Защита электродвигателей от токов перегрузки и короткого замыкания. Защита электродвигателя от перегрузки с помощью теплового реле


Нуждается в надежной защите от теплового перегрева, короткого замыкания и всевозможных перегрузок, которые могут быть вызваны аварийными ситуациями или неисправностями. Чтобы не допустить подобных ситуаций, в промышленности производится довольно много разных устройств, которые как в отдельном порядке, так и в комплекте с другими средствами, образуют блок мощной защиты электродвигателя. Помимо этого, в современные схемы обязательно включают различные элементы, предназначенные для того, чтобы комплексно защитить электрооборудование в случае исчезновении напряжения одной или сразу нескольких фаз питания. Защита электродвигателей очень важна в любом производстве, ведь без нее довольно трудно представить полноценную работу станков и агрегатов.

Существуют сложные средства защиты электродвигателей, использующихся для противодействия аварийным ситуациям, в числе которых могут быть такие случаи как, например, несанкционированный пуск, работа сразу на двух фазах, работа при низком или высоком напряжении, короткое замыкание электрической цепи.

К таким средствам относятся предохранители или автоматические выключатели с кривой D (они защищают электродвигатель от токов короткого замыкания). Особенность их работы заключается в том, что такие автоматические устройства не отключаются при запуске электродвигателя, если сила его пускового тока достигает высокой отметки на период, который по времени меньше одной секунды. Наиболее популярная марка подобных выключателей — это, например, Acti 9.

Также могут использоваться специальные автоматические выключатели для защиты электродвигателей. Автомат защиты электродвигателя имеет электромагнитный и регулируемый тепловой расцепитель, что дает возможность защитить агрегат от короткого замыкания и перегрузки. В результате существенно уменьшается время простоя двигателя, а также снижаются расходы на его техобслуживание. Здесь можно упомянуть такие марки как, например, GV2(3), PKZM, MPE 25 и пр.Используются для защиты и тепловые реле, которые устанавливаются на контакторы (обеспечивают защиту от перегрузки). Реле тепловой защиты отключает трехфазные электродвигатели при перегреве с использованием встроенного вспомогательного выключателя. Известные марки таких реле — это, в частности, SIRIUS и ZB.Реле контроля напряжения, асимметрии и наличия фаз в свою очередь обесточивает двигатель в случае пропадания одной из фаз, превышении или понижении допустимого напряжения. Благодаря такому реле в случае аварии трехфазная нагрузка автоматически отключается. Кроме того, реле контроля напряжения самостоятельно возвращается к рабочему режиму после того, как сеть восстанавливается. Популярные марки подобных реле выпускаются компаниями EKF и ABB.

Устройство защиты электродвигателя — это залог его стабильной работы. Основной принцип работы таких устройств заключается в том, что они следят за потреблением тока двигателем, а также измеряют температуру его обмотки и отключают двигатель, когда обмотка нагревается больше предельно допустимой температуры.

Перегрузка электродвигателей возникает

· при затянувшемся пуске и самозапуске,

· при перегрузке приводимых механизмов,

· при понижении напряжения на выводах двигателя.

· при обрыве фазы.

Для электродвигателя опасны только устойчивые перегрузки. Сверхтоки, обусловленные пуском или самозапуском электродвигателя, кратковременны и самоликвидируются при достижении нормальной частоты вращения.

Значительное увеличение тока электродвигателя получается также при обрыве фазы, что встречается, например, у электродвигателей, защищаемых предохранителями, при перегорании одного из них. При номинальной загрузке в зависимости от параметров электродвигателя увеличение тока статора при обрыве фазы будет составлять примерно (1,6…2,5) I ном . Эта перегрузка носит устойчивый характер. Также устойчивый характер носят сверхтоки, обусловленные механическими повреждениями электродвигателя или вращаемого им механизма и перегрузкой самого механизма. Основной опасностью сверхтоков является сопровождающее их повышение температуры отдельных частей, и в первую очередь, обмоток. Повышение температуры ускоряет износ изоляции обмоток и снижает срок службы двигателя. Перегрузочная способность электродвигателя определяется характеристикой зависимости между сверхтоком и допускаемым временем его прохождения:

где t – допустимая длительность перегрузки, с;

А – коэффициент, зависящий от типа изоляции электродвигателя, а также периодичности и характера сверхтоков; для обычных двигателей А = 150-250;

К – кратность сверхтока, т. е. отношение тока электродвигателя I д к I ном .

