Ракетный двигатель на ядерном топливе. Атомный космический двигатель


Нашёл интересную статью. Вообще атомные космические корабли меня всегда интересовали. Это будущее космонавтики. Обширные работы по этой тематике велись и в СССР. В статье как раз про них.

В космос на атомной тяге. Мечты и реальность.

доктор физико-математических наук Ю. Я. Стависский

В 1950 году я защитил диплом инженера-физика в Московском механическом институте (ММИ) Министерства боеприпасов. Пятью годами раньше, в 1945-м, там был образован инженерно-физический факультет, готовивший специалистов для новой отрасли, в задачи которой входило в основном производство ядерного боеприпаса. Факультет не имел себе равных. Наряду с фундаментальной физикой в объёме университетских курсов (методы математической физики, теория относительности, квантовая механика, электродинамика, статистическая физика и другие) нам преподавали полный набор инженерных дисциплин: химию, металловедение, сопротивление материалов, теорию механизмов и машин и пр. Созданный выдающимся советским физиком Александром Ильичём Лейпунским инженерно-физический факультет ММИ вырос со временем в Московский инженерно-физический институт (МИФИ). Другой инженерно-физический факультет, также влившийся впоследствии в МИФИ, был сформирован в Московском энергетическом институте (МЭИ), но если в ММИ основной упор делался на фундаментальную физику, то в Энергетическом — на тепло- и электрофизику.

Квантовую механику мы изучали по книге Дмитрия Ивановича Блохинцева. Каково же было моё удивление, когда при распределении меня направили к нему на работу. Я, заядлый экспериментатор (в детстве разобрал все часы в доме), и вдруг попадаю к известному теоретику. Меня охватила лёгкая паника, но по прибытии на место — „Объект В“ МВД СССР в Обнинске — сразу понял, что волновался напрасно.

К этому времени основная тематика „Объекта В“, во главе которого до июня 1950 года фактически стоял А.И. Лейпунский, уже сформировалась. Здесь создавали реакторы с расширенным воспроизводством ядерного горючего — „быстрые бридеры“. На посту директора Блохинцев инициировал развитие нового направления — создание двигателей на атомной тяге для космических полётов. Овладение космосом было давней мечтой Дмитрия Ивановича, ещё в юности он переписывался и встречался с К.Э. Циолковским. Я думаю, что понимание гигантских возможностей ядерной энергии, по теплотворной способности в миллионы раз превышающей лучшие химические топлива, и определило жизненный путь Д.И. Блохинцева.
„Лицом к лицу лица не увидать“… В те годы мы многого не понимали. Только сейчас, когда наконец-то появилась возможность сопоставить дела и судьбы выдающихся учёных Физико-энергетического института (ФЭИ) — бывшего „Объекта В“, переименованного 31 декабря 1966 года — складывается верное, как мне кажется, понимание идей, двигавших ими в то время. При всём многообразии дел, которыми приходилось заниматься институту, можно выделить приоритетные научные направления, оказавшиеся в сфере интересов его ведущих физиков.

Главный интерес АИЛа (так в институте за глаза называли Александра Ильича Лейпунского) — развитие глобальной энергетики на основе быстрых реакторов-бридеров (ядерных реакторов, не имеющих ограничений в ресурсах ядерного горючего). Трудно переоценить значение этой поистине „космической“ проблемы, которой он посвятил последние четверть века своей жизни. Немало сил Лейпунский потратил и на оборону страны, в частности на создание атомных двигателей для подводных лодок и тяжелых самолётов.

Интересы Д.И. Блохинцева (за ним закрепилось прозвище „Д. И.“) были направлены на решение проблемы использования ядерной энергии для космических полётов. К сожалению, в конце 1950-х годов он был вынужден оставить эту работу и возглавить создание международного научного центра — Объединённого института ядерных исследований в Дубне. Там он занимался импульсными быстрыми реакторами — ИБР. Это стало последним большим делом его жизни.

