температуре кипения 0°C.

Для вентиля ТЕ5 полный оборот винта дает изменение перегрева примерно на 0,5 К при температуре кипения 0°C. Для вентилей TUA и TUB полный оборот винта дает изменение перегрева примерно на 3 К при температуре кипения 0°C.

Чтобы избежать колебаний перегрева, нужно действовать следующим образом: Вращая регулировочный винт вправо (по часовой стрелке), повышайте перегрев до прекращения колебаний. Затем понемногу вращайте винт влево до появления колебаний. После этого поверните винт вправо примерно на 1 оборот (для вентилей Т/ТЕ2 на ¼ оборота). При такой настройке колебания перегрева прекращаются, и испаритель работает в оптимальном режиме. Изменения перегрева в диапазоне ±1 К не рассматриваются как колебания.

Если хладагент в испарителе сильно перегревается, это может быть следствием его недостаточной подпитки жидкостью.

Снизить перегрев можно, вращая регулировочный винт влево (против часовой стрелки), постепенно выходя установку на режим с колебаниями перегрева. После этого поверните винт вправо на один оборот (для ТРВ типа Т/ТЕ2 на У оборота). При такой настройке колебания перегрева прекращаются, и испаритель работает в оптимальном режиме. Изменения перегрева в диапазоне ±1 К не рас сматриваются как колебания.

Если не удается настроить ТРВ так, чтобы пульсации перегрева отсутствовали, не исключено, что производительность ТРВ слишком велика. В этом случае, чтобы снизить расход хладагента, нужно заменить ТРВ или сменить клапанный узел.

Если перегрев в испарителе слишком большой, значит, производительность ТРВ слишком мала. Тогда, чтобы повысить расход хладагента, также следует заменить клапанный узел. Терморегулирующие вентили компании Danfoss типа Те, Т2, TUA, ТСАЕ поставляются с комплектом сменных клапанных узлов.

ТРВ компании Данфосс

Вентили Т/ТЕ2 с латунным корпусом и штуцерами под отбортовку/отбортовку или пайку/ отбортовку. Номинальная производительность: от 0,4 до 10,5 кВт ().

Вентили TUA, TUB, TUC с корпусом из нержавеющей стали и штуцерами из нержавеющей стали/меди под пайку. Номинальная производительность: от 0,5 до 12 кВт (R134a).

Эти вентили поставляются с линией внешнего уравнивания или без нее.

  • TUA оснащены сменными клапанными узлами и имеют регулируемый перегрев.
  • TUB оснащены фиксированными клапанными узлами и имеют регулируемый перегрев.
  • TUC оснащены фиксированными клапанными узлами и имеют нерегулируемый перегрев, установленный на заводе-производителе.
Вентили TUB и TUC предназначены, в основном, для производителей . Они могут быть заменены вентилями TUA.

Вентили ТСАЕ, TСBЕ, TСCЕ с корпусом из нержавеющей стали и штуцерами из нержавеющей стали/меди под пайку. Номинальная производительность: от 12 до 18 кВт (R134a). Эти вентили работают, как вентили TU, но имеют большую производительность. Поставляются с линией внешнего уравнивания.

Вентили ТRE с корпусом из латуни и штуцерами из нержавеющей стали/меди. Номинальная производительность: от 18 до 196 кВт (R134a). ТRE оснащены фиксированными клапанными узлами и имеют регулируемый перегрев.

Вентили ТDE с корпусом из латуни и медными штуцерами под пайку. Номинальная производительность: от 10,5 до 140 кВт (R407Q. ТDE оснащены фиксированными клапанными узлами и имеют регулируемый перегрев.

Вентили ТE 5 - ТЕ 55 с корпусом из латуни. Вентили ТЕ 5 - ТЕ 55 поставляются в комплектации, включающей корпус, клапанный узел и термочувствительную систему. Корпус вентиля в прямом или угловом исполнении со штуцерами под пайку, отбортовку или под фланцы. Номинальная производительность: от 12,9 до 220 кВт (R134а). Поставляются с линией внешнего уравнивания.

Вентили РНТ 85-300 поставляются в комплектации, включающей корпус, фланцы, клапанный узел и термочувствительную систему. Номинальная производительность: от 55 до 1083 кВт (R134а).

При выборе ТРВ необходимо также предусматривать соответствие его пропускной способности производительности прибора охлаждения (), так как только в этом случае можно обеспечить абсолютно устойчивую работу регулируемой холодильной установки. С этой целью следует предусматривать минимальный перегрев во всем диапазоне возможной производительности прибора . Как можно видеть из рис. 1, регулирование может быть устойчивым, только если точка пересечения кривых рабочей характеристики прибора охлаждения и рабочей характеристики ТРВ соответствует рабочей точке холодопроизводительности установки.

