Численность устьиц у некоторых растений. Устьица у растения: определение, расположение, функции


Число устьиц и их размещение у разных видов растений сильно варьируют. У ксерофитов, т. е. у форм, приспособленных к обитанию в засушливых областях, на единицу поверхности обычно приходится меньше устьиц, чем у мезофитов; кроме того, устьица иногда располагаются у них в углублениях сильно кутинизированной поверхности листьев или стебля, что также уменьшает потерю воды, поскольку ограничивает турбулентность в примыкающем к устьицу слое воздуха (рис. 4.2 и 6.11). У большей части растений устьица имеются на обеих сторонах листа - верхней и нижней; есть, однако, и такие виды, у которых устьица располагаются только на нижней стороне листьев. Число устьиц на 1 см 2 поверхности листа превышает 60 000 у огурца, а у некоторых злаков не достигает и 8000. Даже на одном и том же растении листья могут очень сильно различаться как по числу, так и по расположению устьиц; в "теневых" листьях, например, число устьиц на единицу поверхности обычно меньше, чем в "световых". По оценкам, сделанным для самых разных растений, устьица в полностью открытом виде занимают 1-3% всей площади листа, диффузия же водяных паров из листа идет при открытых устьицах фактически с той же скоростью, как со свободной поверхности (рис. 6.12). Именно этим обстоятельством и объясняется тот факт, что в условиях хорошего увлажнения, на ярком свету и при высокой температуре растения теряют огромное количество воды.

Интенсивность транспирации, т. е. испарение воды надземными частями растений (рис. 6.13), зависит от ширины устьичных щелей, от разности водных потенциалов воздуха внутри и снаружи листа и от турбулентности воздуха. Чем менее влажен атмосферный воздух, тем ниже (более отрицателен) его водный потенциал. (Давление водяных паров и относительная влажность, которые также служат мерой содержания влаги в атмосферном воздухе, тоже при этом ниже) Когда воздух насыщен влагой, его водный потенциал равен нулю. При снижении относительной влажности воздуха всего на 1-2% водный потенциал падает очень резко. Когда относительная влажность уменьшается примерно до 50%, водный потенциал атмосферного воздуха выражается уже отрицательной величиной порядка нескольких сотен бар. В клетках листа водный потенциал редко бывает ниже -20 бар, и потому вода из межклетников (в которых воздух насыщен ею наполовину, а водный потенциал уравновешен с водным потенциалом окружающих клеток) быстро диффундирует в более сухой атмосферный воздух. Молекулы воды покидают растение, подчиняясь тому же закону, который управляет их движением внутри растения, т. е. перемещаясь в направлении снижения водного потенциала (табл. 6.2).

В солнечный день температура внутри листа может быть на 10°С выше, чем в окружающем воздухе. Из-за этой разности температур усиливается транспирация, так как воздух внутри листа насыщен влагой, а давление насыщенного пара с повышением температуры возрастает. Турбулентность воздуха также способствует транспирации, поскольку быстрое удаление паров воды из примыкающего к листу слоя воздуха повышает градиент диффузии (а следовательно, и.скорость диффузии) из листа в атмосферу. Поэтому в сухие ветреные солнечные дни, в особенности в засушливые периоды, вода часто испаряется из растения быстрее, чем корни успевают ее подавать. Когда потеря воды листьями в течение длительного времени превышает ее поступление через корни, растение завядает. В жаркий летний день транспирация нередко перевешивает поглощение воды, даже если в почве воды достаточно; в таких условиях листья всех видов растений и стебли травянистых растений в послеполуденные часы часто слегка привядают. Ближе к вечеру транспирация ослабевает и растения начинают оправляться от завядания. На протяжении ночи водный дефицит в клетках листа уменьшается по мере того, как корни растения насасывают воду из почвы; это продолжается до тех пор, пока клетки листа полностью не восстановят свой тургор - обычно к утру все признаки завядания исчезают. Подобное каждодневное временное завядание, так называемое дневное завядание, - явление вполне обычное; оно не вредит растению, если не считать некоторого ослабления фотосинтеза вследствие закрывания устьиц. Иное дело, когда растение долгое время не получает влаги из почвы; в этих условиях временное завядание переходит в длительное, и если это продолжается долго, то растение погибает.

Регулирование движений замыкающих клеток устьиц

Давно известно, что ширина устьичных щелей (отверстость устьиц) определяется тургором замыкающих клеток устьиц, о чем уже говорилось в гл. 2. Однако лишь недавно, в последнее десятилетие, выяснилось, что тургор этих клеток зависит по преимуществу от содержания солей калия. В ночное время концентрация растворенных веществ в вакуолях замыкающих клеток сравнительно низка; в соответствии с этим ψ ;π велик, клетки вялы и устьичная щель закрыта. На рассвете из соседних клеток в вакуоли замыкающих клеток начинают поступать ионы калия. Процесс этот часто сопровождается распадом крахмала и накоплением яблочной кислоты. В результате ψπ резко снижается, начинается поглощение воды, замыкающие клетки, имеющие очень эластичные, неравномерно утолщенные стенки, набухают и искривляются при этом таким образом, что устьичная щель открывается. Выход ионов K + из замыкающих клеток в конце дня или при недостатке воды ведет к сокращению объема замыкающих клеток, в результате чего устьица закрываются (рис. 6.14). Околоустьичные клетки эпидермиса служат резервуаром, в котором ионы K + сохраняются, пока устьица закрыты. Любое изменение размеров этих околоустьичных клеток всегда противоположно по знаку одновременному изменению в замыкающих клетках и способствует либо открыванию, либо закрыванию устьиц.


Рис. 6.14. Распределение калия в клетках устьичного комплекса Vicia fab а при закрытых (А) и открытых (Б) устьицах. (Humble, Raschke. 1971. Plant Physiol., 48, 447-459.) Содержание К в содранных кусочках эпидермиса листа определяли методом электронного микрозонда. Для этого кусочки эпидермиса быстро замораживали в жидком азоте и высушивали в замороженном состоянии. Этим методом пользовались вместо химической фиксации, потому что в большинстве химических фиксаторов калий растворим. Прибор создает электронный пучок высокой энергии, который, будучи сфокусирован на ткань, возбуждает в ней рентгеновское излучение. Белые пятна на нижних микрофотографиях (В и Г) соответствуют рентгеновскому излучению атомов K; белые участки на верхних микрофотографиях, обусловленные обратным рассеянием электронов, выявляют морфологию ткани. Обратите внимание, что ионы K + , сосредоточенные в прилегающих (околоустьичных) клетках, когда устьица закрыты, при открывании устьица переходят в замыкающие клетки