Вид перегрузочной характеристики при постоянной времени нагрева T = 300 с представлен на рис. 20.2.

При решении вопроса об установке РЗ от перегрузки и характере ее действия руководствуются условиями работы электродвигателя, имея в виду возможность устойчивой перегрузки его приводного механизма:

а . На электродвигателях механизмов, не подверженных технологическим перегрузкам (например, электродвигателях циркуляционных, питательных насосов и т. п.) и не имеющих тяжелых условий пуска или самозапуска, РЗ от перегрузки может не устанавливаться. Однако, ее установка целесообразна на двигателях объектов, не имеющих постоянного обслуживающего персонала, учитывая опасность перегрузки двигателя при пониженном напряжении питания или неполнофазном режиме;

Рис. 20.2. Характеристика зависимости допустимой длительности перегрузки от кратности тока перегрузки

б . На электродвигателях, подверженных технологическим перегрузкам (например, электродвигателях мельниц, дробилок, насосов и т.п.), а также на электродвигателях, самозапуск которых не обеспечивается, должна устанавливаться РЗ от перегрузки;

в . Защита от перегрузки выполняется с действием на отключение в случае, если не обеспечивается самозапуск электродвигателей или с механизма не может быть снята технологическая перегрузка без останова электродвигателя;

г . Защита от перегрузки электродвигателя выполняется с действием на разгрузку механизма или сигнал, если технологическая перегрузка может быть устранена с механизма автоматически или вручную персоналом без останова механизма, и электродвигатели находятся под наблюдением персонала;

д . На электродвигателях механизмов, которые могут иметь как перегрузку, устраняемую при работе механизма, так и перегрузку, устранение которой невозможно без останова механизма, целесообразно предусматривать действие РЗ от сверхтоков с меньшей выдержкой времени на отключение электродвигателя; в тех случаях, когда ответственные электродвигатели собственных нужд электростанций находятся под постоянным наблюдением дежурного персонала, защиту их от перегрузки можно выполнить с действием на сигнал.

Защита электродвигателей, подверженных технологическойперегрузке, желательно иметь такой, чтобы она, с одной стороны, защищала от недопустимых перегрузок, а с другой – давала возможность наиболее полно использовать перегрузочную характеристику электродвигателя с учетом предшествовавшей нагрузки и температуры окружающей среды. Наилучшей характеристикой РЗ от сверхтоков являлась бы такая, которая проходила несколько ниже перегрузочной характеристики (пунктирная кривая на рис. 20.2).

20.4. Защита от перегрузки с тепловым реле . Лучше других могут обеспечить характеристику, приближающуюся к перегрузочной характеристике электродвигателя, тепловые реле, которые реагируют на количество тепла Q , выделенного в сопротивлении его нагревательного элемента. Тепловые реле выполняются на принципе использования различия в коэффициенте линейного расширения различных металлов под влиянием нагревания. Основой такого теплового реле является биметаллическая пластина состоящая из спаянных по всей поверхности металлов а и б с сильно различающимися коэффициентами линейного расширения. При нагревании пластина прогибается в сторону металла с меньшим коэффициентом расширения и замыкает контакты реле.

Нагревание пластины осуществляется нагревательным элементом при прохождении по нему тока.