Рис. 1. Кривые рабочих характеристик регулятора и испарителя для случая регулирования подачи хладагента в испаритель с помощью ТРВ.

Как только достигается статический перегрев Δt 3 , ТРВ начинает открываться и при полном открытии обеспечивает свою номинальную производительность. При этом перегрев повышается на величину перегрева открытого ТРВ Δt по. Сумма статического перегрева Δt 3 , и перегрева открытого ТРВ Δt по составляет рабочий перегрев Δt пн. Изготовители ТРВ устанавливают величину статического перегрева, как правило, в диапазоне от 3 до 5 К. Ее можно изменить в ту или иную сторону, вращая регулировочный винт и поджимая или отпуская при этом пружину. Данная операция приводит к эквидистантному сдвигу рабочей характеристики ТРВ влево или вправо, в результате чего появляется возможность обеспечить устойчивое регулирование установки, расположив рабочую характеристику ТРВ таким образом, чтобы она пересекла характеристику прибора охлаждения точно в рабочей точке номинальной холодопроизводительности. Для , работающих при очень малых разностях температур, необходимо предусматривать теплообменник, который, переохлаждая жидкий хладагент, позволяет повысить перегрев.

Выполненная при отправке с завода изготовителя настройка ТРВ соответствует большинству установок. Если возникает необходимость дополнительной регулировки, то нужно использовать регулировочный винт (см. рис. 2). При вращении винта вправо (по часовой стрелке) перегрев повышается, при вращении влево (против часовой стрелки) перегрев понижается.

Для ТРВ марки Т2/ТУ2 полный оборот винта меняет температуру перегрева примерно на 4 ° при температуре 0°С.

Начиная с ТРВ марки ТЕ5, полный оборот винта дает температуру перегрева около 0,5 К при температуре кипения 0°С.

Начиная с ТРВ марки ТКЕ3, полный оборот винта дает изменение перегрева примерно на 3 ° при температуре кипения 0°С.

Рис. 2. Настройка ТРВ с помощью регулировочного винта. Рекомендуется следующий метод регулировки. Дополнительно на выходе трубопровода из прибора охлаждения помимо манометра (5) устанавливается электронный термометр (3), датчик (6) которого крепится к термобаллону (4) ТРВ, как показано на рис. 3.

Рис. 3. Схема метода регулировки ТРВ:
1 - терморегулирующий вентиль с внутренним выравниванием; 2 - прибор охлаждения;
3 - электронный термометр; 4 - термобаллон; 5 - манометр;
6 - первичный датчик электронного термометра. Для обеспечения стабильности настройки ТРВ во времени необходимо производить ее при температуре в охлаждаемом объеме, близкой к температуре, при которой отключается компрессор. Не допускается производить настройку ТРВ (регулировку) при высокой температуре в охлаждаемом объеме.

Рекомендуемая регулировка заключается в том, чтобы настроить ТРВ на предельный режим, при котором начинаются пульсации. Для обеспечения этого при постоянной величине перегрева Δt пер = t в.п -t 0 , необходимо медленно открывать ТРВ до тех пор, пока не начнутся пульсации. При этом значение показаний манометра Р в.п и термометра t в.п не должны изменятся. При последующем открытии вентиля ТРВ могут начаться пульсации показаний манометра Р в.п и термометра t в.п. С этого момента нужно начать закрывать ТРВ до тех пор, пока пульсации не прекратятся (примерно на половину оборота регулирующего винта).

Рис. 4. Последовательность регулировки ТРВ
на номинальный режим. Чтобы избежать переполнения испарителя жидкостью, нужно действовать следующим образом. Вращая регулировочный винт вправо (по часовой стрелке), повышать перегрев до прекращения колебаний давления. Затем понемногу вращать винт влево до точки начала колебаний, после этого повернуть винт вправо примерно на 1 оборот (для Т2/ ТЕ2 и ТКЕ на ¼ оборота). При такой настройке колебания давления отсутствуют, и испаритель работает в номинальном режиме. Изменения перегрева в диапазоне ±0,5°С не рассматриваются как колебания.

Если в испарителе имеет место чрезмерный перегрев, это может быть следствием его недостаточной подпитки жидкостью. Снизить перегрев можно, вращая регулировочный винт влево (против часовой стрелки), постепенно выходя на точку колебаний давления. После этого повернуть винт вправо на один оборот (для ТРВ типа Т2/ТЕ и ТКЕ на ¼ оборота). При такой настройке колебания давления прекращаются, и испаритель работает в номинальном режиме. Изменения перегрева в диапазоне ±0,5°С не рассматриваются как колебания.