Когда через клеточную мембрану проходят какие-нибудь положительно заряженные ионы, например ионы K + , электронейтральность клетки сохраняется благодаря одновременному перемещению других заряженных частиц: либо отрицательно заряженные анионы перемещаются в том же направлении, что и K + , либо ионы H + должны двигаться в противоположном направлении (см. гл. 7). Сейчас известно, что у некоторых растений важную роль в регуляции тургора замыкающих клеток играет передвижение ионов хлора (Cl -), у других же растений действует, по-видимому, какой-то иной механизм. У кукурузы (Zea mays) около 40% ионов K + входит в замыкающие клетки или выходит из них в сопровождении ионов Cl - . Есть растения, у которых участие ионов Cl - сравнительно невелико и функцию их могут выполнять какие-нибудь другие ионы. Подобная замена наблюдается иногда и у тех растений, у которых в норме эту роль играют именно ионы Cl - . Интенсивное перемещение ионов H + через мембраны замыкающих клеток в направлении, противоположном движению ионов K + , характерно, по-видимому, для всех растений. Действительно, открывание устьиц сопровождается заметным повышением внутриклеточного pH, чего, разумеется, и следует ожидать, когда ионы H+ покидают клетку. Источником ионов H + вполне могут быть присутствующие в вакуолярном соке органические кислоты, поскольку при открывании устьиц их содержание в вакуолярном соке увеличивается.

Внешние факторы, регулирующие движения устьиц

Когда растение испытывает недостаток воды, замыкающие клетки устьиц становятся вялыми и устьичные щели закрываются, что предотвращает дальнейшую потерю воды. До недавнего времени именно в этом видели главный механизм, позволяющий растению избежать чрезмерно сильного завядания. Выяснилось, однако, что у растений имеется другой, более быстрый и более эффективный способ подавлять транспирацию. На ранних стадиях водного дефицита у многих растений резко повышается содержание одного из гормонов, а именно абсцизовой кислоты (АБК) (см. гл. 10). Каким-то путем это приводит к оттоку K + из замыкающих клеток и как следствие к потере воды и закрыванию устьиц. Изящные опыты, демонстрирующие этот эффект, были проведены с так называемым завядающим (wilty) мутантом томата, полученным случайно в экспериментах с рентгеновским облучением семян одного из обычных сортов. Мутант этот отличается тем, что он быстро завядает даже при самом небольшом недостатке воды, потому что устьица у него всегда открыты. Обнаружилось, что у этого мутанта резко понижено содержание АБК, оно в 10 раз ниже, чем у родительского сорта. Когда мутантные растения обработали АБК, их устьица стали закрываться и тургор восстанавливался быстрее. Очевидно, у этого сорта томата закрывание устьиц регулируется либо самой абсцизовой кислотой, либо каким-то продуктом ее метаболических превращений. Позже выяснилось, что обработка малыми дозами АБК может вызывать закрывание устьиц и у других растений. Было обнаружено также, что при недостатке воды повышается содержание эндогенной АБК, вслед за чем устьица закрываются. Таким образом, одной из важных физиологических функций гормона АБК является, по-видимому защита растений от иссушения. О прочих регуляторных функциях этого гормона говорится в гл. 10.

Учитывая значение открывания и закрывания устьиц в жизни растения, не следует удивляться тому, что движения устьиц регулируются не только водоснабжением растений, но также и некоторыми другими факторами внешней среды. У многих растений, например, открывание устьиц зависит в первую очередь от содержания CO 2 в воздухе, заполняющем подустьичную воздушную полость. Если концентрация CO 2 падает там ниже 0,03%, т. е. ниже уровня, нормального для атмосферного воздуха, то тургор замыкающих клеток увеличивается и устьица открываются. Обычно к такому результату приводит освещение замыкающих клеток, стимулирующее в них фотосинтетическую активность, вследствие которой снижается содержание CO 2 в прилежащих заполненных воздухом полостях. Открывание устьиц можно вызвать также искусственно, удаляя CO 2 из воздуха, а закрывание - повышением концентрации CO 2 в воздухе. Эта регуляция устьичных движений CO 2 позволяет понять, почему устьица обычно открыты днем и закрыты ночью.

Открывание устьиц под действием света можно частично объяснить тем, что вследствие фотосинтеза снижается концентрация CO 2 в листе. Однако свет оказывает и другое, более прямое действие. Протопласты замыкающих клеток лука, которые не содержат хлоропластов, при освещении синим светом набухают, но этот эффект проявляется лишь в том случае, если в среде присутствуют соли калия. Пигмент, поглощающий синий свет, который стимулирует приток ионов K + и увеличение тургора, - это, понвадимому, флавопротеид, описанный в гл. 11.


Рис. 6.15. Суточный ход устьичных движений (I) и поглощение воды (II). (С изменениями по Mansfield T. 1971. J. Biol. Educ., 5, 115-123.) а. Закрывание устьиц связано с отсутствием света, накоплением CO 2 в процессе дыхания и фазой эндогенного ритма, б. Перед рассветом устьица начинают открываться, потому что эндогенный ритм (фаза открывания) превалирует над прочими факторами. У мезофитов это "ночное открывание" выражено слабо; у Crassulaceae же оно проявляется гораздо сильнее из-за исчерпания CO 2 в результате темновой фиксации, в. Полное открывание представляет собой прямой результат действия света и исчерпания CO 2 в процессе фотосинтеза, г. Частичное закрывание в послеполуденные часы можно объяснить как эндогенным ритмом (переход в фазу закрывания), так и снижением освещенности, д. Устьица растений некоторых видов закрываются в полдень, если температура слишком высока и транспирация превышает поглощение воды. Такое закрывание регулируется, вероятно, абсцизовой кислотой, под влиянием которой устьица закрываются в периоды недостатка воды. е. Закрывание устьиц под влиянием эндогенного ритма усиливается вследствие отсутствия света и под влиянием накапливающейся в процессе дыхания CO 2 . Суточные колебания потери воды сходны с суточным ходом открывания устьиц. Поглощение воды несколько отстает от транспирации из-за сопротивления, которое встречает вода на своем пути в растении. Вследствие этого в дневное время развивается некоторый дефицит, устраняемый затем ночью благодаря продолжительному поглощению воды

Обычно интенсивность транспирации определенным образом изменяется на протяжении дня. Сначала на рассвете она довольно резко возрастает и, продолжая увеличиваться, достигает максимума к полудню. После этого, если температура слишком высока, наступает некоторый спад, за которым следует небольшой подъем, соответствующий снижению температуры. Колебания интенсивности транспирации отражают изменения в состоянии устьичных щелей. Закрывание устьиц в полуденное время частично объясняется высокой концентрацией CO 2 внутри листа, что характерно для этого времени суток. Уровень CO 2 в листе зависит от соотношения скоростей дыхания и фотосинтеза, а скорость дыхания с повышением температуры растет довольно быстро, в то время как процесс фотосинтеза менее чувствителен к температуре. В дополнение к этому, закрыванию устьиц в полуденные часы способствует, вероятно, и то, что в это время в связи с недостатком воды в листе возрастает концентрация абсцизовой кислоты.