Тепловые реле сложны в обслуживании и наладке, имеют различные характеристики отдельных экземпляров реле, часто не соответствуют тепловым характеристикам электродвигателей и имеют зависимость от температуры окружающей среды, что приводит к нарушению соответствия тепловых характеристик реле и электродвигателя. Поэтому тепловые реле применяются в редких случаях, обычно в магнитных пускателях и автоматах 0,4 кВ.

20.5. Защита от перегрузки с токовыми реле . Для защиты электродвигателей от перегрузки обычно применяются МТЗ с использованием реле с ограниченно зависимыми характеристиками типа РТ-80 или МТЗ с независимыми токовыми реле и реле времени.

Преимуществами МТЗ по сравнению с тепловыми являются более простая их эксплуатация и более легкий подбор и регулировка характеристик РЗ. Однако, МТЗ не позволяют использовать перегрузочные возможности электродвигателей из-за недостаточного времени действия их при малых кратностях тока.

МТЗ с независимой выдержкой времени в однорелейном исполнении обычно применяется на всех асинхронных электродвигателях собственных нужд электростанций, а на промышленных предприятиях - для всех синхронных (когда она совмещена с РЗ от асинхронного режима) и асинхронных электродвигателей, являющихся приводами ответственных механизмов, а также для неответственных асинхронных электродвигателей с временем пуска более 12…13 с.

Релейная защита от перегрузки с зависимой выдержкой времени лучше согласовываются с тепловой характеристикой двигателя, однако, и они недостаточно используют перегрузочную способность двигателей в области малых токов.

Защита от перегрузки с зависимой характеристикой выдержки времени может быть выполнена на реле типа РТ-80 или цифровом реле.

Ток срабатывания защиты от перегрузки устанавливается из условия отстройки от I ном электродвигателя:

где к отс – коэффициент отстройки, принимается равным 1,05.

Время действия МТЗ от перегрузки t 3П должно быть таким, чтобы оно было больше времени пуска электродвигателя t пуск , а у электродвигателей, участвующих в самозапуске, больше времени самозапуска.

Время пуска асинхронных электродвигателей обычно составляет 8…15 с. Поэтому характеристика реле с зависимой характеристикой должна иметь при пусковом токе время, не меньшее 12…15 с. На РЗ от перегрузки с независимой характеристикой выдержка времени принимается 14…20 с.

20.6. Защита от перегрузки с тепловой характеристикой выдержки времени на цифровом реле. В цифровое реле защиты двигателя, например, типа MiCOM Р220 заложена тепловая модель двигателя из составляющих прямой и обратной последовательности тока, потребляемого двигателем таким образом, чтобы учесть тепловое воздействие тока в статоре и роторе. Составляющая обратной последовательности токов, протекающих в статоре, наводит в роторе токи значительной амплитуды, которые создают существенное повышение температуры в обмотке ротора. Результатом сложения, проведенного MiCOM Р220 является эквивалентный тепловой ток I экв , отображающий повышение температуры, вызванное током двигателя. Ток I экв вычисляется в соответствии с зависимостью:

(20.7)

К э – коэффициент усиление влияния тока обратной последовательности учитывает повышенное воздействие тока обратной последовательности по сравнению с прямой последовательности на нагрев двигателя. При отсутствии необходимых данных принимается равным 4 - для отечественных двигателей и 6 – для зарубежных.

Дополнительные функции реле MiCOM P220, связанные с тепловой перегрузкой двигателяследующие.

· Запрет отключения от тепловой перегрузки при пуске двигателя.

· Cигнализация тепловой перегрузки.

· Запрет пуска.

· Затяжной пуск.

· Заклинивание ротора.

Заклинивание ротора двигателя может произойти при пуске двигателя или в процессе его работы.

Функция заклинивание ротора при работающем двигателе вводится автоматически при его успешном развороте после истечения заданной выдержки времени.

