Стационарные системы пожаротушения. Противопожарное оборудование и его расположение на судне Давление в пожарной магистрали


Какие стационарные системы пожаротушения применяются на судах?

К системам пожаротушения на судах относятся:

●системы водяного пожаротушения;

●системы пенотушения низкой и средней кратности;

●системы объемного тушения;

●системы порошкового тушения;

●системы паротушения;

●системы аэрозольного тушения;

Судовые помещения в зависимости от их назначения и степени пожароопасности должны оборудоваться различными системами пожаротушения. В таблице указаны требования Правил Регистра РФ к оборудованию помещений системами пожаротушения.

К стационарным системам водяного пожаротушения относятся системы, использующие в качестве основного огнетушащего вещества воду:

  • противопожарная водяная система;
  • системы водораспыления и орошения;
  • система затопления отдельных помещений;
  • спринклерная система;
  • дренчерная система;
  • система водяного тумана или тонко распыленной воды.

К стационарным системам объемного тушения относятся следующие системы:

  • система углекислотного тушения;
  • система азотного тушения;
  • система жидкостного тушения (на фреонах);
  • система объемного пенотушения;

Кроме систем тушения пожаров на судах применяются системы предупреждающие пожары, к таким системам относится система инертных газов.

Каковы конструктивные особенности водяной противопожарной системы?

Система устанавливается на всех типах судов и является основной как для тушения пожаров, так и системой водоснабжения для обеспечения работы других систем пожаротушения, общесудовых систем, мытья танков, цистерн, палуб, для обмывки якорных цепей и клюзов.

Главные преимущества системы:

Неограниченные запасы забортной воды;

Дешевизна огнетушащего вещества;

Высокая огнетушащая способность воды;

Высокая живучесть современных ВПС.

В состав системы входят следующие основные элементы:

1. Приемные кингстоны в подводной части судна для приема воды в любых условиях эксплуатации, в т.ч. крена, дифферента, бортовой и килевой качки.

2. Фильтры (грязевые коробки) для предохранения трубопроводов и насосов системы от засорения их мусором и другими отходами.

3. Клапан невозвратный, не позволяющий опорожняться системе при остановке пожарных насосов.

4. Основные пожарные насосы с электро- или дизельными приводами для подачи забортной воды в пожарную магистраль к пожарным кранам, лафетным стволам и другим потребителям.

5. Аварийный пожарный насос с независимым приводом для подачи забортной воды в случае выхода из строя основных пожарных насосов со своим кингстоном, клинкетной задвижкой, предохранительным клапаном и прибором контроля.

6. Манометры и мановакууметры.

7. Пожарные краны (концевые клапаны) расположенные по всему судну.

8. Клапаны пожарной магистрали (запорные, невозвратно-запорные, секущие, отсечные).

9. Трубопроводы пожарной магистрали.

10. Техническая документация и запасные части.

Пожарные насосы подразделяются на 3 типа:

1. основные пожарные насосы, установленные в машинных помещениях;

2. аварийный пожарный насос, расположенный вне машинных помещений;

3. насосы, допускаемые в качестве пожарных насосов (санитарные, балластные, осушительные, общего пользования, если они не используются для перекачки нефти) на грузовых судах.

Аварийный пожарный насос (АПЖН), его кингстон, приемный отросток трубопровода, нагнетательный трубопровод и отсечные клапаны располагаются вне машинного посещения. Аварийный пожарный насос должен быть стационарным насосом с независимым приводом от источника энергии, т.е. его электродвигатель должен запитываться и от аварийного дизель-генератора.

Пожарные насосы могут запускаться и останавливаться как с местных постов у насосов, так и дистанционно с ходового мостика и ЦПУ.

Какие требования предъявляются к пожарным насосам?

Суда обеспечиваются пожарными насосами с независимым приводом, следующим образом:

●пассажирские суда валовой вместимостью 4000 и более должны иметь - по меньшей мере, три, менее 4000 – по меньшей мере два.

●грузовые суда валовой вместимостью 1000 и более – по меньшей мере, два, менее 1000 – по меньшей мере, два насоса с приводом от источника энергии, один из которых имеет независимый привод.

Минимальное давление воды во всех пожарных кранах при работе двух пожарных насосов должно быть:

● для пассажирских судов валовой вместимостью 4000 и более 0,40 Н/мм, менее 4000 – 0,30 Н/мм;

● для грузовых судов валовой вместимостью 6000 и более – 0,27 Н/мм, менее 6000 – 0,25 Н/мм.

Подача каждого пожарного насоса должна быть не менее 25 м/ч, а общая подача воды на грузовом судне не должна превышать 180 м/ч.

Размещаются насосы в разных отсеках, если это не возможно, то должен быть предусмотрен аварийный пожарный насос с собственным источником энергии и кингстоном, расположенными вне помещения, где находятся главные пожарные насосы.

Производительность аварийного пожарного насоса должна быть не менее 40% от общей производительности пожарных насосов, и в любом случае не менее, указанной ниже:

● на пассажирских судах вместимостью менее 1000 и на грузовых 2000 и более – 25 м/ч; и

● на грузовых судах валовой вместимостью мене 2000 – 15 м/ч.

Принципиальная схема водяной пожарной системы на танкере

1 – кингстонная магистраль; 2 – пожарный насос; 3 – фильтр; 4 – кингстон;

5 – трубопровод подачи воды к пожарным кранам, расположенных в кормовой надстройке; 6 – трубопровод подачи воды в систему пенного пожаротушения;

7 – сдвоенные пожарные краны на палубе юта; 8 – палубная пожарная магистраль; 9 – запорный клапан для отключения поврежденного участка пожарной магистрали; 10 -сдвоенные пожарные краны на палубе бака; 11 – невозвратно–запорный клапан; 12 – манометр; 13 – аварийный пожарный насос; 14 – клинкетная задвижка.

Схема построения системы линейная, питается от двух основных пожарных насосов (2), расположенных в МО и аварийного пожарного насоса (13) АПЖН на баке. На входе, в пожарные насосы установлены кингстон (4), путевой фильтр (грязевая коробка) (3) и клинкетная задвижка (14). За насосом устанавливается невозвратно-запорный клапан для предотвращения стекания воды из магистрали при остановке насоса. За каждым насосом устанавливается пожарный клапан.

От основной магистрали через клинкетные задвижки имеются ответвления (5 и 6) в надстройку, от которых запитываются пожарные краны и другие потребители забортной воды.

Пожарная магистраль проложена на грузовой палубе, имеет ответвления через каждые 20 метров на сдвоенные пожарные краны (7). На магистральном трубопроводе устанавливаются через каждые 30-40 м секущие пожарной магистрали.

По Правилам морского Регистра во внутренних помещениях в основном устанавливаются переносные пожарные стволы с диаметром спрыска 13 мм, а на открытых палубах – 16 или 19 мм. Поэтому пожарные краны (гидраты) устанавливаются с D у 50 и 71 мм соответственно.

На палубе бака и юта перед рубкой устанавливаются побортно сдвоенные пожарные краны (10 и 7).

При стоянке судна в порту противопожарная водяная система может запитываться от международного берегового соединения с помощью пожарных рукавов.

Как устроены системы водораспыления и орошения?

Система водораспыления в помещениях специальной категории, а также в машинных помещениях категории А прочих судов и насосных помещений должна питаться от независимого насоса, автоматически включающегося при падении давления в системе, от водопожарной магистрали.

В других защищаемых помещениях допускается питание системы только от водопожарной магистрали.

В помещениях специальной категории, а также в машинных помещениях категории А прочих судов и насосных помещений система водораспыления должна быть постоянно заполнена водой и находиться под давлением до распределительных клапанов на трубопроводах.

На приемной трубе насоса, питающего систему, и на соединительном трубопроводе с водопожарной магистралью должны быть установлены фильтры, исключающие засорение системы и распылителей.

Распределительные клапаны должны располагаться в легкодоступных местах вне защищаемого помещения.

В защищаемых помещениях с постоянным пребыванием людей должно быть предусмотрено дистанционное управление распределительными клапанами из этих помещений.

Система водораспыления в машинно-котельном отделении

1 – втулка валикового привода; 2 – валик привода; 3 - кран спускной импульсного трубопровода; 4 – трубопровод верхнего водораспыления; 5 – трубопровод импульсный; 6 – клапан быстродействующий; 7 – пожарная магистраль; 8 – трубопровод нижнего водораспыления; 9 – распылительная насадка; 10 – кран сливной.

Распылители в защищаемых помещениях должны быть размещены в следующих местах:

1. под подволоком помещения;

2. в шахтах машинных помещений категории А;

3. над оборудованием и механизмами, работа которых связана с использованием жидкого топлива или других воспламеняющихся жидкостей;

4. над поверхностями, по которым может растекаться жидкое топливо или воспламеняющиеся жидкости;

5. над штабелями мешков с рыбной мукой.

Распылители в защищаемом помещении должны быть расположены таким образом, чтобы зона действия любого распылителя перекрывала зоны действия смежных распылителей.

Насос может иметь привод от независимого двигателя внутреннего сгорания, расположенного так, чтобы пожар в защищаемом помещении не влиял на подачу воздуха к нему.

Данная система позволяет тушить пожар в МО под сланями распылителями нижнего водораспыления или и одновременно верхнего водораспыления.

Как работает спринклерная система?

Такими системами оборудуются пассажирские суда и грузовые суда по методу защиты IIC для подачи сигнала о пожаре и автоматического пожаротушения в защищаемых помещениях в диапазоне температур от 68 0 до 79 0 С, в сушилках при температуре, превышающей максимальную температуру в Районе подволока не более чем 30 0 С и в саунах до 140 0 С включительно.

Система автоматическая: при достижении предельных температур в охраняемых помещениях в зависимости от площади пожара автоматически открывается один или несколько спринклеров (водяной распылитель), через него для тушения подается пресная вода, когда ее запас закончится, тушение пожара будет продолжено забортной водой без вмешательства экипажа судна.

Общая схема спринклерной системы

1 – спринклеры; 2 – водяная магистраль; 3 – распределительная станция;

4 – спринклерный насос; 5 – пневмоцистерна.