Итак, мы убедились в том, что устьичные движения регулируются основными факторами внешней среды: светом, температурой, содержанием влаги в почве, влажностью воздуха и концентрацией CO 2 в воздухе; все эти переменные воздействуют на такие внутренние факторы, как содержание воды и концентрация абсцизовой кислоты в листе. Кроме этого, имеют место также ритмические колебания отверстости устьиц, совершающиеся даже в отсутствие внешних воздействий. Эти ритмические колебания регулируются внутренним осциллятором - биологическими часами растения, о которых мы будем говорить в гл. 12. Рис. 6.15 иллюстрирует суточный ход устьичных движений, регулируемый внутренними ритмами и внешними факторами вместе.

Всероссийская Проверочная Работа ВПР Биология 5 класс Вариант 2 Всероссийская Проверочная Работа

1.1. Рассмотрите изображение.

Покажите стрелками на рисунке и подпишите органы липы: стебель, лист, почка, цветок.

1.2. Какой из органов липы: стебель, лист, почка, цветок является зачаточным побегом?

1.3. В приведённом ниже списке названы функции органов растения. Все они, за исключением одной, выполняются стеблем. Выпишите функцию, которая «выпадает» из общего ряда. Объясните свой выбор.

Опорная (несёт листья, цветки и плоды), минеральное питание, проводящая, вегетативное размножение.

2. Зимой на голых веточках липы заметны чёрные плоды - орешки. Висят орешки небольшими гроздьями, у каждой грозди по крылышку. Ветер подул, оторвал несколько гроздей вместе с крылышками, закружил и уронил одну рядом с деревом, другую - подальше. Найдите в приведённом списке и запишите название этого процесса.

Цветение, развитие, расселение, плодоношение. 3.

Опишите лист липы по следующему плану: тип листа, жилкование листа, форма листовой пластинки.

А. Тип листа

Б. Жилкование листа

В. Форма листовой пластинки

A Б В

4. На Руси липа всегда считалась ценным деревом. Из неё изготавливают расписную хохломскую посуду и матрёшек (А), а в старые времена и обувь (Б). Запишите части растения, которые используют в каждом случае.

А: _____________________
Б: _____________________

Ученик рассматривал под микроскопом клеточное строение листьев различных растений и сделал следующий рисунок. Что на рисунке клетки листа он обозначил буквой В?

6. Вставьте в текст «Размножение» пропущенные слова из предложенного списка.

РАЗМНОЖЕНИЕ

Различают две формы размножения живых организмов. При ________(А) размножении участвуют особые клетки - ___________(Б). Из двух клеток образуется новая клетка - ___________(B). Новый организм сочетает в себе признаки обоих родителей.

Список слов:
1) половое
2) гамета
3) бесполое
4) зигота
5) зародыш
6) личинка

Запишите в таблицу выбранные цифры под соответствующими буквами.
Ответ:

A Б В
7. 7.1. Используя таблицу «Количество устьиц», ответьте на вопросы.

Какое растение содержит устьица только на верхней стороне листа?
Какое растение имеет наибольшее количество устьиц?
Какое растение имеет примерно одинаковое количество устьиц на обеих поверхностях листа?

7.2. Ниже приведены изображения растений, указанных в таблице. Подпишите под каждым изображением название соответствующего растения.

А:______________ Б:______________ В:______________ Г:______________

7.3. Эти растения используются человеком. Под каждым из приведённых ниже примеров подпишите название соответствующего растения, которое имеет практическое значение для человека.

А:______________ Б:______________ В:______________

8.1. Прочитайте текст и выполните задание.

В каких предложениях текста описываются признаки, на основе которых можно сделать вывод о том, что дрофа - самая тяжёлая перелётная степная птица России? Запишите номера выбранных предложений.

8.2. Прочитайте текст и выполните задание.

(1)Основные места обитания дрофы - степи, разнотравные луга и озимые поля. (2) Средняя масса взрослых птиц 16 кг, иногда даже 25 кг. (3) Окраска оперения рыжая с чёрными крапинами, снизу белая. (4) Гнёзда дрофы устраивают на озимых полях прямо на земле. (5) Походка у птицы неторопливая, размеренная. (6) Некоторые птицы зимуют в Закавказье, но большинство на зиму улетает за пределы России

Сделайте описание большой белой цапли по следующему плану.

А) В сравнении с дрофой: крупнее/мельче.
Б) Сходство дрофы и большой белой цапли заключается в том, что они
В) Где обитает и чем питается большая белая цапля? (Приведите не менее двух примеров).

Ответы

1.1.

1.2. Почка - орган растения, из которого в процессе развития появляется побег.
Ответ: Почка.

1.3. Выпадющая из логического ряда функция - минеральное питание. Минеральное питание обеспечивает корень.
2. опыление

4. А - древесина, Б - луб

5. цитоплазма.

7.1. кувшинка белая; маслина; овёс.

7.2. А - дуб, Б - овёс, В - маслина, Г - кувшинка белая.

7.3. А - горох или картофель, Б - рис, В - кукуруза.

8.2. Правильный ответ должен содержать описание / признаки по трём пунктам плана:
А) мельче;
Б) крупные перелетные птицы;
В) болота, водоёмы; рыба, лягушки, моллюски, черви мелкие птицы.



ЛАБОРАТОРНАЯ РАБОТА № 5

ВОДНЫЙ ОБМЕН. ЛИСТ КАК ОРГАН ТРАНСПИРАЦИИ

Цель работы: изучение важнейших функциональных особенностей листа растений как органа транспирации: строения и количества устьиц на листовой пластинке, механизма открывания и закрывания устьиц, влияния различных веществ на движение устьиц.

ТРАНСПИРАЦИЯ

Биологическое значение транспирации состоит, во-первых, в обеспечении постоянства внутренней температуры листа. Это достигается поглощением тепла водой при ее испарении листьями. Энергия, необходимая для перевода молекулы из жидкой фазы в газообразное состояние без изменения температуры, называется теплотой испарения . Затрата тепла на испарение воды является средством регуляции температуры листьев и предупреждения растений от перегрева.

Во-вторых, транспирация, являясь верхним концевым двигателем, обеспечивает поступление воды и элементов минерального питания в корни. Установлено наличие положительной корреляции между интенсивностью транспирации и поступление воды и ионов. Если с растения удалить листья, то поглощение воды корнями прекращается. В присасывающем действии транспирирующих листьев можно убедиться, если поместить срезанную ветку в пипетку, заполненную водой, и опущенную в чашечку со ртутью. Через некоторое время можно наблюдать поднятие ртути в пипетке, что будет указывать на значительную присасывающую силу листьев.

Таким образом, скорость поступления воды в корни обусловлена интенсивностью транспирации.

В-третьих, транспирация предотвращает возникновение избыточного тургорного давления, что могло бы привести к разрушению клеток растений.

В-четвертых, процесс транспирации находится в тесной связи с фотосинтезом растений, что было отмечено работами К. А.Тимирязева. Усвоение СО 2 листьями растений происходит через устьица, и оно зависит от степени насыщенности листовой ткани водой. Процесс усвоения воды и углекислого газа представляет собой единое и неразрывное целое.