В цифровых реле Sepam 2000 защита двигателя от затяжного пуска и заклинивания ротора выполнена иначе. Первая защита срабатывает и отключает двигатель, если ток двигателя от начала процесса пуска превышает значение 3I ном в течение заданного времени t 1 = 2t пуска. Начало пуска обнаруживается в момент увеличения потребляемого тока от 0 до значения 5% номинального тока. Вторая защита срабатывает, если пуск завершен, двигатель работает нормально, и в установившемся режиме неожиданно ток двигателя достигает значения более 3I ном и держится в течение заданного времени t 2 = 3-4с.

Несимметрия. Защита двигателя от перегрузки токами обратной последовательности защищает двигатель от подачи напряжения с обратным чередованием фаз, от обрыва фазы, от работы при длительной несимметрии напряжений.

При подаче на двигатель напряжения с обратным чередованием фаз двигатель начинает вращаться в обратную сторону, приводимый в действие механизм может быть заклинен или вращаться с моментом сопротивления, отличающимся от момента прямого вращения. Таким образом, величина тока обратной последовательности двигателя может колебаться в широких пределах. При обрыве фазы двигатель уменьшает вращающий момент в 2 раза и для компенсации у него в 1,5...2 раза увеличивается ток.

При несимметрии питающих напряжений ток обратной последовательности может иметь различную величину до самых малых значений. Появление тока обратной последовательности более всего влияет на нагрев ротора двигателя, где он наводит токи двойной частоты. Таким образом, целесообразно иметь защиту по I 2 , которая отключала бы двигатель для предотвращения его перегрева.

Защита имеет 2 ступени:

Ступень I обр > с независимой выдержкой времени. Ток срабатывания принимается равным (0,2…0,25)I ном двигателя. Выдержка времени должна обеспечить отключение несимметричных коротких замыканий в прилегающей сети, для чего она должна быть на ступень больше, чем защита питающего трансформатора:

(20.8)

Ступень I обр >> сзависимой характеристикой выдержки времениможет быть использована для повышения чувствительности защиты, если известны реальные тепловые характеристики двигателя по току обратной последовательности.

Потеря нагрузки . Функция позволяет обнаружить расцепление двигателя с приводимым им в движение механизмом вследствие обрыва муфты, ленты транспортера, выпуск воды из насоса и т.д. по уменьшению рабочего тока двигателя.

Уставка минимального тока:

где I хх – ток холостого хода двигателя с механизмом определяется при испытаниях.

Выдержка времени минимального тока двигателя tI< определяется исходя из технологических особенностей механизма – возможных кратковременных сбросов нагрузки, при отсутствии таких соображений принимается равным:

Выдержка времени запрета автоматики минимального тока двигателя t запр. задерживает ввод автоматики при пуске двигателя, если нагрузка подключается к двигателю после его разворота или определяется исходя из технологии подачи нагрузки на двигатель, если нагрузка подключена к двигателю постоянно. Уставка должна быть равна времени разворота двигателя плюс необходимый запас:

Количество пусков двигателя. При отсутствии конкретных данных по двигателю можно руководствоваться следующими общими соображениями:

− Согласно ПТЭ, отечественные двигатели обязаны обеспечивать 2 пуска из холодного состояния и 1 из горячего состояния.

− Постоянная времени охлаждения двигателя равна 40мин.

− Можно выполнить следующие уставки в автоматике подсчета пусков:

Уставка по времени, в течение которого считаются пуски: Т отсчета = 30 мин.

Количество горячих пусков –1. Количество холодных пусков – 2.

Уставка по времени, в течение которого повторный пуск запрещен Т запрет = 5 мин. Минимальное время между пусками не использовать.

Время разрешения самозапуска . Самозапуск двигателей на электростанциях должен обеспечиваться, при времени перерыва питания 2,5с. По этим данным производится расчетная проверка обеспечения самозапуска при перерыве питания двигателей на электростанциях.

Таким образом, для электростанций можно принять Т самозап = 2,5 с.