Принципиальная схема спринклерной системы

Система состоит из следующих элементов:

Спринклеры, сгруппированные в отдельные секции не более 200 в каждой;

Главное и секционные контрольно-сигнальные устройства (КСУ);

Блок пресной воды;

Блок забортной воды;

Панели визуальных и звуковых сигналов о срабатывании спринклеров;

Спринклеры – это распылители закрытого типа, внутри которых расположены:

1) чувствительный элемент – стеклянная колба с легкоиспаряющейся жидкостью (эфир, спирт, галлон) или легкоплавкий замок из сплава Вуда (вставка);

2) клапан и диафрагма, закрывающие отверстие в распылителе для подачи воды;

3) розетка (рассекатель) для создания водного факела.

Спринклеры должны:

Срабатывать при повышении температуры до заданных величин;

Быть стойкими к коррозии в условиях воздействия морского воздуха;

Устанавливаться в верхней части помещения и размещаться так, чтобы подавать воду на номинальную площадь с интенсивностью не менее 5 л/м 2 в минуту.

Спринклеры в жилых и служебных помещениях должны срабатывать в интервале температур 68 - 79°С, за исключением спринк­леров в сушильных и камбузных помещениях, где температура срабатывания может быть увеличе­на до уровня, превышающего температуру у подволока не более чем на 30°С.

Контрольно-сигнальные устройства (КСУ ) устанавливаются на питающем трубопроводе каждой секции спринклеров вне защищаемых помещений и выполняют следующие функции:

1) подают сигнал тревоги при вскрытии спринклеров;

2) открывают пути подачи воды от источников водопитания к работающим спринклерам;

3) обеспечивают возможность проверки давления в системе и ее работоспособности с помощью пробного (спускного) клапана и контрольных манометров.

Блок пресной воды поддерживает давление в системе на участке от напорной цистерны до спринклеров в дежурном режиме, когда спринклеры закрыты, а также питания спринклеров пресной водой в период запуска спринклерного насоса блока забортной воды.

В блок входят:

1) Напорная пневмогидроцистерна (НПГЦ) с водомерным стеклом, вместимостью на два запаса воды, равных двум производительностям спринклерного насоса блока забортной воды за 1 минуту для одновременного орошения площади не менее 280 м 2 при интенсивности не менее 5 л/м 2 в минуту.

2) Средства для предотвращения попадания забортной воды в цистерну.

3) Средства для подачи сжатого воздуха в НПГЦ и поддержания в ней такого давления воздуха, которое после израсходования постоянного запаса пресной воды в цистерне обеспечивало бы давление не ниже, чем рабочее давление спринклера (0,15 МПа) плюс давление столба воды, измеренного от дна цистерны до наиболее высоко расположенного спринклера системы (компрессор, редукционный клапан, баллон сжатого воздуха, предохранительный клапан и др.).

4) Спринклерный насос для пополнения запаса пресной воды, включающийся автоматически при падении давления в системе, до того как постоянный запас пресной воды в напорной цистерне будет израсходован полностью.

5) Трубопроводы из стальных оцинкованных труб, расположенные под подволоком защищаемых помещений.

Блок забортной воды подает забортную воду в открывшиеся, после срабатывания чувствительных элементов, спринклеры для орошения помещений распыленной струей и тушения пожара.

В блок входят:

1) Независимый спринклерный насос с манометром и системой трубопроводов для непрерывной автоматической подачи забортной воды к спринклерам.

2) Пробный клапан на напорной стороне насоса с короткой выпускной трубой, имеющей открытый конец для обеспечения пропуска воды по производительности насоса плюс давление столба воды, измеренного от дна НПГЦ до самого высокорасположенного спринклера.

3) Кингстон для независимого насоса.

4) Фильтр для очистки забортной воды от мусора и др. предметов перед насосом.

5) Реле давления.

6) Пусковое реле насоса, автоматически включающее насос при падении давления в системе питания спринклеров до того, как постоянный запас пресной воды в НПГЦ будет полностью израсходован.

Панели визуальных и звуковых сигналов о срабатывании спринклеров устанавливаются на ходовом мостике или в ЦПУ с постоянной вахтой и кроме того визуальные и звуковые сигналы от панели выводятся в другое место, чтобы обеспечить немедленное принятие экипажем сигнала о пожаре.

Система должна быть заполнена водой, но небольшие наружные участки могут не заполняться водой, если это является необходимой мерой предосторожности при отрицательных температурах.

Любая такая система должна быть всегда готова к немедленному срабатыванию и приводиться в действие без какого-либо вмешательства экипажа.

Как устроена дренчерная система?

Применяется для защиты больших пространств палуб от пожара.

Схема дренчерной системы на судне РО-РО

1 – распыливающая головка (дренчеры); 2 – магистраль; 3 - распределительная станция; 4 – насос пожарный или дренчерный.

Система не автоматическая, орошает водой из дренчеров одновременно значительные площади по выбору команды, использует для тушения забортную воду, поэтом находится в опорожненном состоянии. Дренчеры (распылители воды) имеют конструкцию аналогичную спринклерам но без чувствительного элемента. Запитывается водой от пожарного насоса или отдельного дренчерного насоса.

Как устроена система пенотушения?

Первая система пожаротушения воздушно – механической пеной была установлена на советском танкере «Апшерон» дедвейтом 13200 т, построенном в 1952 г в Копенгагене. На открытой палубе для каждого защищаемого отсека устанавливали: стационарный воздушно – пенный ствол (пенный монитор или лафетный ствол) низкой кратности, палубную магистраль (трубопровод) подачи раствора пенообразователя. К каждому стволу палубной магистрали подводили ответвление, снабженное дистанционно управляемым клапаном. Раствор пенообразователя приготавливался в 2 станциях пенотушения носовой и кормовой и подавался в палубную магистраль. На открытой палубе устанавливались пожарные краны для подачи раствора ПО по пенным рукавам к переносным воздушно – пенным стволам или пеногенераторам.

станции пенотушения

Система пенотушения

1 – кингстон; 2 – пожарный насос; 3 – лафетный ствол; 4 – пеногенераторы, пенные стволы; 5 – магистраль; 6 – аварийный пожарный насос.

3.9.7.1. Основные требования к системам пенотушения . Производительность каждого лафетного ствола должна быть не менее 50% расчетной производительности системы. Длина пенной струи должна быть не менее 40 м. Расстояние между соседними лафетными стволами, установленными вдоль танкера, не должна превышать 75 % дальности полета струи пены от ствола при отсутствии ветра. Сдвоенные пожарные краны равномерно устанавливаются вдоль судна на расстоянии не более 20 м друг от друга. Перед каждым лафетным стволом должен устанавливаться запорный клапан.

Для повышения живучести системы на магистральном трубопроводе устанавливаются через каждые 30 – 40 метров секущие клапана, с помощью которых можно отключить поврежденный участок. Для повышения живучести танкера при пожаре в грузовой зоне на палубе первого яруса кормовой рубки или надстройки устанавливают два лафетных ствола побортно и сдвоенные пожарные краны подачи раствора к переносным пеногенераторам или стволам.

Система пенотушения кроме магистрального трубопровода, проложенного по грузовой палубе имеет ответвления в надстройку и в МО, которые заканчиваются пожарными пенными клапанами (гидрантами пены), от которых можно использовать переносные воздушно – пенные стволы или более эффективные переносные пеногенераторы средней кратности.

Практически все грузовые суда комбинируют в грузовой зоне две системы водяного пожаротушения и трубопровод пенного пожаротушения путем прокладки параллельно этих двух трубопроводов и отводы от них к лафетным комбинированным пенно – водным стволам. Это значительно повышает живучесть судна в целом и возможность применять наиболее эффективные огнетушащие вещества в зависимости от класса пожара.

Стационарная система пенотушения с основными потребителями

1 - лафетный ствол (на ВП); 2 - пенообразующие головки (помещениях); 3 - генератор среднекратной пены (на ВП и в помещениях);

4 - ручной пенный ствол; 5 - смеситель

Станция пенотушения является составной частью системы пенотушения. Назначение станции: хранение и обслуживание пенообразователя (ПО); пополнение запасов и выгрузка ПО, приготовление раствора пенообразователя; промывка системы водой.

В состав станции пенотушения входит: цистерна с запасом ПО, трубопровод подачи забортной (очень редко пресной воды), трубопровод рециркуляции ПО (перемешивание ПО в цистерне), трубопровод раствора ПО, арматура, КИП, дозирующее устройство. Очень важно поддерживать постоянное процентное со

отношение ПО – вода, т.к. от этого зависит качество и количество пены.

Каковы действия по использованию пеностанции?

ЗАПУСК ПЕНОСТАНЦИИ

1. ОТКРЫТЬ КЛАПАН “ B “

2. ЗАПУСТИТЬ ПОЖАРНЫЙ НАСОС

3. ОТКРЫТЬ КЛАПАНА “ D “ и “ E “ 4. ЗАПУСТИТЬ НАСОС ПОДАЧИ ПЕНООБРАЗОВАТЕЛЯ

(ПРЕДВАРИТЕЛЬНО ПРОВЕРИВ, ЧТО КЛАПАН “ C “ ЗАКРЫТ)

5. ОТКРЫТЬ КЛАПАН НА ПЕННЫЙ МОНИТОР (ИЛИ ПОЖАРНЫЙ ГИДРАНТ),

И ПРИСТУПИТЬ К ТУШЕНИЮ

ПОЖАРА.

ТУШЕНИЕ ГОРЯЩЕЙ НЕФТИ

1. Никогда не направлять пенную струю прямо на горящую нефть, т.к. это может вызвать разбрызгивание горящей нефти и распространение пожара

2. Направлять пенную струю нужно так, что бы пенная смесь “наплывала” на горящую нефть слой за слоем и покрывала горящую поверхность. Для этого можно использовать преобладающее направление ветра или особенности наклона палубы, где это возможно.

3. Использовать нужно один монитор и/или два пенных ствола

Станция пенотушения лафетный ствол

Стационарные системы объемного пенотушения предназначены для тушения пожаров в МО и других специально оборудованных помещениях путем подачи в них высокократной и среднекратной пены.

Каковы конструктивные особенности системы среднекратного пенотушения?

Среднекратное объемное пенотушение использует несколько стационарно установленных в верхней части помещения пеногенераторов средней кратности. Пеногенераторы устанавливаются над основными источниками пожара, часто на разных уровнях МО, чтобы охватить как можно больше площади тушения. Все пеногенераторы или их группы соединены со станцией пенотушения вынесенной за пределы охраняемого помещения трубопроводами раствора пенообразователя. Принцип действия и устройство станции пенотушения аналогично обычной станции пенотушения, рассматриваемой ранее.