В случае если ТРВ будет отрегулирован на минимальный возможный перегрев, необходимый для нормальной работы данной холодильной установки, заполнение прибора охлаждения жидким хладагентом будет достигнуто номинальным, а пульсации величины перегрева паров хладагента прекратятся. В процессе регулировки ТРВ давление конденсации должно оставаться относительно стабильным и близким по значению (Р к ~ Р к.н) при номинальных условиях работы, так как от них зависит холодопроизводительность ТРВ.

При регулировке возможны следующие осложнения:

1. Не удается регулировкой добиться пульсаций.

Это означает, что при полностью открытом ТРВ, его производительность ниже, чем производительность прибора охлаждения. Это связано со следующими причинами: либо проходное сечение (f) ТРВ мало, либо в установке не хватает хладагента и на вход ТРВ поступает недостаточное количество жидкого хладагента из .

2. Не удается устранить пульсации после их возникновения.

Это означает, что производительность ТРВ выше, чем пропускная способность прибора охлаждения. Это связано с тем, что либо проходное сечение (f) ТРВ слишком большое, либо прибору охлаждения не хватает жидкого хладагента.

Регулировка ТРВ невозможна, когда перегрев достигает большего значения (это наступает, когда ТРВ практически закрыт, давление небольшое, и полный перепад температур между температурой воздуха на входе в прибор охлаждения t в1 и температурой кипения хладагента t 0 большой). Это означает, что в приборе охлаждения образуется меньше паров, чем способен всасывать компрессор, т.е. холодопроизводительность прибора охлаждения недостаточна.

Следовательно, если не удается найти режим настройки, который устраняет пульсации давления, необходимо произвести замену ТРВ, либо осуществить замену седел с отверстиями (патронов), если конструкция ТРВ предусматривает наличие комплекта сменных патронов. В этом случае, чтобы снизить расход, нужно заменить ТРВ или сменить патрон с отверстием. Если перегрев в испарителе слишком большой, пропускная способность ТРВ мала. Тогда, чтобы повысить расход, нужно также поменять патрон. ТРВ компании Danfoss марки ТЕ поставляются с комплектом сменных патронов. ТРВ марки ТКЕ имеют фиксированное отверстие седла.

Дроссельное (или сопловое) отверстие многих ТРВ выполняется в виде сменного вкладыша, что позволяет обеспечить новое значение его производительности простой заменой этого элемента. Терморегулирующий (силовой, управляющий) тракт ТРВ, т.е. комплекс, состоящий из верхней части ТРВ (надмембранная полость, образующая терморегулирующий элемент), и термобаллона, также иногда бывает сменным, что позволяет подобрать наилучший вариант заправки термобаллона (паровая, жидкостная или адсорбционная заправка), наиболее подходящий для конкретных условий работы данной установки.

Рис. 5. Замена сменного вкладыша ТРВ и сменных патронов.

ТЕКУЩЕЕ ОБСЛУЖИВАНИЕ И ПОРЯДОК НАСТРОЙКИ ТРВ

1. В ходе эксплуатации следует периодически проверять герметичность вентиля и мест его соединения на трубопроводе. Нарушение герметичности может возникнуть в результате ослабления резьбовых соединений и усадки прокладок.

Для восстановления герметичности мест присоединения вентиля следует подтянуть гайки крепления фланцев и уравнительной линии.

Если течь установлена в месте свинчивания штуцера с корпусом, восстановление герметичности может быть достигнуто подтяжкой штуцера.

Течь в сальнике узла настройки устраняется подтяжкой гайки с помощью специального ключа, входящего в комплект поставки.

Течь по месту соединения головки вентиля с корпусом должна устраняться только в мастерской.

Вес работы должны выполняться только с помощью гаечных ключей. Применение ударных предметов не допускается.

Проверка герметичности должна производиться с соблюдением «Правил техники безопасности на фреоновых холодильных установках».

2. Если во время работы часть прибора охлаждения не обмерзает, а давление всасывания после включения холодильной установки быстро понижается, то это свидетельствует о неправильной настройке ТРВ (малом его открытии).

Чтобы обеспечить нормальную работу холодильной установки, не рекомендуется менять заводскую настройку вентилей. Следует помнить, что ТРВ, регулируя степень заполнения прибора охлаждения хладагентом, только косвенно оказывает влияние на температуру в холодильных камерах. При необходимости изменить температуру в холодильных камерах это должно достигаться изменением настройки специально для этого предназначенных реле и регуляторов температуры. Регулирование температуры изменением настройки ТРВ, т.е. путем изменения величины перегрева начала открытия клапана, приводит к снижению экономичности работы установки, а также к преждевременному выходу агрегата из строя.