Для других условий следует определить время, на которое возможен перерыв питания, например время действия АВР, произвести расчетную проверку самозапуска, и если он обеспечивается при таком перерыве питания, установить указанное время на устройстве. Если самозапуск не обеспечивается при любом перерыве питания, или он запрещается, функция «разрешение самозапуска» не вводится.

Контрольные вопросы

1. Какие защиты должны иметь асинхронные двигатели в соответствии с ПУЭ?

2. Какие защиты должны иметь синхронные двигатели в соответствии с ПУЭ?

3. Как осуществляется защита и выбираются уставки защиты от междуфазных КЗ двигателей?

4. Как осуществляется защита и выбираются уставки защиты от перегрузки двигателей?

5. Как осуществляется защита и выбираются уставки защиты минимального напряжения двигателей?

6. Каковы особенности защиты синхронных двигателей?

При эксплуатации асинхронных электродвигателей, как и любого другого электрооборудования, могут возникнуть неполадки – неисправности, часто приводящие к аварийному режиму работы, повреждению двигателя. преждевременному выходу его из строя.

Прежде, чем перейти к способам защиты электродвигателей стоит рассмотреть основные и наиболее частые причины возникновения аварийной работы асинхронных электродвигателей:

  • Однофазные и межфазные короткие замыкания – в кабеле, клеммной коробке электродигателя, в обмотке статора (на корпус, межвитковые замыкания).

Короткие замыкания – наиболее опасный вид неисправности в электродвигателе, т. к. сопровождается возникновением очень больших токов, приводящих к перегреву и сгоранию обмоток статора.

Частой причиной тепловой перегрузки электродвигателя, приводящей к ненормальному режиму работы является пропадание одной из питающих фаз. Это приводит к значительному увеличению тока (в два раза превышающего номинальный) в статорных обмотках двух других фаз.

Результат тепловой перегрузки электродвигателя – перегрев и разрушение изоляции обмоток статора, приводящее к замыканию обмоток и негодности электродвигателя.

Защита электродвигателей от токовых перегрузок заключается в своевременном обесточивании электродвигателя при появлении в его силовой цепи или цепи управления больших токов, т. е. при возникновении коротких замыканий.

Для защиты электродвигателей от коротких замыканий применяют плавкие вставки, электромагнитные реле, автоматические выключатели с электромагнитным расцепителем, подобранные таким образом, чтобы они выдерживали большие пусковые сверхтоки, но незамедлительно срабатывали при возникновении токов короткого замыкания.

Для защиты электродвигателей от тепловых перегрузок в схему подключения электродвигателя включают тепловое реле, имеющее контакты цепи управления – через них подаётся напряжение на катушку магнитного пускателя.

При возникновении тепловых перегрузок эти контакты размыкаются, прерывая питание катушки, что приводит к возврату группы силовых контактов в исходное состояние – электродвигатель обесточен.

Простым и надёжным способом защиты электродвигателя от пропадания фаз будет добавление в схему его подключения дополнительного магнитного пускателя:


Включение автоматического выключателя 1 приводит к замыканию цепи питания катушки магнитного пускателя 2 (рабочее напряжение этой катушки должно быть ~380 в) и замыканию силовых контактов 3 этого пускателя, через который (используется только один контакт) подаётся питание катушки магнитного пускателя 4.

Включением кнопки «Пуск» 6 через кнопку «Стоп» 8 замыкается цепь питания катушки 4 второго магнитного пускателя (её рабочее напряжение может быть как 380 так и 220 в), замыкаются его силовые контакты 5 и на двигатель подаётся напряжение.

При отпускании кнопки «Пуск» 6 напряжение с силовых контактов 3 пойдет через нормально разомкнутый блок-контакт 7, обеспечивая неразрывность цепи питания катушки магнитного пускателя.

Как видно из этой схемы защиты электродвигателя, при отсутствии по каким-то причинам одной из фаз напряжение на электродвигатель поступать не будет, что предотвратит его от тепловых перегрузок и преждевременный выход из строя.