Недостатки дайной системы:

Относительно низкая кратность воздушно-механической пены, т.е. меньший огнетушащий эффект по сравнению с высокократной пеной;

Больший расход пенообразователя; по сравнению с высокократной пеной;

Выход из строя электрооборудования и элементов автоматики после применения системы, т.к. раствор пенообразователя приготавливают на забортной воде (пена становится электропроводимой);

Резкое снижение кратности пены при эжектировании пеногенератором горячих продуктов горения (при температуре газов ≈130 0 С кратность пены уменьшается в 2 раза, при 200 0 С – в 6 раз).

Положительные показатели:

Простота конструкции; малая металлоемкость;

Использование станции пенотушения, предназначенной для тушения пожаров на грузовой палубе.

Данная система надежно тушит пожар на механизмах, двигателях, разлитое топливо и масло на пайолах и под ними, но практически не тушит пожары и тление в верхних частях переборок и на подволоке, тепловой изоляции трубопроводов и горящей изоляции электропотребителей из-за относительно небольшого слоя пены.

Схема системы среднекратного объемного пенотушения

Каковы конструктивные особенности системы объемного пожаротушения высокократной пеной?

Данная система пожаротушения гораздо мощнее и эффективнее предыдущей системы среднекратного тушения, т.к. использует более эффективную высокократную пену, которая обладает значительным огнетушащим эффектом, заполняет полностью помещение пеной, вытесняя газы, дым, воздух и пары горючих материалов через специально открытый световой люк или вентиляционные закрытия.

Станция приготовления раствора пенообразователя использует пресную или опресненную воду, что значительно улучшает пенообразование и делает неэлектропроводной. Для получения высокократной пены применяется более концентрированный раствор ПО, чем в других системах, примерно в 2 раза. Для получения высокократной пены используются стационарные генераторы высокократной пены. Пена в помещение подается либо непосредственно из выходного патрубка генератора, либо по специальным каналам. Каналы и выход с крышки подачи выполнены из стали, должны герметично закрываться, чтобы не пропустить пожар в станцию пожаротушения. Крышки открываются автоматически или вручную одновременно с подачей пены. Пену подают в МО на уровнях платформ в тех местах, где нет препятствий для распространения пены. Если внутри МО есть выгороженные мастерские, кладовые, то их переборки должны быть сконструированы таким образом, чтобы в них попала пена, или необходимо подводить к ним отдельные клапаны.

Принципиальная схема получения тысячекратной пены

Принципиальная схема объемного пожаротушения высокократной пеной

1 - Цистерна пресной воды; 2 - Насос; 3 - Цистерна с пенообразователем;

4 – электровентилятор; 5 - Переключающее устройство; 6 - Световой люк; 7 - Жалюзи подачи пены; 8 - Верхнее закрытие канала для выпуска пены на палубу; 9 - Дроссельный шайбы;

10 - Пенообразующие сетки пеногенератора высокократной пены

Если площадь помещения превышает 400м 2 , то рекомендуется вводить пену не менее чем в 2-х местах, расположенных в противоположенных частях помещения.

Для проверки в действии системы в верхней части канала устанавливается переключающее устройство (8), отводящее пену за пределы помещения на палубу. Запас пенообразователя для замены систем должен быть пятикратным для тушения пожара в наибольшем помещении. Производительность пеногенераторов должна быть такой, что он заполнить помещение пеной за 15 минут.

Высокократную пену получают в генераторах с принудительной подачей воздуха на пенообразующую сетку, смачиваемую раствором пенообразователя. Для подачи воздуха используется осевой вентилятор. Для нанесения раствора пенообразователя на сетку установлены центробежные распылители с камерой закручивания. Такие распылители просты по конструкции и надежны в эксплуатации, не имеют подвижных частей. Генераторы ГВПВ-100 и ГВГВ-160 снабжены одним распылителем, другие генераторы имеют по 4 распылителя, установленные перед вершинами пирамидальных пенообразующих сеток.

Назначение, устройство и типы систем углекислотного тушения?

Углекислотное пожаротушение как объемный способ начали применять в 50-е годы прошлого века. До этого времени очень широко применяли паротушение, т.к. большинство судов были с паротурбинными энергетическими установками. Углекислотное тушение пожара не требует никаких видов судовой энергии для приведения в действие установки, т.е. она полностью автономна.

Данная система пожаротушения предназначена для тушения пожаров в специально оборудованных, т.е. охраняемых помещениях (МО, помповые помещения, малярные кладовые, кладовые с огнеопасными материалами, грузовые помещения в основном на сухогрузных судах, грузовые палубы на судах РО-РО). Эти помещения должны быть герметичными и оборудованы трубопроводами с распылителями или соплами подачи жидкой углекислоты. В этих помещениях устанавливается звуковая (ревуны, звонки) и световая («Уходи! Газ!») предупредительная сигнализация о включении системы объемного пожаротушения.

Состав системы:

Станция углекислотного пожаротушения, где хранятся запасы углекислоты;

Минимум две пусковые станции для дистанционного приведения в действие станции пожаротушения, т.е. для выпуска жидкой углекислоты в определенное помещение;

Кольцевой трубопровод с соплами под подволоком (иногда на разных уровнях) охраняемого помещения;

Звуковая и световая сигнализация, предупреждающая экипаж о приведении в действие системы;

Элементы системы автоматики, отключающие вентиляцию в этом помещении и перекрывающие быстрозапорные клапаны подачи топлива к действующим главным и вспомогательным механизмам для их дистанционной остановки (только для МО).

Существует два основных типа систем углекислотного пожаротушения:

Система высокого давления – хранение сжиженного СО 2 производится в баллонах при расчетном (заправочном) давлении 125 кг/см 2 (наполнение углекислотой 0,675 кг/л объема баллона) и 150 кг/см 2 (наполнение 0,75 кг/л);

Система низкого давления – расчетное количество сжиженного СО 2 хранится в резервуаре при рабочем давлении около 20 кг/см 2 , что обеспечивается поддержанием температуры СО 2 около минус 15 0 С. Резервуар обслуживается двумя автономными холодильными установками для поддержания отрицательной температуры СО 2 в резервуаре.

Каковы конструктивные особенности системы углекислотного тушения высокого давления?

Станция тушения СО 2 – отдельное теплоизолированное помещение с мощной принудительной вентиляцией, находящиеся вне охраняемого помещения. На специальных подставках установлены двойные ряды баллонов объемом 67,5 л. Баллоны заполнены жидкой углекислотой в количестве 45 ± 0,5 кг.

Головки баллонов имеют быстровскрывающиеся клапаны (клапаны полной подачи) и соединены гибкими шлангами с коллектором. Баллоны сгруппированы в батареи баллонов единым коллектором. Этого количества баллонов должно хватить (согласно расчетов) для тушения в определенном объеме. В станции СО 2 тушения может быть сгруппировано несколько групп баллонов для тушения пожаров в нескольких помещениях. При открытии клапана баллона газообразная фаза СО 2 вытесняет жидкую углекислоту по сифонной трубке в коллектор. На коллекторе установлен предохранительный клапан, стравливающий углекислый газ при превышении предельного давления СО 2 за пределы станции. На конце коллектора устанавливается запорный клапан подачи углекислоты в охраняемое помещение. Этот клапан открывается как вручную, так и сжатым воздухом (или СО 2 , или азотом) дистанционно от пускового баллона (основной способ управления). Открывание клапанов баллонов с СО 2 в систему производится:

Вручную с помощью механического привода открываются клапаны головок целого ряда баллонов (устаревшая конструкция);

С помощью сервомотора, который способен открыть большое количество баллонов;

Вручную путем выпуска СО 2 из одного баллона в пусковую систему группы баллонов;

Дистанционно с помощью углекислого газа или сжатого воздуха от пускового баллона.

Станция СО 2 тушения должна иметь приспособление для взвешивания баллонов или приборы для определения уровня жидкости в баллоне. По уровню жидкой фазы СО 2 и температуре окружающей среды можно определить вес СО 2 по таблицам или графикам.

Каково назначение пусковой станции?

Пусковые станции устанавливаются вне помещения и вне станции СО 2 . Она состоит из двух пусковых баллонов, КИП, трубопроводов, арматуры, конечных выключателей. Пусковые станции монтируются в специальных шкафах, закрываемых на ключ, ключ находится рядом со шкафом в специальном футляре. При открывании дверей шкафа срабатывают конечные выключатели, которые отключают вентиляцию в охраняемом помещении и подают электропитание на пневмоактуатор (механизм, открывающий клапан подачи СО 2 в помещение) и на звуковую и световую сигнализацию. В помещении загорается табло «Уходи! Газ!» или загораются проблесковые лампы синего цвета, и подается звуковой сигнал ревуном или звонками громкого боя. При открывании клапана правого пускового баллона сжатый воздух или углекислота подается на пневмоклапан и открывается подача СО 2 в соответствующее помещение.

Как включить систему углекислотного пожаротушения для помпо вого и машинного отделений.

2. УБЕДИТЬСЯ, ЧТО ВСЕ ЛЮДИ ПОКИНУЛИ ПОМПОВОЕ ОТДЕЛЕНИЕ, ЗАЩИЩАЕМОЕ СИСТЕМОЙ СО2.

3. ПРОИЗВЕСТИ ГЕРМЕТИЗАЦИЮ ПОМПОВОГО ОТДЕЛЕНИЯ.

6. СИСТЕМА В РАБОТЕ.

1. ОТКРЫТЬ ДВЕРЬ ШКАФА УПРАВЛЕНИЯ ПУСКОМ.

2. УБЕДИТЬСЯ, ЧТО ВСЕ ЛЮДИ ПОКИНУЛИ МАШИННОЕОТДЕЛЕНИЕ, ЗАЩИЩАЕМОЕ СИСТЕМОЙ СО2.

3. ПРОИЗВЕСТИ ГЕРМЕТИЗАЦИЮ МАШИННОГО ОТДЕЛЕНИЯ.

4. ОТКРЫТЬ КЛАПАН НА ОДНОМ ИЗ ПУСКОВЫХ БАЛЛОНОВ.

5. ОТКРЫТЬ КЛАПАНА No. 1 И No. 2

6. СИСТЕМА В РАБОТЕ.


3.9.10.3. СОСТАВ СУДОВОЙ СИСТЕМЫ .