Под интенсивностью транспирации понимают количество испарившейся воды за единицу времени с единицы листовой поверхности. Обычно этот показатель имеет размерность – мг/дм 2 час. Количество воды, испаряемое растениями, достаточно велико, и нередко превышает количество выпавших осадков за вегетационный период. Это превышение компенсируется осеннее-зимними осадками. Так, например, одно растение подсолнечника или кукурузы расходует за лето 200-250 л воды. Растения пшеницы на площади 1 га испаряют за лето около 2 млн литров воды, кукурузы – более 3 млн, а капусты – до 8 млн л. В процессе образования одного килограмма растительной массы расходуется 300 л. Воды.

Устьичная транспирация регулируется степенью открытости устьиц. Строение и распределение их зависит от видовых и экологических особенностей растений. Устьица встречаются на всех наземных частях растений, включая репродуктивные органы и даже тычиночные нити. Наиболее характерны устьица для листьев. Чаще они располагаются на нижней стороне листьев (у мезофитных растений). Однако у ксерофитов они встречаются и на верхней стороне листа.

Среднее число устьиц на 1 мм 2 площади колеблется от 100 до 300. Размер устьиц не превышает 20 микрон в длину и 8-15 микрон в ширину. Общая площадь открытых устьиц составляет 1% поверхности листа.

Установлено, что мелкие верхушечные листья имеют большее число устьиц, чем крупные нижние. Частота устьиц (число их на единицу площади) увеличивается при переходе от основания листа к его верхушке и от нижней части растения к верхней. У растений засушливых мест обитания их больше, но по размеру они меньше.

У большинства мезофитных растений устьица расположены на одном уровне с эпидермальными клетками, а у ксерофитных форм устьица расположены ниже уровня эпидермиса и называются погруженными. У гигрофитов иногда замыкающие клетки расположены выше эпидермиса. Такие устьица называются приподнятыми.

Тот или иной тип строения устьиц характерен для определенных групп растений, хотя в пределах одного семейства могут иногда встречаться различные типы устьиц. Несмотря на значительную площадь, занятую устьицами, диффузия водяного пара через них составляет 50-60% испарения со свободной поверхности. Установлено, что скорость диффузии через мелкие отверстия пропорциональна их периметру, а не площади. Поэтому частичное смыкание замыкающих клеток мало влияет на их периметр, и уровень диффузии водяного пара через устьица не очень резко падает.

Опыт 1. Наблюдение за движением устьиц под микроскопом.

Цель опыта : определить зависимость работы устьиц от осмотически активных веществ.

Материалы и оборудование: 5% раствор глицерина, бритва, препаровальная игла, микроскоп, стекла предметные и покровные.

Растения: листья (традесканции, тюльпана, гортензии или амариллиса, каланхое).

Газообмен между межклетниками листа и наружной атмосферой регулируется устьицами. Каждое устьице состоит из двух замыкающих клеток, у которых стенки, примыкающие к устьичной щели, сильно утолщены, тогда как наружные части оболочки остаются тонкими. Неодинаковая толщина наружных и внутренних стенок приводит к тому, что при изменении тургора замыкающие клетки способны искривиться или распрямиться, открывая или закрывая при этом устьичную щель.

Ход работы : изготавливают срезы эпидермиса листа выбранного растения, которые помещают в 5% раствор глицерина и выдерживают не менее 1 ч. Срезы рассматривают под микроскопом, определяют степень раскрытия устьичной щели с помощью окуляр-микрометра. Делают 10 промеров, находят среднее значение и вычисляют ошибку средней. Затем срезы переносят из раствора глицерина в воду и повторяют промеры устьичных щелей под микроскопом. Результаты заносят в таблицу 1.

Таблица 1

Степень раскрытия устьичной щели в разных средах

Растение, орган

№ промера

Степень открытия устьичной щели

Глицерин

Лист растения

Задание: сделать вывод о влиянии глицерина и воды на открытие и закрытие устьиц.

Опыт 2. Определение состояния устьиц и межклетников методом Молиша

Цель опыта : определит влияние внешних условий на состояние устьиц и интенсивность транспирации.

Материалы и оборудование : ксилол (в капельнице), этиловый спирт (в капельнице); бензол (в капельнице), пипетки.

Растение : свежие или подвядшие листья растений, листья растений, находившихся в темноте.

Межклетники листа обычно бывают заполнены воздухом, благодаря чему при рассматривании на свет лист представляется матовым. Если произвести инфильтрацию, т.е. заполнение межклетников какой-либо жидкостью, то соответствующие участки листа становятся прозрачными.

Определение состояния устьиц методом инфильтрации основано на способности жидкостей, смачивающих клеточные оболочки, проникать в силу капиллярности через открытые устьичные щели в ближайшие межклетники, вытесняя из них воздух, в чем легко убедиться по появлению на листе прозрачных пятен. Разные жидкости способны проникать в устьичные щели, открытые в различной степени: ксилол легко проникает через слабо открытые устьица, бензол – через устьица открытые средне, а этиловый спирт способен проникать только через широко открытые устьица.

Данный метод, предложенный Молишем, очень прост и вполне применим для работы в полевых условиях.

Ход работы . На нижнюю поверхность листа нанести отдельно маленькие капли бензола, ксилола и этилового спирта. Держать лист в горизонтальном положении до полного исчезновения капель, которые могут либо испариться, либо проникнуть внутрь листа, и рассмотреть лист на свет.

Исследовать листья, выдержанные в различных условиях (свежие и подвядшие, освещенные и затененные и т.п.). Каждый раз исследовать 2-3 листа.

Ключевые слова

ВОДНЫЙ РЕЖИМ / КОЛИЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ УСТЬИЦ / ЛИСТОВЫЕ ПЛАСТИНКИ / BETULA PENDULA ROTH / СТАБИЛЬНОСТЬ РАЗВИТИЯ / АНТРОПОГЕННЫЕ / БИОТИЧЕСКИЕ И АБИОТИЧЕСКИЕ ФАКТОРЫ / WATER REGIME / QUANTITATIVE INDICATORS OF STOMATA / LEAF BLADES / DEVELOPMENTAL STABILITY / ANTHROPOGENIC / BIOTIC AND ABIOTIC FACTORS

Аннотация научной статьи по биологическим наукам, автор научной работы - Беляева Юлия Витальевна

Данная исследовательская работа посвящена изучению водного режима Betula pendula Roth . Оценка проводилась по результатам исследования количественных показателей устьиц листовых пластинок. Анализирование проводилось в летний период. Было установлено, что в начале лета показатели водоудерживающей способности высокие, а в конце лета, ближе к осени низкие. Полученные данные показывают сильную зависимость количества устьиц от загрязненности воздуха мест произрастания исследуемого вида.