Плавный пуск электродвигателей

Будни электрика. Защита трехфазного двигателя.

Защита двигателя от перегрузки

Защита электродвигателя от перегрузки на сегодняшний день является одной из основных задач, которую нужно решить, чтобы успешно эксплуатировать это устройство. Такие типы двигателей используются достаточно широко, а потому было изобретено и множество способов оградить их от различных негативных эффектов.

Уровни защиты

Существует большое разнообразие устройств для защиты данного оборудования, однако, все их можно разделить на уровни.

  • Внешний уровень защиты от короткого замыкания. Чаще всего здесь используется различного типа реле. Данные приборы и уровень защиты находятся на официальном уровне. Другими словами, это обязательный предмет защиты, который должен быть установлен, согласно правилам безопасности на территории РФ.
  • Реле защиты электродвигателя от перегрузок поможет избежать разнообразных критических повреждений в процессе работы, а также возможных повреждений. Эти приборы также принадлежат к внешнему уровню защиты.
  • Внутренний слой защиты предотвращает возможный перегрев деталей двигателя. Для этого иногда используются внешние выключатели, а иногда реле перегрузки.

Причины сбоев оборудования

На сегодняшний день существует большое разнообразие проблем, из-за которых может быть нарушена работоспособность электрического двигателя, если он не будет оборудован приборами для защиты.

  1. Низкий уровень электрического напряжения или же, наоборот, слишком высокий уровень подачи могут стать причиной выхода из строя.
  2. Возможна поломка вследствие того, что слишком быстро и часто будет изменяться частота подачи тока.
  3. Неверная установка агрегата или же его элементов также может быть опасна.
  4. Повышение температуры до критического значения или выше.
  5. Слишком слабое охлаждение тоже приводит к поломкам.
  6. Сильно негативно сказывается повышенная температура окружающей среды.
  7. Немногие знают, то пониженное давление или же установка двигателя намного выше уровня моря, что вызывает пониженное давление, также имеют негативное влияние.
  8. Естественно, что необходима защита электродвигателя от перегрузок, которые могут возникать, из-за сбоев в электросети.
  9. Частое включение и выключение прибора - это негативный дефект, который также нуждается в устранении при помощи приборов защиты.

Плавкие предохранители

Полное название средства защиты - плавкий предохранительный выключатель. В данном устройстве объединяется и автоматический выключатель и плавкий предохранитель, которые расположены в одном корпусе. При помощи выключателя можно также размыкать или замыкать цепь вручную. Плавкий же предохранитель - это защита электродвигателя от перегрузки по току.

Стоит отметить, что конструкция аварийного выключателя предусматривает наличие специального кожуха, который защищает персонал от случайного контакта с клеммами устройства, а также сами контакты от окисления.

Что касается плавкого предохранителя, то это приспособление должно быть способно отличать перегрузку по току от возникновения в цепи короткого замыкания. Это очень важно, так как кратковременная перегрузка по току вполне допускается. Однако, токовая защита электродвигателя от перегрузки должна сработать немедленно, если этот параметр будет продолжать расти.

Предохранители от КЗ

Существует разновидность плавкого предохранителя, которая предназначена для защиты агрегата от короткого замыкания (КЗ). Однако, здесь стоит отметить, что плавкий предохранитель быстрого срабатывания может выйти из строя, если при запуске аппарата будет происходить кратковременная перегрузка, то есть увеличение пускового тока. По этой причине такие приборы обычно используются в тех сетях, где такой скачок невозможен. Что касается самого средства защиты электродвигателя от перегрузки, то предохранитель быстрого срабатывания может выдержать ток, который будет превышать его номинальный на 500%, если перепад длится не более четверти секунды.