Система углекислотного тушения

1 – клапан подачи СО 2 в сборный коллектор; 2 – шланг; 3 - блокирующее устройство;

4 – невозвратный клапан; 5 – клапан подачи СО 2 в охраняемое помещение


Схема системы СО 2 отдельного небольшого помещения

Каковы конструктивные особенности системы углекислотного тушения низкого давления?

Система низкого давления – расчетное количество сжиженного СО 2 хранится в резервуаре при рабочем давлении около 20 кг/см 2 , что обеспечивается поддержанием температуры СО 2 около минус 15 0 С. Резервуар обслуживается двумя автономными холодильными установками (охлаждающая система) для поддержания отрицательной температуры СО 2 в резервуаре.

Резервуар и подсоединенные к нему участки трубопроводов, заполненные жидкой углекислотой, имеют теплоизоляцию, предотвращающую повышение давления ниже настройки предохранительных клапанов в течение 24 часов поле обесточивания холодильной установки при температуре окружающего воздуха 45 0 С.

Резервуар для хранения жидкой углекислоты снабжен датчиком уровня жидкости дистанционного действия, двумя контрольными кранами уровня жидкости 100% и 95%-го расчетного наполнения. Система аварийно-предупредительной сигнализации подает в ЦПУ и каюты механиков световой и звуковой сигналы в следующих случаях:

При достижении в резервуаре максимального и минимального (не менее 18 кг/см 2) давлений;

При снижении уровня СО 2 в резервуаре до минимального допустимого 95%;

При неисправности в холодильных установках;

При пуске СО 2 .

Пуск системы производится с выносных постов от баллонов с углекислым газом аналогично предыдущей системы высокого давления. Пневмоклапаны открываются и происходит подача углекислоты в охраняемое помещение.


Как устроена система объемного химического тушения?

В некоторых источниках эти системы называют системами жидкостного тушения (СЖТ), т.к. принцип действия этих систем на подаче огнетушащей жидкости галона (фреона или хладона) в охраняемое помещение. Эти жидкости испаряются при низких температурах и превращаются в газ, который тормозит реакцию горения, т.е. являются ингиботорм горения.

Запас хладона находится в стальных резервуарах станции пожаротушения, которая располагается вне защищаемых помещений. В защищаемых (охраняемых) помещениях под подволоком находится кольцевой трубопровод с распылителями тангенциального типа. Распылители разбрызгивают жидкий хладон и он под воздействием относительно низких температур в помещении от 20 до 54 о С превращается в газ, который легко перемешивается с газовой средой в помещении, проникает в самые удаленные части помещения, т.е. способен бороться и с тлением горючих материалов.

Хладон вытесняется из резервуаров с помощью сжатого воздуха, хранящегося в отдельных баллонах за пределами станции тушения и охраняемого помещения. При открывании клапанов подачи хладона в помещение срабатывает звуковая и световая предупредительная сигнализация. Помещение необходимо обязательно покинуть!

Каково общее устройство и принцип действия стационарной системы порошкового пожаротушения?

Суда, предназначенные для перевозки сжиженных газов наливом должны быть оснащены системами тушения сухим химическим порошком для защиты грузовой палубы, а также всех зон погрузки в носовой и кормовой частях судна. Следует обеспечить возможность подачи порошка в любую часть грузовой палубы не менее чем двумя мониторами и (или) ручными пистолетами и рукавами.

Система приводится в действие инертным газом, как правило, азотом, из баллонов, находящихся поблизости от места хранения порошка.

Следует обеспечить наличие не менее двух независимых, автономных установок тушения порошком. Каждая такая установка должна иметь собственные органы управления, газ, обеспечивающий высокое давление, трубопроводы, мониторы, а также ручные пистолеты/рукава. На судах, вмещающих менее 1000 р.т, достаточно одной такой установки.

Защита зон вокруг погрузочного и разгрузочного манифольдов должна обеспечиваться монитором, как с местным, так и дистанционным управлением. Если из своего фиксированного положения монитор охватывает всю защищенную им зону, то дистанционное нацеливание ему не требуется. В задней оконечности грузовой зоны следует обеспечить как минимум один ручной рукав, пистолет или монитор. Для всех рукавов и мониторов следует предусмотреть возможность приведения их в действие на рукавной катушке или на мониторе.

Минимально допустимая подача монитора составляет 10 кг/с, а ручного рукава - 3,5 кг/с.

Каждый контейнер должен вмещать порошок в количестве, достаточном для обеспечения подачи в течение 45 сек всеми мониторами и ручными рукавами, которые к нему подключены.

Каков принцип работы с истемы аэрозольного пожаротушения?

Система аэрозольного пожаротушения относится к объемным системам пожаротушения. Тушение основано на химическом торможении реакции горения и разбавлении горючей среды пыльным аэрозолем. Аэрозоль (пыль, дым туман) состоит из взвешенных в воздухе мельчайших частиц, получаемых при горении специального разряда генератора огнетушащего аэрозоля. Аэрозоль витает в воздухе примерно 20 минут и на этом протяжении воздействует на процесс горения. Она не опасна для человека, не повышает давление в помещении (человек не получает пневмоудара), не повреждает судовое оборудование и электромеханизмы, находящиеся под напряжением.

Запал генератора огнетушащего аэрозоля (для поджога пиропатроном заряда) может быть приведен вручную или при подаче электрического сигнала. При горении заряда аэрозоль выходит через щели или окна генератора.

Данные системы пожаротушения разработаны ОАО НПО «Каскад» (Россия), являются новинками, полностью автоматизированы, не требуют больших затрат на монтаж и обслуживание, в 3 раза легче углекислотных систем.

Состав системы:

Генераторы огнетушащего аэрозоля;

Щит управления системой и сигнализацией (ЩУС);

Комплект звуковой и световой сигнализации в охраняемом помещении;

Блок управления вентиляцией и подачи топлива к двигателям МО;

Кабельные трассы (соединения).

При обнаружении признаков пожара в помещении автоматические извещатели подают сигнал на ЩУС, который выдает звуковой и световой сигнал в ЦПУ, ЦПП (мостик) и в охраняемое помещение, а затем подает электропитание на: остановку вентиляции, блокировку подачи топлива на механизмы для их остановки и в конечном итоге на приведение в действие генераторов огнетушащего аэрозоля. Применяются разные типы генераторов: СОТ-1М, СОТ-2М,

СОТ-2М-КВ, АГС-5М. Тип генератора выбирается в зависимости от размеров помещения и горящих материалов. Самый мощный СОТ-1М защищает 60 м 3 помещения. Генераторы устанавливаются в местах, не препятствующих распространению аэрозоля.

АГС-5М приводится в действие вручную и забрасывается в помещении.

ЩУС для повышения живучести запитывается от разных источников питания и от аккумуляторов. ЩУС может подсоединяться к единой компьютерной системе пожаротушения. При выходе ЩУС из строя происходит самозапуск генераторов при повышении температуры до 250 0 С.

Как действует система тушения водяным туманом?

Огнетушащие свойства воды можно улучшить за счет уменьшения размера водяных капель.

Системы тушения тонкораспыленной водой, именуемые «системами тушения водяным туманом», используют капли меньшего размера и требуют меньше воды. По сравнению со стандартными спринклерными системами, системы тушения водяным туманом обладают следующими преимуществами:

● Малый диаметр труб, облегчающий их прокладку, минимальная масса, меньшая стоимость.

●Требуются насосы меньшей производительности.

●Минимальный вторичный ущерб, сопутствующий применению воды.

● Меньше влияет на остойчивость судна.

Более высокая эффективность водной системы, действующей с использованием мелких капель, обеспечивается за счет отношения площади поверхности водной капли к ее массе.

Увеличение этого отношения означает (для данного объема воды) увеличение площади, через которую может происходить теплопередача. Проще говоря, мелкие водные капли поглощают тепло быстрее, чем крупные и поэтому оказывают более высокое охлаждающее действие на зону пожара. Однако чрезмерно мелкие капли могут не попасть в место своего назначения, поскольку не обладают массой, достаточной для преодоления порожденных огнем теплых воздушных потоков. Системы тушения водяным туманом снижают содержание кислорода в воздухе и поэтому обладают удушающим действием. Но даже в закрытых помещениях такое действие носит ограниченный характер, как вследствие его ограниченной продолжительности, так и вследствие ограниченности его зоны. При очень малом размере капель и высоком теплосодержании огня, что приводит к быстрому образованию значительных объемов пара, удушающее действие проявляется сильнее. На практике системы тушения водяным туманом обеспечивают тушение в основном за счет охлаждения.

Системы тушения водяным туманом должны быть тщательно сконструированы, должны обеспечивать равномерное покрытие защищенной зоны, а также, при использовании их для защиты определенных участков, должны быть расположены по возможности ближе к соответствующей потенциально опасной зоне. В общем, конструкция таких систем совпадает с описанной ранее конструкцией спринклерных систем (с «влажными» трубами), за исключением того, что системы тушения водяным туманом действуют при более высоком рабочем давлении, порядка 40 бар, и в них используются головки особой конструкции, создающие капли требуемого размера.

Другое преимущество системы тушения водяным туманом заключается в том, что они прекрасно защищают людей, поскольку мелкие водные капли отражают тепловое излучение и связывают дымовые газы. В результате личный состав, занятый тушением пожара и обеспечением эвакуации, может ближе подойти к очагу возгорания.

Стационарные установки и системы пожаротушения. Основная цель борьбы с пожаром - быстрое взятие его под контроль и тушение, что возможно только в том случае, если огнетушащее вещество доставлено к пожару быстро и в достаточном количестве.

Это можно обеспечить с помощью стационарных систем пожаротушения. Некоторые из стационарных систем могут подавать огнетушащее вещество непосредственно на пожар без участия членов экипажа.

Стационарные системы пожаротушения ни в коем случае не являются заменой необходимой конструктивной противопожарной защиты судна. Конструктивная противопожарная защита обеспечивает достаточно длительную защиту пассажиров, экипажа и оборудования ответственного назначения от пожара, что позволяет людям эвакуироваться в безопасное место.
Противопожарное оборудование предназначено для защиты судна. Судовые системы пожаротушения проектируются с учетом потенциальной пожарной опасности, существующей в помещении, и назначения помещения.

Как правило:

вода используется в стационарных системах, защищающих районы, в которых находятся твердые горючие вещества, - общественные помещения и коридоры;

пена или огнетушаший порошок применяются в стационарных системах, защищающих районы, где могут возникнуть пожары класса В; для тушения пожаров воспламеняющихся газов стационарные системы не используются;

углекислый газ, галлон (хладон) и соответствующий огнетушащий порошок входит в состав систем, обеспечивающих защиту от пожара класса С;

не существует стационарных систем для тушения пожаров класса D.