Одна цель — одна команда

Д.И. Блохинцев, преподававший в конце 1940-х в МГУ, приметил там, а затем пригласил на работу в Обнинск молодого физика Игоря Бондаренко, который буквально бредил космическими кораблями на атомной тяге. Первым его научным руководителем был А.И. Лейпунский, и Игорь, естественно, занимался его тематикой — быстрыми бридерами.

При Д.И. Блохинцеве вокруг Бондаренко сформировалась группа учёных, которые объединились, чтобы решить проблемы использования атомной энергии в космосе. Кроме Игоря Ильича Бондаренко в группу входили: Виктор Яковлевич Пупко, Эдвин Александрович Стумбур и автор этих строк. Главным идеологом был Игорь. Эдвин проводил экспериментальные исследования наземных моделей ядерных реакторов космических установок. Я занимался в основном ракетными двигателями „малой тяги“ (тяга в них создаётся своеобразным ускорителем — „ионным движителем“, который питается энергией от космической атомной электростанции). Мы исследовали процессы,
протекающие в ионных движителях, на наземных стендах.

На Викторе Пупко (в будущем
он стал начальником отделения космической техники ФЭИ) лежала большая организационная работа. Игорь Ильич Бондаренко был выдающимся физиком. Он тонко чувствовал эксперимент, ставил простые, изящные и весьма эффективные опыты. Я думаю, как ни один экспериментатор, да, пожалуй, и немногие теоретики, „чувствовал“ фундаментальную физику. Всегда отзывчивый, открытый и доброжелательный, Игорь был поистине душой института. До сих пор ФЭИ живёт его идеями. Бондаренко прожил неоправданно короткую жизнь. В 1964-м, в возрасте 38 лет, он трагически погиб из-за врачебной ошибки. Как будто Бог, увидев, как много человек сделал, решил, что это уже чересчур и скомандовал: „Хватит“.

Нельзя не вспомнить ещё одну уникальную личность — Владимира Александровича Малыха, технолога „от Бога“, современного лесковского Левшу. Если „продукцией“ упомянутых выше учёных были в основном идеи и расчётные оценки их реальности, то работы Малыха всегда имели выход „в металле“. Его технологический сектор, насчитывавший во времена расцвета ФЭИ более двух тысяч сотрудников, мог сделать, без преувеличения, всё. Причём ключевую роль всегда играл он сам.

В.А. Малых начинал лаборантом в НИИ ядерной физики МГУ, имея за душой три курса физфака, — доучиться не дала война. В конце 1940-х годов ему удалось создать технологию изготовления технической керамики на основе окиси бериллия — материала уникального, диэлектрика с высокой теплопроводностью. До Малыха многие безуспешно бились над этой проблемой. А топливный элемент на основе серийной нержавеющей стали и природного урана, разработанный им для первой атомной электростанции, — чудо по тем да и по нынешнем временам. Или созданный Малыхом термоэмиссионный топливный элемент реактора-электрогенератора для питания космических аппаратов — „гирлянда“. До сих пор в этой области не появилось ничего лучшего. Творения Малыха были не демонстрационными игрушками, а элементами ядерной техники. Они работали месяцы и годы. Владимир Александрович стал доктором технических наук, лауреатом Ленинской премии, Героем Социалистического Труда. В 1964 году он трагически погиб от последствий военной контузии.

Шаг за шагом

С.П. Королёв и Д.И. Блохинцев с давних пор вынашивали мечту о полёте человека в космос. Между ними установились тесные рабочие связи. Но в начале 1950-х годов, в разгар „холодной войны“, средств не жалели только на военные цели. Ракетная техника рассматривалась лишь как носитель ядерных зарядов, а о спутниках и не помышляли. Между тем Бондаренко, зная о последних достижениях ракетчиков, настойчиво выступал за создание искусственного спутника Земли. Впоследствии об этом никто и не вспомнил.