Предохранители с задержкой

Развитие технологий привело к тому, что удалось создать прибор для защиты и от перегрузки, и от короткого замыкания одновременно. Таким средством стал плавкий предохранитель с задержкой срабатывания. Особенность заключается в том, что он способен выдерживать 5-кратное увеличение тока, если оно длится не более 10 секунд. Возможно даже более сильное увеличение параметра, но на более короткий срок, прежде чем предохранитель сработает. Однако, чаще всего интервала в 10 секунд хватает и для запуска двигателя, и для того, чтобы предохранитель не сработал. Защита от перегрузок, от КЗ, а также другого типа электродвигателя таким прибором считается одной из наиболее надежных.

Здесь также стоит отметить, как определяется время срабатывания этого устройства защиты. Время срабатывания именно плавкого предохранителя - это отрезок, за который плавится его плавкий элемент (проволока). Когда проволока полностью расплавляется, цепь размыкается. Если говорить о зависимости времени отключения от перегрузки именно для таких типов средств защиты, то они обратно пропорциональны. Другими словами, токовая защита электродвигателя от перегрузок работает так - чем выше сила тока, тем быстрее плавится проволока, а значит сокращается время разъединения цепи.

Магнитные и тепловые приборы

На сегодняшний день автоматические приборы теплового типа считаются наиболее надежными и экономичными приборами для защиты электродвигателя от тепловых перегрузок. Эти устройства также способны выдерживать большие амплитуды тока, которые могут возникнуть во время пуска прибора. Кроме того, тепловые предохранители защищают от таких неполадок как блокировка ротора, к примеру.

Защита асинхронных электродвигателей от перегрузки может осуществляться при помощи магнитных выключателей автоматического типа. Они отличаются высокой надежностью, точностью и экономичностью. Его особенность заключается в том, что на предел его срабатывания по температуре не влияет изменение температуры окружающей среды, что в некоторых условиях работы очень важно. Также они отличаются от тепловых тем, у них более точно определено время срабатывания.

Реле перегрузки

Функции данного устройства достаточно просты, однако, и довольно важны.

  1. Такой прибор способен выдержать кратковременный перепад по току во время запуска двигателя без разрыва цепи, что наиболее важно.
  2. Размыкание цепи происходит в том случае, если ток увеличивается до того значения, когда возникает угроза поломки защищаемого прибора.
  3. После того как перегрузка будет устранена, реле может вернуться в исходное положение автоматически или же может быть возвращено вручную.

Стоит отметить, что токовая защита электродвигателя от перегрузок при помощи реле осуществляется в соответствии с характеристикой срабатывания. Другими словами - в зависимости от класса прибора. Наиболее распространенными являются классы 10, 20 и 30. Первая группа - это реле, которые срабатывают в случае наличия перегрузки, в течение 10 секунд и, если числовое значение тока превышает 600% от номинального. Вторая группа срабатывает спустя 20 секунд и менее, третья, соответственно, спустя 30 секунд и менее.

Плавкие средства защиты и реле

В настоящее время довольно часто сочетают два средства защиты - плавкие предохранители и реле. Такая комбинация работает следующим образом. Плавкий предохранитель должен защищать двигатель от короткого замыкания, а потому у него должна быть достаточно большая емкость. Из-за этого он не может защитить устройство от более низких, но все же опасных токов. Именно для устранения этого недостатка в систему вводятся реле, которые реагируют на более слабые, но все же опасные колебания тока. Наиболее важно в данном случае настроить плавкий предохранитель таким образом, чтобы он сработал раньше, чем возникнут повреждения какого-либо элемента.

Наружные средства защиты

В настоящее время довольно часто используются усовершенствованные системы наружной защиты электродвигателя. Они могут защитить прибор от перенапряжения, перекоса фаз, способны устранять вибрации или же ограничивать число включений и выключений. К тому же у таких средств имеется встроенный тепловой датчик, который помогает контролировать температуру подшипников, статора. Еще одна особенность такого прибора в том, что он способен воспринимать и обрабатывать цифровой сигнал, который создает температурный датчик.