На судах, плавающих под флагом РФ, устанавливается девять основных систем пожаротушения:

1) водопожарная;

2) автоматическая и ручная спринклерная;

3) водораспыления;

4) водяных завес;

5) водяного орошения;

6) пенотушения;

7) углекислотные;

8) система инертных газов;

9) порошковая.

В первых пяти системах используются жидкие огнетушащие вещества, в следующих трех применяются газообразные вещества, в последней -твердые. Каждая из этих систем будет рассмотрена ниже.

Водопожарная система

Водопожарная система - это первоочередное средство защиты от пожара на судне. Ее установка требуется независимо от того, какие еще системы устанавливаются на судне. Любой член экипажа, согласно расписанию по тревогам, может быть приписан к противопожарному посту, поэтому каждый член команды должен знать принцип работы и пуска судовой водопожарной системы.

Водопожарная система обеспечивает подачу воды во все районы судна. Понятно, что запас воды в море безграничен. Количество подводимой воды к месту возникновения пожара ограничивается только техническими данными самой системы (например, производительностью насосов) и влиянием количества подаваемой воды на остойчивость судна.

Водопожарная система включает пожарные насосы, трубопроводы (магистраль и ответвления), клапаны управления, рукава и стволы.

Пожарные краны и трубопроводы

По трубопроводам вода движется от насосов к пожарным кранам, установленным на пожарных постах. Диаметр трубопроводов должен быть достаточно большим для распределения максимально требуемого количества воды от двух насосов, работающих одновременно.
Давление воды в системе должно составлять примерно 350 кПа у двух наиболее удаленных или высоко расположенных пожарных кранов (в зависимости от того, что дает наибольший перепад давления) для грузовых и других судов и 520 кПа для танкеров.
Это требование обеспечивает выбор достаточно большого диаметра трубопроводов для того, чтобы давление, развиваемое насосом, не снижалось за счет потерь на трение в трубопроводах.

Система трубопроводов состоит из магистрали и ответвлений из труб меньшего диаметра, отходящих от нее к пожарным кранам. К водо­пожарной системе не разрешается присоединять никаких трубопроводов, кроме предназначенных для борьбы с пожаром и мойки палуб.

Все участки, водопожарной системы на открытых палубах должны быть защищены от замерзания. Для этого они могут снабжаться отсечным и спускным клапанами, позволяющими спускать воду в холодное время года.

Существует две основные схемы водопожарной системы: линейная и кольцевая.

Линейная схема. В водопожарной системе, выполненной по линейной схеме, вдоль судна, обычно на уровне главной палубы, прокладывается одна магистраль. За счет горизонтальных и вертикальных труб, отходящих от этой магистрали, система разветвляется по всему судну (рис. 3.1). На танкерах водопожарная магистраль обычно прокладывается в диаметральной плоскости.

Недостаток этой схемы состоит в том, что она не дает возможности подать воду далее того места, где возникло серьезное повреждение системы.

Рис. 3.1. Типовая линейная схема водопожарной системы:

1 - магистраль; 2 - ответвления; 3 - запорный клапан; 4 - пожарный пост; 5 -береговое соединение; б - кингстон; 7 - пожарные насосы

Кольцевая схема. Система, выполненная по этой схеме, состоит из двух параллельных магистралей, соединенных в крайних носовых и кормовых точках, образуя тем самым замкнутое кольцо (рис.3.2). Ответвления соединяют систему с пожарными постами.
В кольцевой схеме участок, где произошел разрыв, может быть отключен от магистрали, а магистраль может продолжать использоваться для подвода воды ко всем другим частям системы. Иногда на магистрали за пожарными кранами устанавливают разобщительные клапаны. Они предназначены для контроля потока воды при появлении разрыва в системе.
В некоторых системах с одной кольцевой магистралью разобщительные клапаны предусматри­ваются только в кормовой и носовой частях палуб.

Береговые соединения. На каждом борту судна должно быть установлено, по крайней мере, одно соединение водопожарной магистрали с берегом. Каждое береговое соединение следует располагать в легкодоступном месте и снабжать запорными и контрольными клапанами.

Судно, совершающее международные рейсы, должно иметь, по крайней мере, одно переносное береговое соединение с каждого борта. Это дает возможность судовым экипажам пользоваться насосами береговой установки или прибегать к услугам береговых пожарных команд в любом порту. На некоторых судах требуемые международные береговые соединения установлены постоянно.

Пожарные насосы. Это единственное средство обеспечения движения воды по водопожарной системе при нахождении судна в море. Требуемое количество насосов, их производительность, местоположение и источники питания регламентируются Правилами Регистра. Ниже кратко изложены требования к ним.

Количество и расположение. На грузовых и пассажирских судах вместимостью 3000 рег.т и более, совершающих международные рейсы, должны быть установлены два пожарных насоса с автономными приводами. На всех пассажирских судах валовой вместимостью до 4000 рег.т должно быть установлено не менее двух пожарных насосов, а на судах валовой вместимостью более 4000 рег.т - три пожарных насоса, независимо от длины судна.

Если на судне требуется установка двух насосов, их надо располагать в различных помещениях. Пожарные насосы, кингстоны и источники энергии следует размещать так, чтобы пожар в одном помещении не вывел из строя все насосы, оставив, таким образом, судно без защиты.

Экипаж не несет ответственности за установку на судне необходимого числа насосов, за правильность их размещения и наличие соответствующих источников энергии. Судно проектируется, строится и при необходимости переоборудуется в соответствии с Правилами Регистра, но экипаж непосредственно отвечает за содержание насосов в исправном состоянии. В частности, в обязанность механиков входит техническое обслуживание и испытание судовых пожарных насосов для обеспечения их надежной работы в случае аварии.

Расход воды. Каждый пожарный насос должен обеспечивать подачу не менее двух струй воды от пожарных кранов, имеющих максимальный перепад давления от 0,25 до 0,4 Н/мм 2 для пассажирских и грузовых судов, в зависимости от их валовой вместимости.

На пассажирских судах валовой вместимостью менее 1000 рег.т и на всех прочих грузовых судах валовой вместимостью 1000 рег.г и более.дополнительно должен быть установлен стационарный аварийный пожарный насос. Суммарная подача стационарных пожарных насосов, кроме аварийного, может не превышать 180 м^/ч (за исключением пассажирских судов).

Безопасность. На нагнетательной стороне пожарного насоса может быть предусмотрен предохранительный клапан и манометр.

К пожарным насосам могут подсоединяться другие системы пожаротушения (например, спринклерная система). Но в этом случае их производительность должна быть достаточной для того, чтобы они могли одновременно обслуживать водопожарную и вторую систему пожаро­тушения, обеспечивая подвод воды под соответствующим давлением.

Использование пожарных насосов для других целей. Пожарные насосы могут использоваться не только для подачи воды в пожарную магистраль. Однако один из пожарных насосов следует постоянно держать готовым к использованию по прямому назначению. Надежность пожарных насосов повышается, если их время от времени использовать для других нужд, обеспечивая соответствующее техническое обслуживание.
Если клапаны управления, позволяющие использовать пожарные насосы для других целей, установлены на коллекторе рядом с насосом, то, открыв клапан на пожарную магистраль, работу.насоса по иному назначению можно немедленно прервать.

Если особо оговорено, что пожарные насосы могут использоваться для других нужд, например, для мойки палуб и танков, то такие подсоединения должны быть предусмотрены только на нагнетательном коллекторе у насоса.

Пожарные краны. Назначение водопожарной системы заключается в подводе воды к пожарным кранам, расположенным по всему судну.

Размещение пожарных кранов. Пожарные краны должны быть расположены так, чтобы струи воды, подаваемые, по крайней мере, от двух пожарных кранов, перекрывали друг друга. На всех судах пожарные краны должны быть окрашены в красный цвет.

Если на судне перевозится палубный груз, он должен быть размещен с таким расчетом, чтобы не загромождать доступ к пожарным кранам.

Каждый пожарный кран должен быть оборудован запорным клапаном и стандартной соединительной головкой быстросмыкающегося типа в соответствии с требованиями Правил Регистра. Согласно требованиям Конвенции СОЛАС-74 допускается применение соединительных гаек с резьбой.

Пожарные краны должны быть размещены на расстоянии не более 20 м внутри помещений и не более 40 м - на открытых палубах.

Рукава и стволы (относятся к противопожарному снабжению).

Рукав должен иметь длину 15+20 м у кранов на открытых палубах и 104-15 м - у кранов в помещениях. Исключение составляют рукава, устанавливаемые на открытых палубах танкеров, где длина рукава должна быть достаточной для того, чтобы его можно было спускать через борт, направляя струю воды по борту перпендикулярно поверхности воды.

К пожарному крану должен быть всегда присоединен пожарный рукав с соответствующим стволом. Но на сильном волнении рукава, установленные на открытой палубе, могут временно отсоединяться от пожарных кранов и храниться поблизости в легкодоступном месте.

Пожарный рукав - наиболее уязвимая часть водопожарной системы. При неправильном обращении он легко повреждается.

Волоча рукав по металлической палубе, его легко повредить - порвать наружную облицовку, погнуть или расколоть гайки. Если перед укладкой рукава из него не слить всю воду, оставшаяся влага может привести к появлению плесени и гниению, что в свою очередь, приведет к разрыву рукава под давлением воды.

Укладка и хранение рукава. В большинстве случаев рукав для хранения на пожарном посту должен быть уложен в бухту.

При этом необходимо выполнить следующее:

1.Проверить, чтобы из рукава была полностью спущена вода. Сырой рукав нельзя укладывать.

2. Уложить рукав в бухту так, чтобы конец ствола мог быть легко подан к пожару.

3. Закрепить ствол на конце рукава.

4. Установить ствол в держатель или уложить его в рукав, чтобы он не упал.

5. Скатанный рукав следует связать, чтобы он не потерял форму.

Стволы. На торговых морских судах используются комбинированные стволы с запорным устройством. Они должны быть постоянно присоединены к рукавам.

Комбинированные стволы должны снабжаться органом управления, позволяющим отключать подачу воды и регулировать ее струю.

Речные пожарные стволы должны иметь насадки с отверстиями 12, 16 и 19 мм. В жилых и служебных помещениях нет нужды применять насадки диаметром более 12 мм.