Любопытна история создания ракеты, поднявшей в космос первого космонавта планеты — Юрия Гагарина. Связана она с именем Андрея Дмитриевича Сахарова. В конце 1940-х годов он разработал комбинированный делительно-термоядерный заряд — „слойку“, видимо, независимо от „отца водородной бомбы“ Эдварда Теллера, который предложил аналогичное изделие под названием „будильник“. Однако вскоре Теллер понял, что ядерный заряд такой схемы будет иметь „ограниченную“ мощность, не более ~ 500 килотонн толового эквивалента. Для „абсолютного“ оружия этого мало, поэтому „будильник“ был заброшен. В Союзе же в 1953 году взорвали сахаровскую слойку РДС-6с.

После успешных испытаний и избрания Сахарова в академики тогдашний глава Минсредмаша В.А. Малышев пригласил его к себе и поставил задачу определить параметры бомбы следующего поколения. Андрей Дмитриевич оценил (без детальной проработки) вес нового, значительно более мощного заряда. Докладная Сахарова легла в основу постановления ЦК КПСС и Совета Министров СССР, которое обязало С.П. Королёва разработать под этот заряд баллистическую ракету-носитель. Именно такая ракета Р-7 под названием „Восток“ и вывела на орбиту искусственный спутник Земли в 1957-м и космический корабль с Юрием Гагариным в 1961-м. Использовать её как носитель тяжёлого ядерного заряда тогда уже не планировали, поскольку развитие термоядерного оружия пошло иным путём.

На начальном этапе космической ядерной программы ФЭИ совместно с КБ В.Н. Челомея разрабатывал крылатую атомную ракету. Это направление развивалось недолго и завершилось расчётами и испытанием элементов двигателя, созданного в отделении В.А. Малыха. По сути, речь шла о низколетящем беспилотном самолете с прямоточным ядерным двигателем и ядерной боеголовкой (своего рода ядерный аналог „жужжащего клопа“ — немецкой V-1). Система стартовала с помощью обычных ракетных ускорителей. После выхода на заданную скорость тяга создавалась атмосферным воздухом, нагреваемым за счёт цепной реакции деления окиси бериллия, пропитанной обогащённым ураном.

Вообще говоря, возможность выполнения ракетой той или иной задачи космонавтики определяется скоростью, которую она приобретает после использования всего запаса рабочего тела (топлива и окислителя). Её вычисляют по формуле Циолковского: V = c×lnMн/ Мк, где с — скорость истечения рабочего тела, а Мн и Мк — начальная и конечная масса ракеты. В обычных химических ракетах скорость истечения определяется температурой в камере сгорания, видом топлива и окислителя и молекулярным весом продуктов сгорания. Например, американцы для высадки астронавтов на Луну использовали в спускаемом аппарате в качестве топлива водород. Продукт его сгорания — вода, чей молекулярный вес сравнительно низок, и скорость истечения в 1,3 раза выше, чем при сжигании керосина. Этого достаточно, чтобы спускаемый аппарат с космонавтами достиг поверхности Луны и затем вернул их на орбиту её искусственного спутника. У Королёва работы с водородным топливом были приостановлены из-за аварии с человеческими жертвами. Создать лунный спускаемый аппарат для человека мы не успели.

Один из путей существенного повышения скорости истечения — создание ядерных термических ракет. У нас это были баллистические атомные ракеты (БАР) с радиусом действия несколько тысяч километров (совместный проект ОКБ-1 и ФЭИ), у американцев — аналогичные системы типа „Киви“. Двигатели испытывались на полигонах под Семипалатинском и в Неваде. Принцип их действия следующий: водород нагревается в ядерном реакторе до высоких температур, переходит в атомарное состояние и уже в таком виде истекает из ракеты. Скорость истечения при этом повышается более чем вчетверо по сравнению с химической водородной ракетой. Вопрос состоял в том, чтобы выяснить, до какой температуры можно нагреть водород в реакторе с твёрдыми топливными элементами. Расчёты давали около 3000°К.