Если все же возникает необходимость произвести подрегулировку перегрева начала открытия клапана, изменяют настройку медленным поворачиванием регулировочного винта с выдержкой через каждые пол-оборота для нормализации режима работы установки.

В настоящее время имеется большое количество документов и технических инструкций разработчиков, в которых подробно описывается конструкция ТРВ, их работа, технолоrия их подбора и монтажа.

В большинстве документов указывается, что ТРВ настроены на заводе изготовителе и, как правило, не требуют дополнительной реryлировки. Вместе с тем, возникает вопрос: как настроить ТРВ, если по какой либо причине появится необходимость дополнительной регулировки? Мы рекомендуем следующий метод. Дополнительно к обычно используемым манометрам нужно установить электронный термометр, датчик котoporo следует укрепить на термобаллоне ТРВ (см. рис. 8.4).

Чтобы сохранить стабильность настройки во времени, необходимо производить ее при температуре в охлаждаемом объеме, близкой к температуре отключения компрессора (настройка, обеспечивающая стабильность при температуре 25 °С, может привести к пульсации при температуре 20 °С). Не допускается производить настройку ТРВ при высокой температуре в охлаждаемом объеме!

Рекомендуемая технолоrия настройки заключается в том, чтобы сначала вывести ТРВ на предельный режим, при котором начинаются пульсации. Для этоrо при постоянной величине перегрева (показания термометра и манометра НД не меняются) нужно медленно открывать ТРВ до тех пор, пока не начнутся пульсации. Если при этом появляются пульсации перегрева (пульсации показаний термометра и манометра), нужно закрывать ТРВ до тех пор, пока пульсации не прекратятся.

Внимание! Никогда не вращайте регулировочный винт больше, чем на один оборот (предельный режим, приводящий к пульсациям, может наступить при вращении винта на 1/4 или даже на 1/8 оборота).

После каждого изменения настройки (поворота регулировочноео винта) следует выждать не менее 15 минут (в дальнейшем это позволит вам сэкономить время на настройку). Коrда установка выйдет на пульсирующий режим, достаточно слегка закрыть ТРВ (например, на пол оборота). В этом случае ТРВ будет настроен на минимально возможный перегрев, который обеспечивается данной установкой, заполнение испарителя жидким хладагентом будет оптимальным, а пульсации прекратятся.

Примечание: в течение настройки давление конденсации должно оставаться относительно стабильным, но eгo величина должна быть максимально приближена к номинальным условиям работы, так как от нее зависит производительность ТРВ.

неиспарившиеся частицы жидкости (правда неизвестно, сколько времени он проработает в таком режиме, который может привести к очень серьезным неисправностям).

При настройке могут возникнуть две сложности:

  1. Вам не удается добиться пульсаций. Это означает, что ТРВ, будучи даже полностью открытым, имеет производительность ниже, чем производительность испарителя. В общем случае это может происходить по следующим причинам: либо проходное сечение ТРВ слишком мало, либо в установке не хватает хладагента, либо на вход в ТРВ поступает недостаточно жидкости.
  2. Вам не удается исключить пульсации после их возникновения. Это означает, что ТРВ, будучи даже полностью закрытым, сохраняет производительность выше, чем пропускная способность испарителя. В общем случае это связано с тем, что либо проходное сечение ТРВ слишком велико, либо испарителю не хватает производительности.

Настройка прекращается, коrда перегрев достиrает слишком большоro значения (это наступает, когда ТРВ практически перекрыт, давление испарения аномально малое, и полный перепад температур слишком большой). Это означает, что испаритель производит меньше паров, чем способен поглотить компрессор, то есть мощность испарителя недостаточна.

ПРИМЕЧАНИЕ: аномалии, которые могут обусловить перечисленные выше проблемы, возникающие при настройке ТРВ (слишком малый или слишком большой ТРВ, плохая подпитка жидкостью, нехватка хладагента в контуре, нехватка производительности испарителя), более подробно будут проанализированы при детальном изучении каждой из этих неисправностей. Здесь же мы сформулируем основной вывод из данного раздела: настройка ТРВ может оказаться трудоемким и длительным процессом, поэтому не приступайте к процедуре настройки, не будучи абсолютно уверенным, в глубоком понимании наших рекомендаций. Во всех случаях, когда вы приступаете к настройке ТРВ, обязательно в качестве меры предосторожности заметьте начальную настройку (начальное положение регулировочного винта) и точно подсчитывайте число оборотов рееулировочноео винта, которое вы сделали (точная регулировка может быть обеспечена поворотом винта всего на 1/8 оборота).