Глава 12 - Стационарные аварийные пожарные насосы

1 Применение

В настоящей главе излагаются спецификации аварийных пожарных насосов, требуемых главой II-2 Конвенции. Настоящая глава не применяется к пассажирским судам валовой вместимостью 1000 и более. В отношении требований к таким судам см. правило II-2/10.2.2.3.1.1 Конвенции.

2 Технические спецификации

2.1 Общие положения

Аварийный пожарный насос должен быть стационарным насосом с независимым приводом.

2.2 Требования к компонентам

2.2.1 Аварийные пожарные насосы

2.2.1.1 Подача насоса

Подача насоса должна быть не менее 40% общей подачи пожарных насосов, требуемых правилом II-2/10.2.2.4.1 Конвенции, и в любом случае не менее нижеследующего:

2.2.1.2 Давление в кранах

Если насос подает количество воды, требуемое пунктом 2.2.1.1 , давление в любом кране должно быть не менее минимального давления, требуемого главой II-2 Конвенции.

2.2.1.3 Высоты всасывания

При всех условиях крена, дифферента, бортовой и килевой качки, которые могут возникать в процессе эксплуатации, общая высота всасывания и чистая положительная высота всасывания насоса должны определяться с учетом требований Конвенции и настоящей главы в отношении подачи насоса и давления в кране. Судно в балласте при входе в сухой док или выходе из него может не рассматриваться как находящееся в эксплуатации.

2.2.2 Дизельные двигатели и топливная цистерна

2.2.2.1 Пуск дизельного двигателя

Любой источник энергии с приводом от дизельного двигателя, питающий насос, должен быть способен легко запускаться вручную из холодного состояния при температуре вплоть до 0°С. Если это практически невозможно или если предполагаются более низкие температуры, необходимо рассмотреть возможность установки и эксплуатации приемлемых для Администрации средств подогрева, обеспечивающих быстрый пуск. Если ручной пуск практически невозможен, Администрация может разрешить применение других средств пуска. Эти средства должны быть такими, чтобы источник энергии с приводом от дизельного двигателя мог запускаться по меньшей мере шесть раз в течение 30 мин и по меньшей мере дважды в течение первых 10 мин.

2.2.2.2 Вместимость топливной цистерны

Любая расходная топливная цистерна должна содержать достаточное количество топлива, обеспечивающее работу насоса при полной нагрузке в течение по меньшей мере 3 ч; вне машинного помещения категории А должны иметься достаточные запасы топлива, обеспечивающие работу насоса при полной нагрузке дополнительно в течение 15 ч.

Противопожарные системы

Пожар на судне представляет чрезвычайно серьезную опасность. Во многих случаях пожар наносит не только значительные материальные убытки, но является причиной гибели людей. Поэтому предупреждению пожаров на судах и мерах борьбы с огнем придается первостепенное значение.

Для локализации пожара судно разделяется на вертикальные противопожарные зоны огнестойкими переборками (типа А), которые сохраняют непроницаемость для дыма и пламени в течение 60 мин. Огнестойкость переборки обеспечивается изоляцией из несгораемых материалов. Огнестойкие переборки на пассажирских судах устанавливают на расстоянии не более 40 м друг от друга. Такими же переборками выгораживают посты управления и помещения, опасные в пожарном отношении.

Внутри противопожарных зон помещения разделяются огнезадерживающими переборками (типа В), которые сохраняют непроницаемость для пламени в течение 30 мин. Эти конструкции также имеют изоляцию из огнестойких материалов.

Все отверстия в противопожарных переборках должны иметь закрытия, обеспечивающие непроницаемость для дыма и пламени. С этой целью противопожарные двери имеют изоляцию из несгораемых материалов или с каждой стороны двери устанавливают водяные завесы. Все противопожарные двери оборудованы устройством для дистанционного закрытия с поста управления

Успех борьбы с огнем в значительной мере зависит от своевременного обнаружения очага пожара. Для этого суда оборудованы различными сигнальными системами, позволяющими обнаружить пожар в самом его начале. Существует много типов сигнальных систем, но все они работают по принципу обнаружения: повышения температуры, появления дыма и открытого пламени.

В первом случае в помещениях устанавливают термочувствительные извещатели, включенные в сигнальную электрическую сеть. При повышении температуры извещатель срабатывает и замыкает сеть, в результате на ходовом мостике загорается сигнальная лампа и включается звуковой сигнал тревоги. По такому же принципу работают сигнальные системы, основанные на обнаружении открытого пламени. В этом случае в качестве извещателей используются фотоэлементы. Недостатком этих систем является некоторое запаздывание в обнаружении пожара, так как начало пожара не всегда сопровождается повышением температуры и появлением открытого пламени.

Более чувствительными являются системы, работающие на принципе обнаружения дыма. В этих системах из контролируемых помещений по сигнальным трубам постоянно отсасывается вентилятором воздух. По дыму, выходящему из определенной трубки, можно определить помещение, в котором возник пожар

Обнаружение дыма производится чувствительными фотоэлементами, которые устанавливаются на концах трубок. При появлении дыма изменяется сила света, вследствие чего фотоэлемент срабатывает и замыкает сеть световой и звуковой сигнализации.

Средствами активной борьбы с огнем на судне являются различные системы пожаротушения: водяная, паровая и газовая, а также объемного химического тушения и пенотушения.

Система водяного тушения. Наиболее общим средством борьбы с пожарами на судне является система водяного пожаротушения, которой должны быть оборудованы все суда.
Система выполнена по централизованному принципу с линейным или кольцевым магистральным трубопроводом, который изготовлен из стальных оцинкованных труб диаметром 100-200 мм. По всей магистрали устанавливают пожарные рожки (краны) для подключения пожарных шлангов. Расположение рожков должно обеспечивать подачу двух струй воды в любое место судна. Во внутренних помещениях они установлены не более чем через 20 м, а на открытых палубах это расстояние увеличено до 40 м. Для того чтобы можно было быстро обнаружить пожарный трубопровод, его окрашивают в красный цвет. В тех случаях, когда трубопровод окрашен под цвет помещения, на него наносят два узких отличительных кольца зеленого цвета, между которыми накрашивают узкое красное предупреждающее кольцо. Пожарные рожки во всех случаях окрашивают в красный цвет.

В системе водотушения применяют центробежные насосы с независимым от главного двигателя приводом. Стационарные пожарные насосы устанавливают ниже ватерлинии, чем обеспечивается подпор на всасывании. При установке насосов выше ватерлинии они должны быть самовсасывающими. Общее число пожарных насосов зависит от размеров судна и на больших судах доходит до трех с общей подачей до 200 м3/ч. В дополнение к ним многие суда имеют аварийный насос с приводом от аварийного источника энергии. Для пожарных целей могут также использоваться балластные, осушительные и другие насосы, если они не служат для перекачки нефтепродуктов или для осушения отсеков, в которых могут оказаться остатки нефтепродуктов.

На судах валовой вместимостью 1000 peг. т и более на открытой палубе с каждого борта водопожарная магистраль должна иметь устройство для подключения международного соединения.
Эффективность системы водотушения в значительной степени зависит от давления. Минимальное давление в месте расположения любого пожарного рожка 0,25-0,30 МПа, что дает высоту струи воды из пожарного шланга до 20-25 м. С учетом всех потерь в трубопроводе такой напор у пожарных рожков обеспечивается при давлении в пожарной магистрали 0,6-0,7 МПа. Трубопровод водотушения рассчитан на максимальное давление до 10 МПа.

Система водотушения является наиболее простой и надежной, но использовать сплошную струю воды для тушения пожара можно не во всех случаях. Например, при тушении горящих нефтепродуктов она не дает эффекта, так как нефтепродукты всплывают на поверхность воды и продолжают гореть. Эффекта можно добиться только в том случае, если воду подавать в распыленном виде. В этом случае вода быстро испаряется, образуя пароводяной колпак, изолирующий горящую нефть от окружающего воздуха.

На судах вода в распыленном виде подается спринклерной системой, которой могут оборудоваться жилые и общественные помещения, а также ходовая рубка и различные кладовые. На трубопроводах этой системы, которые проложены под подволоком защищаемого помещения, установлены автоматически действующие спринклерные головки (рис. 143).

Рис 143. Спринклерные головки-а - с металлическим замком, б - со стеклянной колбой, 1- штуцер, 2- стеклянный клапан, 3- диафрагма, 4- кольцо; 5- шайба, 6- рама, 7- розетка; 8- легкоплавкий металлический замок, 9- стеклянная колба

Выходное отверстие спринклера закрыто стеклянным клапаном (шариком), который поддерживают три пластинки, соединенные между собой легкоплавким припоем. При повышении температуры во время пожара припой плавится, клапан открывается, и выходящая струя воды, ударяясь в специальную розетку, разбрызгивается. У спринклеров другого типа клапан удерживается стеклянной колбой, заполненной легко-испаряющейся жидкостью. При пожаре пары жидкости разрывают колбу, в результате чего открывается клапан.

Температуру вскрытия спринклеров для жилых и общественных помещений в зависимости от района плавания принимают 70-80 °С.

Для обеспечения автоматической работы спринклерная система должна всегда находиться под напором. Необходимое давление создает пневмоцистерна, которой оборудована система. При вскрытии спринклера давление в системе падает, в результате чего автоматически включается спринклерный насос, который обеспечивает систему водой при тушении пожара. В аварийных случаях спринклерный трубопровод может быть подключен к системе водотушения.

В машинном отделении для тушения нефтепродуктов применяют систему водораспыления. На трубопроводах этой системы вместо автоматически действующих спринклерных головок устанавливают водораспылители, выходное отверстие которых постоянно открыто. Водораспылители начинают действовать сразу же после открытия запорного клапана на подводящем трубопроводе.

Распыленную воду используют также в системах орошения и для создания водяных завес. Систему орошения применяют для орошения палуб нефтеналивных судов и переборок помещений, предназначенных для хранения взрывчатых и легко воспламеняющихся веществ.

Водяные завесы выполняют роль противопожарных переборок. Такими завесами оборудуют закрытые палубы паромов с горизонтальным способом погрузки, где установить переборки невозможно. Противопожарные двери также могут заменяться водяными завесами.

Перспективной является система мелкораспыленной воды, в которой вода распыляется до туманообразного состояния. Распыление воды производится через сферические распылители с большим количеством отверстий диаметром 1 - 3 мм. Для лучшего распыления в воду добавляют сжатый воздух и специальный эмульгатор.