Основное предназначение наружных средств защиты - это сохранение работоспособности трехфазных двигателей. Помимо того, что такое оборудование способно защитить двигатель во время сбоя в электрической сети, оно также обладает еще несколькими преимуществами.

  • Наружное устройство может сформировать и подать сигнал о неисправности еще до того, как она нарушит работоспособность машины.
  • Проводит диагностику тех проблем, которые уже возникли.
  • Дает возможность провести проверку реле во время технического обслуживания.

Исходя из всего вышесказанного, можно утверждать, что устройств для защиты электродвигателя от перегрузки существует большое разнообразие. Кроме того, каждое из них способно защитить прибор от определенных негативных воздействий, а потому целесообразно их комбинировать.

ВВЕДЕНИЕ

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического управления и регулирования, в быту. Они преобразуют механическую энергию в электрическую (генераторы) и, наоборот, электрическую энергию в механическую.

Любая электрическая машина может использоваться как генератор, так и двигатель. Это её свойство называется обратимостью. Она может быть также использована для преобразования одного рода тока в другой (частоты, числа фаз переменного тока, напряжения) в энергию другого вида тока. Такие машины называются преобразователями. Электрические машины в зависимости от рода тока электрической установки, в которой они должны работать, делятся на машины постоянного тока и машины переменного тока. Машины переменного тока могут быть как однофазными, так и многофазными. Наиболее широкое применение получили асинхронные двигатели и синхронные двигатели и генераторы.

Принцип действия электрических машин основан на использовании законов электромагнитной индукции и электромагнитных сил.

Электрические двигатели, используемые в промышленности, быту выпускают сериями, которые представляют собой ряд электрических машин возрастающей мощности, имеющих однотипную конструкцию и удовлетворяющих общему комплексу требований. Широко применяются серии специального назначения.

Защита электродвигателей. Схема защиты электродвигателя

При эксплуатации асинхронных электродвигателей, как и любого другого электрооборудования, могут возникнуть неполадки - неисправности, часто приводящие к аварийному режиму работы, повреждению двигателя. преждевременному выходу его из строя.

Рис.1

Прежде, чем перейти к способам защиты электродвигателей стоит рассмотреть основные и наиболее частые причины возникновения аварийной работы асинхронных электродвигателей:

· Однофазные и межфазные короткие замыкания - в кабеле, клеммной коробке электродигателя, в обмотке статора (на корпус, межвитковые замыкания).

Короткие замыкания - наиболее опасный вид неисправности в электродвигателе, т. к. сопровождается возникновением очень больших токов, приводящих к перегреву и сгоранию обмоток статора.

· Тепловые перегрузки электродвигателя - обычно возникают, когда вращение вала сильно затруднено (выход из строя пошипника, попадание мусора в шнек, запуск двигателя под слишком большой нагрузкой, либо его полная остановка).

Частой причиной тепловой перегрузки электродвигателя, приводящей к ненормальному режиму работы является пропадание одной из питающих фаз. Это приводит к значительному увеличению тока (в два раза превышающего номинальный) в статорных обмотках двух других фаз.

Результат тепловой перегрузки электродвигателя - перегрев и разрушение изоляции обмоток статора, приводящее к замыканию обмоток и негодности электродвигателя.

Защита электродвигателей от токовых перегрузок заключается в своевременном обесточивании электродвигателя при появлении в его силовой цепи или цепи управления больших токов, т. е. при возникновении коротких замыканий. Для защиты электродвигателей от коротких замыканий применяют плавкие вставки, электромагнитные реле, автоматические выключатели с электромагнитным расцепителем, подобранные таким образом, чтобы они выдерживали большие пусковые сверхтоки, но незамедлительно срабатывали при возникновении токов короткого замыкания.

Для защиты электродвигателей от тепловых перегрузок в схему подключения электродвигателя включают тепловое реле, имеющее контакты цепи управления - через них подаётся напряжение на катушку магнитного пускателя.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...