В настоящее время имеется большое количество документов и технических инструкций разработчиков, в которых подробно описывается конструкция ТРВ, их работа технология их подбора и монтажа.

В большинстве документов указывается что ТРВ настроены на заводе-изготовителе и как правило не требуют дополнительной регулировки. Вместе с тем, возникает вопрос: как настроить ТРВ если по какой-либо причине пот тся необходимость дополнительной регулировки""

Рис. 8.4

Чтобы сохранить стабильность настройки во времени, необходимо производить ее при температуре в охлаждаемом объеме близкой к температуре отключения компрессора. (настройка, обеспечивающая стабильность при температуре 25°С, может привести к пульсациям при температуре 20СС).

Не допускается производить настройку ТРВ при высокой температуре в охлаждаемом объеме!

  • Для этого при постоянной величине перегрева (показания термометра и манометра НД не меняются) нужно медленно открывать ТРВ до тех пор, пока не начнутся пульсации.
  • Если при этом появляются пульсации перегрева (пульсации показаний термометра и манометра), нужно закрывать ТРВ до тех пор, пока пульсации не прекратятся.

Внимание. Никогда не врагцайте регулировочный винт больше, чем на один оборот (предельный режим приводящий к пульсациям, может наступить при вращении винта на 1/4 или даже на 1/8 оборота). После каждого изменения настроит (поворота регулировочного винта) следует выждать не менее 15 минут (в дальнейшем это позволит вам сэкономить время на настройку)

Когда установка выйдет на пульсирующий режим, достаточно слегка закрыть ТРВ (например, на пол-оборота).

В лпом случае ТРВ будет настроен на минимально возможный перегрев, который обеспечивается данной установкой, заполнение испарителя жидким хладагентом будет оптимальным, а пульсации прекратятся.

ПРИМЕЧАНИЕ. В течение настройки давление конденсации должно оставаться относительно стабильным, но его величина должна быть максимально приближена к номинальным условиям работы, так как от нее зависит производительность ТРВ.

При настройке могут возникнуть две сложности:

1) Вам не удается добиться пульсаций. Это означает, что ТРВ, будучи даже полностью открытым, имеет производительность ниже, чем производительность испарителя.

В общем случае это может происходить по следующим причинам: либо проходное сечение ТРВ слишком мало, либо в установке не хватает хладагента, либо на вход в ТРВ поступает недостаточно жидкости.

2) Вам не удается исключить пульсации после их возникновения. Это означает, что ТРВ будучи даже полностью закрытым, сохраняет производительность выше, чем производительность испарителя.

В общем случае это связано с тем, что либо проходное сечение ТРВ слишком велико, либо испарителю не хватает производительности.

Настройка прекращается, когда перегрев достигает слишком большого значения (это наступает когда ТРВ практически перекрыт давление кипения аномально малое и полный перепад температур Абполн слишком большой). Это означает, что испаритель производит меньше паров, чем способен поглотить компрессор, то есть мощность испарителя недостаточна.

Примечание Аномалии, которые могут вызывать перечисленные выше проблемы, возникающие при настройке ТРВ (слишком малый или слишком большой ТРВ плохая подпитка жидкостью нехватка хладагента в контуре нехватка производительности испарителя) более подробно будут проанализированы при детальном изучении каждой из этих неисправностей.

Здесь же мы сформулируем основной вывод из данного раздела: настройка ТРВ может оказаться трудоемким и длительным процессом, поэтому не приступайте к процедуре настройки, не будучи абсолютно уверенными в глубоком понимании наших рекомендаций.

Во всех случаях, когда вы приступаете к настройке ТРВ, обязательно в качестве меры предосторожности заметьте начальную настройку (начальное положение регулировочного винта) и точно подсчитывайте число оборотов регулировочного винта, которое вы сделали (точная регулировка может быть обеспечена поворотом винта всего на 1/8 оборота).

Упражнение

Какая из двух схем, приведенных на рисунке 8.5, представляется вам более удачной? Почему?


Рис. 8.5

Решение

В варианте 2 зону перегрева испарителя обдувает уже охлажденный воздух.

Напротив, в варианте 1 воздух, который обдувает зону перегрева, имеет более высокую температуру.

Мы уже изучили влияние температуры воздуха на заполнение испарителя и на холодопро-изводительность (рисунок 7.1).

Следовательно, схема 1 обеспечивает лучшее заполнение испарителя и является более предпочтительной с точки зрения улучшения холодопроизводительности.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...