Система паротушения. Работа системы парового пожаротушения основана на принципе создания в помещении атмосферы, не поддерживающей горения. Поэтому паротушение применяют только в закрытых помещениях. Так как на современных судах с двигателями внутреннего сгорания нет котлов большой производительности, то системой паротушения обычно оборудуют только топливные цистерны. Паротушение также можно применять в. глушителях двигателей и в дымовых трубах.

Система паротушения на судах выполняется по централизованному принципу. От парового котла пар давлением 0,6-0,8 МПа поступает на парораспределительную коробку (коллектор), откуда в каждый топливный танк проведены отдельные трубопроводы из стальных труб диаметром 20-40 мм. В помещения с жидким топливом пар подводится в верхнюю часть, что обеспечивает свободный выход пара при максимальном заполнении танка. На трубах системы паротушения накрашивают два узких отличительных кольца серебристо-серого цвета с красным предупреждающим кольцом между ними.

Газовые системы. Принцип действия газовой системы основан на том, что к месту пожара подается инертный газ, не поддерживающий горение. Работая на том же принципе, что и система паротушения, газовая система по сравнению с ней имеет ряд преимуществ. Применение в системе неэлектропроводного газа позволяет использовать газовую систему для прекращения пожара на работающем электрооборудовании. При пользовании системой газ не вызывает порчи грузов и оборудования.

Из всех газовых систем на морских судах широко применяется углекислотная. Жидкий углекислый газ хранится на судах в специальных баллонах под давлением. Баллоны соединены в батареи и работают на общую распределительную коробку, от которой в отдельные помещения проводятся трубопроводы из стальных цельнотянутых оцинкованных труб диаметром 20-25 мм. На трубопроводе углекислотной системы накрашивают одно узкое отличительное кольцо желтого цвета и два предупреждающих знака - один красный, а второй желтый с черными диагональными полосами. Трубы обычно прокладывают под палубой без опускающихся вниз отростков, так как углекислый газ тяжелее воздуха и при тушении пожара его необходимо вводить в верхнюю часть помещения. Из отростков углекислота выпускается через специальные насадки-сопла, количество которых в каждом помещении зависит от объема помещения. Эта система имеет устройство для контроля.

Углекислотная система может быть использована для тушения пожара в закрытых помещениях. Наиболее часто такой системой оборудуют сухогрузные трюмы, машинно-котельные отделения, помещения электрооборудования, а также кладовые с горючими материалами. Применение углекислотной системы в грузовых танках наливных судов не допускается. Нельзя также применять ее в жилых и общественных помещениях, так как даже незначительная утечка газа может привести к несчастным случаям.

Обладая определенными преимуществами, углекислотная система не лишена недостатков. Основными из них являются одноразовость действия системы и необходимость тщательно вентилировать помещение после применения углекислотного тушения.

Наряду со стационарными углекислотными установками на судах применяются ручные углекислотные огнетушители, имеющие баллоны с жидкой углекислотой.

Система объемного химического тушения. Она работает на том же принципе, что и газовая, но только вместо газа в помещение подается специальная жидкость, которая, легко испаряясь, превращается в инертный газ тяжелее воздуха.

В качестве огнегасительной жидкости на судах используется смесь, содержащая 73 % бромистого этила и 27 % тетрафтордибромэтана. Иногда применяют другие смеси, например бромистого этила и углекислого газа.

Огнегасительная жидкость хранится в прочных стальных резервуарах, от которых в каждое из охраняемых помещений проводится магистраль. В верхней части охраняемого помещения прокладывается кольцевой трубопровод с распылительными головками. Давление в системе создается сжатым воздухом, который подается в резервуар с жидкостью из баллонов.

Отсутствие в системе механизмов позволяет выполнять ее как по централизованному, так и по групповому или индивидуальному принципу.

Система объемного химического тушения может применяться в сухогрузных и рефрижераторных трюмах, в машинном отделении и помещениях с электрическим оборудованием.

Система порошкового тушения.

В этой системе используют специальные порошки, которые подаются к месту воспламенения газовой струей из баллона (обычно это азот или другой инертный газ). Чаще всего на этом принципе работают порошковые огнетушители. На газовозах иногда ставят эту систему для использования в грузовых отсеках. Такая система состоит из станции порошкового тушения, ручных стволов и особых нескручивающихся рукавов.

Система пенотушения. Принцип действия системы основан на изоляции очага пожара от кислорода воздуха путем покрытия горящих предметов слоем пены. Пену можно получить либо химическим путем в результате реакции кислоты и щелочи, либо механическим путем при смешивании водного раствора пенообразователя с воздухом. Соответственно этому система пенотушения делится на воздушно-механическую и химическую.

В системе воздушно-механического пенотушения (рис. 144) для получения пены используется жидкий пенообразователь ПО-1 или ПО-б, который хранится в специальных цистернах. При пользовании системой пенообразователь из цистерны эжектором подается в напорный трубопровод, где он смешивается с водой, образуя водяную эмульсию. На конце трубопровода имеется воздушно-пенный ствол. Водяная эмульсия, проходя через него, засасывает воздух, в результате чего образуется пена, которая подается к месту пожара.

Для получения пены воздушно-механическим способом водяная эмульсия должна содержать 4 % пенообразователя и 96 % воды. При смешивании эмульсии с воздухом образуется пена, объем которой примерно в 10 раз превышает объем эмульсии. Для увеличения количества пены применяют специальные воздушно-пенные стволы с распылителями и сетками. В этом случае получается пена с высокой кратностью пенообразования (до 1000). Тысячекратная пена получается на основе пенообразователя "Морпен".

Рис. 144. Система воздушно-механического пенотушения: 1- буферная жидкость, 2- рассеиватель, 3- эжектор-смеситель, 4- ручной воздушно-пенный ствол, 5- стационарный воздушно-пенный ствол

Рис 145 Местная воздушно-пенная установка 1- сифонная трубка, 2- резервуар с эмульсией, 3- отверстия для входа воздуха, 4- запорный клапан, 5- горловина, 6- редукционный клапан, 7- пенопровод, 8- гибкий шланг, 9- спрыск, 10- баллон сжатого воздуха; 11-трубопровод сжато- , го воздуха, 12- трехходовой кран

Наряду со стационарными системами пенотушения на судах широкое применение нашли местные воздушно-пенные установки (рис. 145). В этих установках, которые размещаются непосредственно в охраняемых помещениях, эмульсия находится в закрытом резервуаре. Для пуска установки в резервуар подают сжатый воздух, который через сифонную трубку вытесняет эмульсию в трубопровод. В этот же трубопровод через отверстие в верхней части сифонной трубки проходит часть воздуха. В результате в трубопроводе происходит перемешивание эмульсии с воздухом и образуется пена. Такие же установки небольшой вместимости могут выполняться переносными - воздушно-пенный огнетушитель.

При получении пены химическим путем в ее пузырьках содержится углекислый газ, что повышает ее гасительные свойства. Химическим способом пену получают в ручных пенных огнетушителей типа ОП, состоящих из резервуара, наполненного водным раствором соды и кислотой. Поворотом рукоятки открывают клапан, щелочь и кислота смешиваются, в результате чего образуется пена, которая выбрасывается струей из спрыска.

Система пенотушения может быть использована для тушения пожара в любых помещениях, а также на открытой палубе. Но наибольшее распространение она получила на нефтеналивных судах. Обычно на танкерах имеются две станции пенотушения: основная - на корме и аварийная - в надстройке бака. Между станциями вдоль судна проложен магистральный трубопровод, от которого в каждый грузовой танк отходит отросток с воздушно-пенным стволом. От ствола пена идет в пеносливные перфорированные трубы, расположенные в танках. Все трубы системы пенотушения имеют два широких отличительных кольца зеленого цвета с красным предупреждающим знаком между ними. Для тушения пожара на открытых палубах нефтеналивные суда оборудуются лафетными воздушно-пенными стволами, которые устанавливают на палубе надстроек. Лафетные стволы дают струю пены длиной свыше 40 м, что позволяет в случае необходимости всю палубу покрыть пеной.

Для обеспечения пожарной безопасности судна все системы пожаротушения должны находиться в исправном состоянии и всегда быть готовыми к действию. Проверка состояния системы производится путем регулярных осмотров и проведения учебных пожарных тревог. При осмотрах необходимо тщательно проверять плотность трубопроводов и исправную работу пожарных насосов. В зимнее время пожарные магистрали могут замерзнуть. Чтобы предотвратить замерзание, необходимо отключить участки, проложенные на открытых палубах, и через специальные пробки (или краны) спустить воду.

Особенно тщательного ухода требуют углекислотная система и система пенотушения. При неисправном состоянии установленных на баллонах клапанов возможна утечка газа. Для проверки наличия углекислоты баллоны следует взвешивать не реже 1 раза в год.

Все неисправности, выявленные при осмотрах и учебных тревогах, должны немедленно устраняться. Запрещается выпускать в плавание суда, если:

Хотя бы одна из стационарных систем пожаротушения неисправна; система пожарной сигнализации не работает;

Отсеки судна, защищаемые системой объемного пожаротушения, не имеют приспособлений для закрытия помещений снаружи;

Противопожарные переборки имеют неисправную изоляцию или неисправные противопожарные двери;

Противопожарное снабжение судна не соответствует установленным нормам.


Параллелограммы скоростей на рабочем колес

При входе на лопасть и выходе с лопасти, каждая частица жидкости приобретает соответственно:

1. Окружные скорости U 1 и U 2 , направленные по касательным к входной и
выходной окружностям лопастного колеса.

2. Относительные скорости W 1 и W 2 , направленные по касательной к поверхности профиля лопасти.

3. Абсолютные скорости C 1 и C 2 , получаемые в результате геометрического сложения U1,

Так как насос представляет собой механизм, преобразующий механическую энергию привода, в энергию (напор), сообщающую движение жидкости в межлопастном пространстве колеса, то теоретическую её величину (напор), полученную при работе насоса, можно определить по формуле Эйлера:

C 2 U 2 соs α 2 – C 1 U 1 соs α 1

Н t ∞ = __________________________

В виду того, что у центробежного насоса отсутствует направляющий аппарат при входе жидкости на лопасти, во избежание больших гидравлических потерь от ударов жидкости о лопасти, и уменьшения потерь напора, вход жидкости на колесо делают радиальным (направление абсолютной скорости С 1 - радиальное). При этом α 1 = 90, тогда соs 90 - 0, следовательно, произведение C 1 U 1 соs α 1 = 0. Таким образом, основное уравнение напора центробежного насоса, или уравнение Эйлера примет вид:

Н t ∞ = C 2 U 2 соs α 2 / g

В действительном насосе имеется конечное число лопастей и потери напора вследствие завихрений частиц жидкости учитываются коэффициентом φ (фи), а гидравлические сопротивления учитываются гидравлическим КПД - ηг, тогда действительный напор примет вид: Нд = Нt φηг

С учётом всех потерь КПД центробежного насоса составляет ηн 0.46-0,80.