Похожие темы научных работ по биологическим наукам, автор научной работы - Беляева Юлия Витальевна

  • Распределение показателей количества пыли на листовых пластинках Betula pendula Roth. , произрастающей в Г. О. Тольятти

    2015 / Беляева Юлия Витальевна
  • Результаты исследования водоудерживающей способности листовых пластинок Betula pendula roth . , произрастающей в условиях антропогенного воздействия (на примере Г. О. Тольятти)

    2014 / Беляева Юлия Витальевна
  • Показатели флуктуирующей асимметрии Betula pendula Roth. В условиях антропогенного воздействия (на примере Г. О. Тольятти)

    2013 / Беляева Юлия Витальевна
  • Показатели флуктуирующей асимметрии Betula pendula Roth. В естественных и антропогенных условиях Тольятти

    2014 / Беляева Ю. В.
  • Сравнение морфологических признаков листа Betula pendula в условиях урбаносреды

    2013 / Хикматуллина Гульшат Радиковна
  • Особенности эколого-биологического состояния городских древесных насаждений (на примере Betulapendula)

    2018 / Беляева Ю.В.
  • Вариация пигментного комплекса пластид Betula L. в зависимости от факторов среды

    2014 / Баландайкин М.Э.
  • Кавеленова Л. М. Проблемы организации системы фитомониторинга городской среды в условиях лесостепи. Учебное пособие. Самара: Изд-во «Универс групп», 2006. 223 с. Бухарина И. Л. , Поварницина Т. М. , Ведерников К. Е. Эколого-биологические особенности древесных растений в урбанизированной среде. Ижевск: ФГОУ ВПО Ижевская ГСХА, 2007. 216 с

    2008 / Розенберг Г. С.
  • Сирень венгерская - перспективный биоиндикатор для сравнительной оценки степени загрязнения городской среды

    2014 / Полонский В. И., Полякова И. С.
  • Оценка состояния лиственных деревьев и состава филлофагов в условиях г. Йошкар-Олы

    2017 / Турмухаметова Нина Валерьевна

This research work is devoted to the study of the water regime Betula pendula Roth . The evaluation was conducted according to a study of quantitative indicators of stomata of the leaf blades . Analyzing was conducted in the summer. It was found that in the early summer high performance water-holding capacity, and at the end of the summer, closer to the fall low. These data show a strong dependence of the number of stomata on air pollution habitats studied species.

Текст научной работы на тему «Результаты исследования количества устьиц листовых пластинок Betula pendula Roth . , произрастающей в условиях антропогенного воздействия (на примере Г. О. Тольятти)»

Наземные экосистемы

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ КОЛИЧЕСТВА УСТЬИЦ ЛИСТОВЫХ ПЛАСТИНОК BETULA PENDULA ROTH., ПРОИЗРАСТАЮЩЕЙ В УСЛОВИЯХ АНТРОПОГЕННОГО ВОЗДЕЙСТВИЯ (НА ПРИМЕРЕ Г.О.ТОЛЬЯТТИ)

© 2015 Ю.В. Беляева

Институт экологии Волжского бассейна РАН, г. Тольятти Поступила 12.01.2015

Данная исследовательская работа посвящена изучению водного режима Betula pendula Roth. Оценка проводилась по результатам исследования количественных показателей устьиц листовых пластинок. Анализирование проводилось в летний период. Было установлено, что в начале лета показатели водоудерживающей способности высокие, а в конце лета, ближе к осени -низкие. Полученные данные показывают сильную зависимость количества устьиц от загрязненности воздуха мест произрастания исследуемого вида.

Ключевые слова: водный режим, количественные показатели устьиц, листовые пластинки, Betula pendula Roth., стабильность развития, антропогенные, биотические и абиотические факторы.

ВВЕДЕНИЕ

Городской округ Тольятти является одним из самых развивающихся центров России. Основными источниками загрязнения атмосферы служат крупнейшие предприятия автомобилестроения, нефтехимии, по производству химических удобрений и стройматериалов, ТЭЦ и котельные, автомобильный и железнодорожный транспорт с высокой плотностью автотранспортных потоков, речной порт. Дополнительными - рост численности населения, интенсивная застройка жилыми и административными зданиями. Оценка загрязнения атмосферного воздуха г. Тольятти выявила, что наиболее загрязнена атмосфера Центрального района (в 2 и 1,3 раза выше допустимого), далее следует Комсомольский район (в 2 и 1,1 раза выше допустимого), далее Автозаводской район (в 1,9 раза), минимальна загрязнена пригородная зона (по данным ФГБУ «Приволжское УГМС», 2015).

Высокая степень загрязнения, присущая таким городам, приводит к ослаблению некоторых видов древесных растений, их преждевременному старению, снижению продуктивности, поражению болезнями и вредителями, усыханию и гибели. Betula pendula Roth, является распространенным древесным видом в городских насаждениях

Для устойчивых видов древесных растений

характерны такие признаки, как большее число 1 2

устьиц на 1 мм поверхности листа; меньшая длительность и степень открытости их в течение дня; большая толщина кутикулы и наличие дополнительных покровных образований; меньшая толщина и вентилируемость губчатой паренхимы; меньшая величина отношения высоты палисадной ткани к высоте губчатой .

Беляева Юлия Витальевна, ассистент, [email protected]

Необходимы научные исследования по изучению механизмов адаптации, росту и развитию древесных растений, а так же их приживаемости в условиях негативного антропогенного воздействия промышленно-развитых городов. В настоящее время является актуальной работа в области экологического мониторинга, который включает в себя химические, физические и биологические методы оценки качества среды. Мы проводим комплексную эколого-биологическую оценку состояния городских древесных растений. Используя эколого-биологическую оценку можно получить конкретные данные о состоянии зеленых насаждений в условиях городской среды, подверженной антропогенному и климатическому влиянию . В Самарской области лето 2010 г. отличалось тремя месяцами отсутствия дождей, экстремальной сухостью воздуха и как следствие многочисленными пожарами, которые погубили много гектаров драгоценного леса . Жара, температура более 40°С, плюс 45°С в тени, плюс 70°С на почве, сухая земля на глубине 3-6 м., постоянно палящее солнце, а так же отраженное тепло и свет в городской черте. Эти факторы повлияли на насаждения Betula pendula Roth., произрастающие в городе и пригороде. В течение последующих лет, выявился факт, говорящий о том, что особи Betula pendula Roth. продолжают страдать и усыхать. Поэтому особо остро стоит проблема в эффективности данного вида растения, о мероприятиях по восстановлению посадок Betula pendula Roth. или замене другими более устойчивыми видами, а так же о стабилизации экологической обстановки в городе.

МАТЕРИАЛ И МЕТОДИКА

Известно, что процессы испарения воды (транспирация) и газообмена у растений происходит через устьица. Загрязнение атмосферы влияет на устьичный аппарат растений, что приводит к

нарушению функций устьиц и гибели растения. Подсчитав количество устьиц на листовых пластинках и сравнив с контролем, можно получить данные говорящие о состоянии растения, его адаптационной способности, а также выявить места повышенного загрязнения.