В НИИ-1, научным руководителем которого был Мстислав Всеволодович Келдыш (тогда президент Академии наук СССР), отдел В.М. Иевлева с участием ФЭИ занимался совсем уж фантастической схемой — газофазным реактором, в котором цепная реакция протекает в газовой смеси урана и водорода. Из такого реактора водород истекает ещё раз в десять быстрее, чем из твёрдотопливного, уран же сепарируется и остаётся в активной зоне. Одна из идей предполагала использование центробежной сепарации, когда горячая газовая смесь урана и водорода „закручивается“ поступающим холодным водородом, в результате чего уран и водород разделяются, как в центрифуге. Иевлев пытался, по сути дела, прямо воспроизвести процессы в камере сгорания химической ракеты, используя в качестве источника энергии не теплоту сгорания топлива, а цепную реакцию деления. Это открывало путь к полному использованию энергоёмкости атомных ядер. Но вопрос о возможности истечения из реактора чистого водорода (без урана) так и остался нерешённым, не говоря уже о технических проблемах, связанных с удержанием высокотемпературных газовых смесей при давлениях в сотни атмосфер.

Работы ФЭИ по баллистическим атомным ракетам завершились в 1969-1970 годах „огневыми испытаниями“ на семипалатинском полигоне прототипа ядерного ракетного двигателя с твёрдыми топливными элементами. Его создавал ФЭИ в кооперации с воронежским КБ А.Д. Конопатова, московским НИИ-1 и рядом других технологических групп. Основу двигателя с тягой 3,6 т составлял ядерный реактор ИР-100 с топливными элементами из твёрдого раствора карбида урана и карбида циркония. Температура водорода достигала 3000°К при мощности реактора ~ 170 МВт.

Атомные ракеты малой тяги

До сих пор речь шла о ракетах с тягой, превышающей их вес, которые могли бы стартовать с поверхности Земли. В таких системах увеличение скорости истечения позволяет снизить запас рабочего тела, повысить полезную нагрузку и отказаться от многоступенчатости. Однако есть пути достижения практически неограниченных скоростей истечения, например ускорение вещества электромагнитными полями. Я занимался этим направлением в тесном контакте с Игорем Бондаренко почти 15 лет.

Ускорение ракеты с электрореактивным двигателем (ЭРД) определяется отношением удельной мощности установленной на них космической атомной электростанции (КАЭС) к скорости истечения. В обозримом будущем удельные мощности КАЭС, судя по всему, не превысят 1 кВт/кг. При этом возможно создание ракет с малой тягой, в десятки и сотни раз меньшей веса ракеты, и с очень малым расходом рабочего тела. Такая ракета может стартовать только с орбиты искусственного спутника Земли и, медленно ускоряясь, достигать больших скоростей.

Для полётов в пределах Солнечной системы нужны ракеты со скоростью истечения 50-500 км/с, а для полётов к звёздам — выходящие за пределы нашего воображения „фотонные ракеты“ со скоростью истечения, равной скорости света. Чтобы осуществить сколько-нибудь разумный по времени дальний космический полёт, необходимы невообразимые удельные мощности энергетических установок. Пока нельзя даже представить, на каких физических процессах они могут быть основаны.

Проведенные расчёты показали, что во время Великого противостояния, когда Земля и Марс находятся ближе всего друг к другу, можно за один год осуществить полёт ядерного космического корабля с экипажем к Марсу и возвратить его на орбиту искусственного спутника Земли. Полный вес такого корабля — около 5 т (включая запас рабочего тела — цезия, равный 1,6 т). Он определяется в основном массой КАЭС мощностью 5 МВт, а реактивная тяга — двухмегаваттным пучком ионов цезия с энергией 7 килоэлектронвольт *. Корабль стартует с орбиты искусственного спутника Земли, выходит на орбиту спутника Марса, а спускаться на его поверхность придётся уже на аппарате с водородным химическим двигателем, подобным американскому лунному.

Этому направлению, основанному на технических решениях, возможных уже сегодня, был посвящён большой цикл работ ФЭИ.

Ионные движители

В те годы обсуждались пути создания различных электрореактивных движителей для космических аппаратов, таких, как „плазменные пушки“, электростатические ускорители „пыли“ или капель жидкости. Однако ни одна из идей не имела под собой чёткой физической основы. Находкой оказалась поверхностная ионизация цезия.