В эксплуатационных условиях напор центробежного насоса определяется по эмпирической формуле и зависит от числа оборотов приводного двигателя и диаметра лопастного колеса:

Нн = к"* n 2 * D 2 ,

где: к"- опытный безразмерный коэффициент

n - частота вращения рабочего колеса, об/мин.

D - наружный диаметр колеса, м.

Подачу насоса лс -1 ориентировочно определяют по диаметру н нагнетательного патрубка:

Qн = k" d 2

где: k" - для диаметра патрубка до 100 мм - 13-48, более 100 мм – 20-25

d – диаметр нагнетательного патрубка в дм.

2. Для обеспечения нормальной и безопасной работы судна , а также для создания соответствующих условий пребывания на нем людей служат судовые системы.
Под судовой системой понимается сеть трубопроводов с механизмами, аппаратами и приборами, выполняющая на судне определенные функции. С помощью судовых систем осуществляются: прием и удаление водяного балласта, борьба с пожарами, осушение отсеков судна от скапливающейся в них воды, снабжение пассажиров и экипажа питьевой и мытьевой водой, удаление нечистот и загрязненной воды, поддержание необходимых параметров (кондиций) воздуха в помещениях. Некоторые суда, как, например, танкеры, ледоколы, рефрижераторы и др., в связи со специфическими условиями эксплуатации оборудуют специальными системами. Так, танкеры оснащают системами, предназначенными для приема и выкачки жидкого груза, его подогрева в целях облегчения перекачки, мытья танков и их зачистки от остатков нефтепродуктов. Большое число функций, выполняемых судовыми системами, обусловливают многообразие их конструктивных форм и используемого механического оборудования. В состав судовых систем входят: трубопроводы, состоящие из соединенных между собой отдельных труб и арматуры (задвижек, клапанов, кранов), которая служит для включения или выключения системы и ее участков, а также для различных регулировок и переключений; механизмы (насосы, вентиляторы, компрессоры), сообщающие механическую энергию протекающей через них среде и обеспечивающие перемещение последней по трубопроводам; сосуды (цистерны, баллоны и др.) для хранения той или иной среды; различные аппараты (подогреватели, охладители, испарители и др.), служащие для изменения состояния среды; средства управления системой и контроля за ее работой.
Из перечисленных механизмов и аппаратов в каждой данной судовой системе могут быть лишь некоторые из них. Это зависит от назначения системы и характера выполняемых ею функций.
Кроме систем общесудового назначения, на судне имеются системы, которые обслуживают судовую энергетическую установку. На дизельных судах эти системы снабжают главные и вспомогательные двигатели топливом, маслом, охлаждающей водой и сжатым воздухом. Системы судовых энергетических установок рассматривают в курсе, посвященном этим установкам.

3. Современные морские суда являются местом постоянной работы и жительства членов экипажей и продолжительного пребывания пассажиров. Поэтому в жилых, служебных, пассажирских и общественных помещениях этих судов в любых районах плавания, в любое время года и при любых метеорологических условиях должен поддерживаться благоприятный для людей микроклимат, т. е. совокупность состава и параметров состояния воздуха, а также тепловых излучений в ограниченных пространствах помещений. Микроклимат в судовых помещениях обеспечивается с помощью систем комфортного кондиционирования воздуха и соответствующей изоляции помещений, температура внутренней поверхности которых не должна существенно (более чем на 2° С) отличаться от температуры воздуха в этих помещениях.

Судовая рефрижераторная установка.
1 - компрессор; 2 - конденсатор; 3 - расширительный клапан; 4 - испаритель; 5 - вентилятор; о - рефрижераторная камера; 7 - помещение испарительной установки.

Системы комфортного кондиционирования предназначены для очистки и тепловлажностной обработки воздуха, подаваемого в помещения. При этом в помещении должны быть обеспечены определенные, наперед заданные кондиции, т. е. параметры состава и состояния воздуха: его чистота, достаточный процент содержания кислорода, температура, относительная влажность и подвижность (скорость перемещения). Эти заданные кондиции воздуха и определяют так называемые комфортные условия для людей.

В различных районах плавания судов в разное время года температура наружного (атмосферного) воздуха может достигать самых больших (до 40-45°С) и самых низких (до -50°С) значений. Температура забортной воды при этом может изменяться в широких пределах: от +35°С до -2°С, а содержание влаги в 1 кг воздуха -от 24-26 до 0,1-0,5 г. В таких условиях плавания судна существенно изменяется и интенсивность солнечной радиации. Если учесть, что суда представляют собой большие металлические сооружения с высоким коэффициентом теплопроводности, то становится ясно, насколько велико влияние внешних условий на формирование микроклимата в судовых помещениях. К тому же, на судне достаточно много внутренних объектов тепло- и влаго-выделений.

Все это требует от судовой системы комфортного кондиционирования воздуха большой гибкости (маневренности) в работе. В теплых районах (или в летнее время) она должна обеспечивать отвод из помещений соответствующих тепло- и влагоизбытков, а в холодных районах (или в зимнее время) - компенсировать тепло-потери и отводить избыточную влагу, выделяемую в основном людьми, а также некоторым оборудованием. В летнее время года наружный воздух перед подачей в помещения обычно требуется охлаждать и осушать, а в зимнее - подогревать и увлажнять (хотя наружный воздух в зимнее время и имеет высокую относительную влажность - до 80-90%, он содержит очень небольшое количество влаги, не более 1-3 г на 1 кг воздуха).

Подогрев и увлажнение воздуха осуществляют, как правило, водяным паром или водой, а его охлаждение и осушение - с помощью холодильных машин. Таким образом, холодильные машины являются неотъемлемой частью судовых установок комфортного кондиционирования воздуха (в дальнейшем для краткости будем опускать слово «комфортное»).

Кроме того, холодильные машины используются почти на всех судах морского и речного флота для сохранения запаса провизии, а также на промысловых, производственных и транспортных рефрижераторных судах для обработки и хранения скоропортящихся грузов (такую функцию холодильных машин принято называть рефрижерацией). В посление годы холодильные машины стали применять для осушения воздуха в трюмах сухогрузных и танках нефтеналивных судов. Это предотвращает порчу гигроскопических грузов (муки, зерна, хлопка, табака и пр.), повреждение перевозимого на судах оборудования, механизмов и значительно уменьшает коррозию внутренних металлических частей корпуса и оборудования судов. Такая обработка воздуха трюмов и танков обычно называется техническим кондиционированием.

Первый опыт применения на судах «машинного» охлаждения относится к 70-80-м годам прошлого столетия, когда почти одновременно были созданы и начали распространяться парокомпрес-сорные аммиачные, углекислотные и сернистоангидридные, воздушные и абсорбционные холодильные машины. Так, в 1876 г. французским инженером-изобретателем Шарлем Телье впервые успешно был применен «машинный» холод на пароходе «Фригори-фик» для перевозки охлажденного мяса из Буэнос-Айреса в Руан. В 1877 г. пароход «Парагвай», оборудованный абсорбционной холодильной установкой, доставил мороженое мясо из Южной Америки в Гавр, причем мясо было заморожено на этом же судне в специальных камерах. Вслед за этим были осуществлены удачные рейсы с мясом из Австралии в Англию, в частности на пароходе «Стратлевен», оборудованном воздушной холодильной машиной. К 1930 г. мировой морской рефрижераторный флот состоял уже из 1100 судов общей грузовместимостью 1,5 млн. условных тонн.

Пожарные Насосы

Применяются в качестве установок, обеспечивающих пожаробезопасность на танкерах, перевозящих сжиженный природный газ, а также на танкерах, переоборудованных под хранилища в районах нефтепромыслов и под производственные мощности Производитель Ellehammer

Как правило, используются в качестве резервных систем, которые дублируют кольцевые системы пожаротушения, когда 3-4 аварийных пожарных насоса не дают упасть давлению воды в случае отказа основной системы.

Аварийные пожарные насосы комплектуются электрическими или дизельными двигателями. Ассортимент таких насосов весьма велик: от насосов с 4-цилиндоровым двигателем, развивающим мощность 120 л.с., которые перекачивают 70 м3 в час - до огромных агрегатов с 12-цилиндровым двигателем, емкостью 38 литров, развивающим мощность 1400 л.с., которые способны перекачивать более 2000 м3 в час под давлением 12 бар.

Пожарные насосы и их кингстоны должны располагаться на судне в отапливаемых

помещениях ниже ватерлинии, насосы должны иметь самостоятельные приводы и подача каждого стационарного насоса должна быть не менее 80 % полной подачи, поделенной на число насосов системы, но не менее 25 м3/ч. Насосы пожарной системы не должны использоваться для осушения отсеков, в которых хранились нефтепродукты или остатки других горючих жидкостей.

Стационарный пожарный насос можно использовать на судне и для других целей, если другой насос находится в постоянной готовности к немедленному действию по тушению пожара
Общая подача стационарных насосов должна быть увеличена, если они одновременно с пожарной системой обслуживают другие системы пожаротушения. При определении этой подачи необходимо учитывать давление в системах. Если давление в подключаемых системах выше, чем в пожарной системе, подачу насоса необходимо увеличивать из-за увеличения расхода через пожарные стволы при повышении давления.
Стационарный аварийный пожарный насос обеспечивается всем необходимым для работы (источниками энергии для его привода, приемными кингстонами) при выходе из строя основных насосов и подключается к системе судна. В случае необходимости он обеспечивается устройством для самовсасывания.

Аварийные насосы располагают в отдельных помещениях, а аварийные насосы с дизельным приводом обеспечиваются топливом на 18 ч работы. Подача аварийного насоса должна быть достаточной для работы двух стволов с наибольшим диаметром насадки, принятым для данного судна, и не менее 40% общей подачи насосов, но не менее 25 м3/ч.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...