Районы исследования расположены в зоне континентального климата умеренных широт с характерным арктическим и тропическим воздухом. Зимой это проявляется в виде сильных морозов, а летом - резкими колебаниями температуры в течение суток. В году средняя месячная температура воздуха в Тольятти варьируется от +20,7°С в июле до -11°С в январе .

Целью исследования явилась оценка состояния Betula Pendula Roth, в условиях антропогенного загрязнения города Тольятти, с использованием анатомо-физиологических характеристик листовых пластинок.

Исследования проводились в 2013-2014 гг. на пяти опытных площадках двух административных районов в различных типах насаждений. В Автозаводском районе это Промышленная зона и Парк Победы. В Центральном районе это улица Баныкина и пригородный лес. Контрольная площадка находилась в Узюковском бору (в 25 км от городской черты).

Объектом исследования явилась Betula Pendula Roth, произрастающая во всех районах города и за городской чертой. Это вид растений рода Берёза (Betula), семейства Берёзовые (Betulaceae). Быстрорастущая древесная порода. Очень светолюбива, ее крона ажурна, пропускает много света .

Предметом исследования является количественный показатель устьиц листовой пластинки Betula pendula Roth. Данная методика опробована для Betula pendula Roth, произрастающей в условиях различных природных ценозов и внутригородских территорий г.о. Тольятти, Самарская область.

Оценку анатомо-физиологического состояния листовых пластинок исследуемого вида проводили в июне, июле и августе методом, разработанным на основе стандартных методик . Изучение анатомо-физиологических показателей проводилось путем подсчета количества устьиц на 1 мм2 с помощью микроскопа. Математическая обработка полученных данных проводилась с помощью пакета Microsoft Office - Microsoft Excel. Для интерпретации полученных результатов использовался корреляционный анализ .

Для анализа использовали средневозрастные растения. Листья брали из нижней части кроны, на уровне поднятой руки, с максимального количества доступных веток (с веток разных направлений, условно - на север, юг, запад, восток) по 10 листьев с каждого дерева на каждом участке. Листья брали примерно одного, среднего для данного вида размера.

Подсчет устьиц проводился в лабораторных условиях. На испаряющей поверхности листа подготовленных к опыту листовых пластинках скальпелем под прямым углом к центральной жилке делались поверхностные надрезы через 2-3 мм и срезался тонкий слой эпидермиса. Эпидермис листовой пластинки помещали в каплю воды на предметное стекло, накрывали покровным и рассматривали под световым микроскопом при малом увеличении, а потом микроскоп переводили на большее увеличение с объективом х40, окуляром х16. При этом микровинтом слегка меняли фокусировку, чтобы обнаружить все устьица на рассматриваемом участке. Определяли среднее число устьиц в поле зрения микроскопа, исследовав несколько (3-4) полей зрения в разных участках препарата. Подсчитывали количество устьиц в световом пятне в трех местах на каждом листе: на мысленно очерченной прямой от центральной жилки к краю листа выбиралось два места, а третье на верхушке листа.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Результаты исследования показали, что у Betula pendula Roth., произрастающей в черте города -Промышленной зоне, Парке Победы и улице Баныкина приходится большее число устьиц на 1

мм листовои поверхности, по сравнению с пригородным лесом и контролем - Узюковский бор. Максимальное увеличение числа устьиц на 1 мм2 листовой пластинки отмечается в Промышленной зоне. При приближении к автомагистралям количество устьиц резко возрастает. Полученные показатели количества устьиц листовых пластинок в 2014 г. выше, чем в 2013 г. В связи с тем, что 2014 г. был более сухим, чем 2013 г. Летний сезон 2013 г. характеризовался частым выпадением осадков в виде дождя. Визуальное сравнение размеров устьиц с листьев из разных точек города показало видимое уменьшение их размеров по мере загрязнения воздушной среды.

Целостность устьичных клеток нарушается под влиянием химических загрязнений воздуха. Замыкающие клетки устьиц не способны регулировать ширину устьичной щели. От этого устьица постоянно открыты и увеличивается расход воды растением на транспирацию. Что в такой ситуации делает растение? Увеличивает количество устьиц на своих листовых пластинках, тем самым компенсируя уменьшение размеров листьев. Уменьшение площади листовых пластинок необратимо приводит к сокращению устьичного аппарата, потому увеличение количества устьиц при уменьшении общей площади листьев приводит к сохранению функций газообмена и транспирации листовых пластинок Betula pendula Roth. Полученные данные за два года исследования, говорят о том, что уменьшение размеров листовых пластинок компенсируются увеличением количества устьиц. По сравнению с эталонным участком 202

Наземные экосистемы

в Промышленной зоне 445 (отмечено увеличение в 2,2 раза), в Парке Победы 411 (увеличение в 2 раза), на улице Баныкина 334 (в 1,6 раза) и в пригородном лесу 244 (в 1,2 раза). Из диаграммы

видно, что за год показатель количества устьиц листовых пластинок увеличился в среднем в 3,5 раза.

500,00 а ■о g 450,00 i S з с S ï 400,00 II g 1 350,00 § О ÜJ ^ 300,00 iä s E 250,00 i i ¥ 4 200,00 3 4 * 150,00 461,00 4Ï!),00 --■

206, OO^^^i-^^^231,00

Узюновский бор Лес городской Улица Баныкина Парк Победы Промзона

Количество устьиц на1мм2 (2013 г.) 198,00 231,00 319,00 392,00 429,00

Количество устьиц на1мм2 (2014 г.) 206,00 257,00 348,00 430,00 461,00

Рис. Результаты оценки количества устьиц листа Betula pendula Roth. за 2013-2014 гг. ЗАКЛЮЧЕНИЕ

На основании подсчетов было вычислено

среднее количество устьиц на 1 мм листовои пластинки. Опытные образцы собраны с различных площадок. По результатам был построен график, на котором средние данные с разных точек исследования выразились в кривую линию, указывающую на увеличение количества устьиц по мере возрастания загрязненности воздуха. Полученные нами экспериментальные данные свидетельствуют, что в г.о. Тольятти, в условиях комплексного загрязнения атмосферного воздуха, повышенного содержания выхлопных газов автотранспорта наблюдается ослабление жизненного состояния Betula pendula Roth, что выражается в ухудшении анатомо-физиологических характеристик листьев. Однако, увеличение количества устьиц на листовой пластинке, изменение площади и массы листа, дисперсности, анатомии листа, следует рассматривать как адаптацию популяции Betula pendula Roth, к условиям техногенного загрязнения городской среды.

Betula pendula Roth, хорошо адаптирующийся вид. Но растущая с каждым годом антропогенная нагрузка настолько большая, что становится больше мертвых особей, чем адаптированных. Понятно, что для улучшения экологической ситуации в г. Тольятти необходима посадка Betula pendula Roth, в местах, где отсутствует растительность, и имеются дороги с большой автомобильной нагрузкой (например, Промышленная зона). Сохранение особей Betula pendula Roth, так же необходимо, как и высаживание молодых образцов, потому что гибель одного вида растений означает угрозу существования от 10 до 30 видов живых существ.

Эколого-биологическую оценку состояния древесных растений по различным биоиндикационным показателям нужно использовать при ис-

следовании состояния растении и городской среды.

БЛАГОДАРНОСТИ

Автор выражает глубокую благодарность и искреннюю признательность своему научному руководителю C.B. Саксонову (ИЭВБ РАН, Тольятти) за понимание, поддержку и ценные советы, В.Н. Козловскому (ПВГУС, Тольятти) за направление на путь истинный и неоценимую поддержку, О.В. Козловской (ПВГУС, Тольятти) за личный пример и неоценимую поддержку, A.B. Гре-бенкину (РГГУ, Тольятти-Москва) и A.C. Мыч-киной (ВЭГУ, Тольятти) за помощь в полевых сборах материала и дружескую поддержку, М.А. Пьянову за конструктивную критику (ПВГУС, Тольятти), В.М. Васюкову (ИЭВБ РАН, Тольятти) и A.B. Ивановой (ИЭВБ РАН, Тольятти) за ценные советы и доброе отношение. Особая благодарность за понимание и терпение моей дорогой маме Л.В. Беляевой.

СПИСОК ЛИТЕРАТУРЫ

1. Алексеев В.А. Лесные экосистемы и атмосферное загрязнение. Л.: Наука. 1990. 197 с.

2. Беляева Ю.В. Результаты исследования водоудер-живающей способности листовых пластинок Betula pendula roth., произрастающей в условиях антропогенного воздействия (на примере г.о. Тольятти) // Известия Самарского научного центра РАН. 2014. Т. 16, № 5 (5). С. 16541659.

3. Биоэкологические исследования [Интернет-ресурс] - Режим доступа: http://nsmelaya.narod.ru/ecopraktika.htm

4. Булыгин Н.Е., Ярмишко В. Т. Дендрология: учебник / 2-е изд. стер. - М.: МГУЛ, 2003. 528 с.

5. Гроздова Н.Б., Некрасов В.И., Глоба-Михайленко Д.А. Деревья, кустарники и лианы. М: Лесная промышленность, 1986.

6. Захаров В.М., Баранов A.C., Борисов В.И. и др. Здоровье среды: методы оценки. М.: Центр экологической политики России, 2000. 68 с.

7. Кавеленова Л.М. Проблемы организации системы фитомониторинга городской среды в условиях лесостепи. Самара: Изд-во «Универс групп», 2006. 223 с.

8. Кавеленова Л.М. Экологические основы и принципы построения системы фитомониторинга урбосреды в лесостепи // Вестник Сам. гос. ун-та, 2003, спец. выпуск 2. 182-191.

9. Кавеленова Л.М., Прохорова Н.В. Растения в биоиндикации окружающей среды. Учебное пособие. Самара, 2012.

10. Козловская О.В. Материалы к флоре поселка Поволжский и его окрестностей (городской округ Тольятти). 1: Двудольные растения // Экология и география растений и сообществ Среднего Поволжья. Материалы III научной конференции (Тольятти, ИЭВБ РАН, 3-5 октября 2014 г.) / Под ред. С.А. Сенатора, C.B. Саксонова, Г.С. Розенберга. Тольятти: Кассандра, 2014. С. 210-216.

11. Кулагин Ю.З. Древесные растения и промышленная среда. М.: Наука, 1974. 125 с.

12. Николаевский B.C. Биологические основы газоустойчивости растений. Новосибирск: Наука, 1979. 280 с.

13. Полевой В.В. Физиология растений. М. 1989. 464 с.

14. Саеенко О.В., Саксоное C.B., Сенатор С.А. Материалы для флоры Узюковского лесного массива // Исследования в области естественных наук и образования. Межвуз. Сб. науч.-исслед. работ. Вып. 2. Самара, 2011. С. 48-53.

15. Саксоное C.B., Сенатор С.А. Путеводитель по Самарской флоре (1851-2011). Флора Волжского бассейна. T.I. Тольятти: Кассандра, 2012. 511 с.

16. Тольяттинская специализированная гидрометеорологическая обсерватория государственного учреждения, Самарский центр по гидрометеорологии и мониторингу окружающей среды (данные).

RESULTS QUANTITY OF STOMA LAMINA BETULA PENDULA ROTH., GROWING UNDER ANTHROPOGENIC IMPACT (ILLUSTRATED G.O.TOLYATTI)

© 2015 Y. Belyaeva

Institute of ecology of Volga basin of RAS, Togliatti

This research work is devoted to the study of the water regime Betula pendula Roth. The evaluation was conducted according to a study of quantitative indicators of stomata of the leaf blades. Analyzing was conducted in the summer. It was found that in the early summer high performance water-holding capacity, and at the end of the summer, closer to the fall - low. These data show a strong dependence of the number of stomata on air pollution habitats studied species.

Key words: water regime, quantitative indicators of stomata, leaf blades, Betula pendula Roth., developmental stability, anthropogenic, biotic and abiotic factors.

Belyaeva Julia Vitaljevna, assistant, [email protected]

Устьица у растения — это поры, находящиеся в слоях эпидермиса. Они служат для испарения лишней воды и газообмена цветка с окружающей средой.

Впервые о них стало известно в 1675 году, когда натуралист Марчелло Мальпиги опубликовал своё открытие в работе Anatome plantarum. Однако он не смог разгадать их настоящего назначения, что послужило толчком для развития дальнейших гипотез и проведения исследований.

История изучения

В XIX веке наступил долгожданный прогресс в исследованиях. Благодаря Гуго фон Молю и Симону Швенденеру стал известен основной принцип работы устьиц и их классификация по типу строения.

Эти открытия дали мощный толчок в понимании функционирования пор, однако некоторые аспекты былых исследований продолжают изучаться до сих пор.

Строение листа

Такие части растений, как эпидермис и устьице, относятся к внутреннему устройству листа, однако сначала следует изучить его внешнее строение. Итак, лист состоит из:

  • Листовой пластины — плоской и гибкой части, отвечающей за фотосинтез, газообмен, испарение воды и вегетативное размножение (для определённых видов).
  • Основания, в котором находится служащая для роста пластины и черешка. Также с его помощью лист крепится к стеблю.
  • Прилистника — парного образования в основании, защищающего пазушные почки.
  • Черешка — сужающейся части листа, соединяющей пластинку со стеблем. Он отвечает за жизненно важные функции: ориентирование на свет и рост посредством образовательной ткани.

Внешнее строение листа может несколько различаться в зависимости от его формы и типа (простой/сложный), но все перечисленные выше части присутствуют всегда.

К внутреннему устройству относят эпидерму и устьице, а также различные формирующие ткани и жилки. Каждый из элементов имеет собственную конструкцию.

Например, внешней стороны листа состоит из живых клеток, отличных по размеру и форме. Самые поверхностные из них обладают прозрачностью, позволяющей солнечному свету проникать внутрь листа.

Более мелкие клетки, расположенные несколько глубже, содержат хлоропласты, придающие листьям зеленый цвет. За счёт своих свойств они были названы замыкающими. В зависимости от степени увлажнения они то сжимаются, то образуют меж собой устьичные щели.

Строение

Длина устьица у растения варьируется в зависимости от вида и степени получаемого им освещения. Самые крупные поры могут достигать в размере 1 см. Образуют устьице замыкающие клетки, регулирующие уровень его открытия.

Механизм их движения довольно сложен и разнится для отличных друг от друга видов растений. У большинства из них - в зависимости от водоснабжения и уровня хлоропластов - тургор тканей клеток может как понижаться, так и повышаться, тем самым регулируя открытие устьица.

Предназначение устьичной щели

Наверное, нет нужды подробно останавливаться на таком аспекте, как функции листа. Об этом знает даже школьник. А вот за что отвечают устьица? Их задача - обеспечение транспирации (процесс движения воды через растение и её испарение через наружные органы, такие как листья, стебли и цветы), что достигается за счёт работы замыкающих клеток. Этот механизм защищает растение от иссушения в жаркую погоду и не позволяет начаться процессу гниения в условиях чрезмерной влажности. Принцип его работы предельно прост: если количество жидкости в клетках недостаточно высоко, давление на стенки падает, и устьичная щель смыкается, сохраняя требуемое для поддержания жизнедеятельности содержание влаги.

И напротив, её переизбыток ведёт к усилению напора и открытию пор, через которые лишняя влага испаряется. Благодаря этому, роль устьиц в охлаждении растений также велика, поскольку температура воздуха вокруг снижается именно посредством транспирации.

Также под щелью расположена воздушная полость, служащая для газообмена. Воздух проникает в растение сквозь поры, чтобы в дальнейшем вступить в и дыхания. Лишний кислород затем выходит в атмосферу посредством всё той же устьичной щели. При этом её наличие или отсутствие часто используется для классификации растений.

Функции листа

Лист является внешним органом, с помощью которого выполняется фотосинтез, дыхание, транспирация, гуттация и вегетативное размножение. Более того, он способен накапливать влагу и органические вещества посредством устьиц, а также обеспечивать растению большую приспособляемость к сложным условиям окружающей среды.

Поскольку вода — основная внутриклеточная среда, выведение и циркуляция жидкости внутри дерева или цветка одинаково важны для его жизнедеятельности. При этом растение усваивает лишь 0,2 % всей влаги, проходящей через него, остальная же часть уходит на транспирацию и гуттацию, за счёт которых происходит передвижение растворённых минеральных солей и охлаждение.

Вегетативное размножение зачастую происходит посредством срезания и укоренения листьев цветков. Многие комнатные растения выращиваются подобным образом, поскольку только так можно сохранить чистоту сорта.

Как было сказано ранее, помогают приспособиться к различным природным условиям. Например, трансформация в колючки помогает пустынным растениям снизить испарение влаги, усики усиливают функции стебля, а большие размеры зачастую служат для сохранения жидкости и полезных веществ там, где климатические условия не позволяют подпитывать запасы регулярно.

И этот список можно продолжать бесконечно. При этом сложно не заметить, что данные функции одинаковы для листьев цветков и деревьев.

У каких растений нет устьиц?

Поскольку устьичная щель характерна для высших растений, она имеется у всех видов, и ошибочно считать её отсутствующей, даже если у дерева или цветка нет листьев. Единственное исключение из правила составляет ламинария и прочие водоросли.

Строение устьиц и их работа у хвойных, папоротников, хвощей, плавунов и отличаются от таковых у цветковых. У большинства из них днём щели открыты и активно участвуют в газообмене и транспирации; исключением являются кактусы и суккуленты, у которых поры распахнуты ночью и закрываются с наступлением утра в целях экономии влаги в засушливых регионах.

Устьица у растения, листья которого плавают на поверхности воды, расположены только в верхнем слое эпидермиса, а у "сидячих" листьев — в нижнем. У остальных разновидностей эти щели присутствуют с обеих сторон пластины.

Расположение устьица

У устьичные щели расположены с двух сторон листовой пластины, однако их количество в нижней части несколько больше, чем в верхней. Эта разница обусловлена потребностью снизить испарение влаги с хорошо освещенной поверхности листа.

Для однодольных растений не существует конкретики касательно расположения устьиц, поскольку оно зависит от направления роста пластин. Например, эпидермис листьев растений, ориентированных вертикально, содержит в себе одинаковое количество пор как в верхнем, так и в нижнем слое.

Как было сказано ранее, у плавающих листьев с нижней стороны устьичные щели отсутствуют, поскольку они впитывают влагу через кутикулу, как и полностью водные растения, у которых подобных пор нет вообще.

Устьица хвойных деревьев находятся глубоко под эндодермой, что способствует снижению способности к транспирации.

Также расположение пор различается относительно поверхности эпидермиса. Щели могут находиться вровень с остальными «кожными» клетками, уходить выше или ниже, образовывать правильные ряды или быть рассыпанными по покровной ткани хаотично.

У кактусов, сукуллентов и иных растений, листья у которых отсутствуют или видоизменились, трансформировавшись в иглы, устьица расположены на стеблях и мясистых частях.

Типы

Устьица у растения делятся на множество типов в зависимости от расположения сопровождающих клеток:

  • Аномоцитный — рассматривается как самый распространённый, где побочные частицы не отличаются от прочих, находящихся в эпидермисе. Как одну из его простых модификаций можно назвать латероцитный тип.
  • Парацитный — характеризуется параллельным примыканием сопровождающих клеток относительно устьичной щели.
  • Диацитный — имеет только две побочных частицы.
  • Анизоцитный — тип, присущий лишь цветковым растениям, с тремя сопровождающими клетками, одна из которых заметно отличается по размеру.
  • Тетрацитный — свойственен для однодольных, имеет четыре сопровождающих клетки.
  • Энциклоцитный — в нём побочные частицы смыкаются кольцом вокруг замыкающих.
  • Перицитный — для него характерно устьице, не соединенное с сопровождающей клеткой.
  • Десмоцитный — отличается от предыдущего типа только наличием сцепления щели с побочной частицей.

Здесь приведены лишь самые популярные виды.

Влияние факторов среды на внешнее строение листа

Для выживания растения крайне важна степень его приспособляемости. Например, для влажных мест характерны крупные листовые пластины и большое количество устьиц, в то время как в засушливых регионах этот механизм действует иначе. Ни цветы, ни деревья не отличаются размерами, а количество пор заметно сокращено, чтобы воспрепятствовать избыточному испарению.

Таким образом, можно проследить, как части растений под воздействием окружающей среды со временем видоизменяются, что влияет и на количество устьиц.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...