Ещё в 20-е годы прошлого века американский физик Ирвинг Лэнгмюр открыл поверхностную ионизацию щелочных металлов. При испарении атома цезия с поверхности металла (в нашем случае — вольфрама), у которого работа выхода электронов больше потенциала ионизации цезия, он практически в 100% случаев теряет слабо связанный электрон и оказывается однократно заряженным ионом. Таким образом, поверхностная ионизация цезия на вольфраме и есть тот физический процесс, который позволяет создать ионный движитель с почти 100-процентным использованием рабочего тела и с энергетическим КПД, близким к единице.

Большую роль в создании моделей ионного движителя такой схемы сыграл наш коллега Сталь Яковлевич Лебедев. Своим железным упорством и настойчивостью он преодолевал все преграды. В результате удалось воспроизвести в металле плоскую трёхэлектродную схему ионного движителя. Первый электрод — пластина вольфрама размером примерно 10×10 см с потенциалом +7 кВ, второй — сетка из вольфрама с потенциалом -3 кВ, третий — сетка из торированного вольфрама с нулевым потенциалом. „Молекулярная пушка“ давала пучок паров цезия, который сквозь все сетки попадал на поверхность вольфрамовой пластины. Уравновешенная и откалиброванная металлическая пластина, так называемые весы, служила для измерения „силы“, т. е. тяги ионного пучка.

Ускоряющее напряжение до первой сетки разгоняет ионы цезия до 10 000 эВ, тормозящее напряжение до второй замедляет их до 7000 эВ. Это та энергия, с которой ионы должны покидать движитель, что соответствует скорости истечения 100 км/с. Но пучок ионов, ограниченный объёмным зарядом, не может „выйти в открытый космос“. Объёмный заряд ионов необходимо скомпенсировать электронами, чтобы образовалась квазинейтральная плазма, которая беспрепятственно распространяется в пространстве и создаёт реактивную тягу. Источником электронов для компенсации объёмного заряда ионного пучка служит нагреваемая током третья сетка (катод). Вторая, „запирающая“ сетка не даёт электронам попасть с катода на вольфрамовую пластину.

Первый опыт с моделью ионного движителя положил начало более чем десятилетним работам. Одна из последних моделей — с пористым вольфрамовым эмиттером, созданная в 1965 году, давала „тягу“ около 20 г при токе ионного пучка 20 А, имела коэффициент использования энергии около 90% и вещества — 95%.

Прямое преобразование ядерного тепла в электричество

Пути прямого преобразования энергии ядерного деления в электрическую пока не найдены. Мы ещё не можем обойтись без промежуточного звена — тепловой машины. Поскольку её КПД всегда меньше единицы, „отработанное“ тепло нужно куда-то девать. На земле, в воде и в воздухе с этим проблем нет. В космосе же существует только один путь — тепловое излучение. Таким образом, КАЭС не может обойтись без „холодильника-излучателя“. Плотность же излучения пропорциональна четвёртой степени абсолютной температуры, поэтому температура холодильника-излучателя должна быть как можно более высокой. Тогда удастся сократить площадь излучающей поверхности и соответственно массу энергетической установки. У нас появилась идея использовать „прямое“ преобразование ядерного тепла в электричество, без турбины и генератора, что казалось более надёжным при длительной работе в области высоких температур.

Из литературы мы знали о работах А.Ф. Иоффе — основателя советской школы технической физики, пионера в исследовании полупроводников в СССР. Мало кто теперь помнит о разработанных им источниках тока, применявшихся в годы Великой Отечественной войны. Тогда не один партизанский отряд имел связь с Большой землёй благодаря „керосиновым“ ТЭГам — термоэлектрогенераторам Иоффе. „Венец“ из ТЭГов (он представлял собой набор полупроводниковых элементов) надевался на керосиновую лампу, а его провода подсоединялись к радиоаппаратуре. „Горячие“ концы элементов нагревались пламенем керосиновой лампы, „холодные“ — остывали на воздухе. Поток тепла, проходя через полупроводник, порождал электродвижущую силу, которой хватало для сеанса связи, а в промежутках между ними ТЭГ заряжал аккумулятор. Когда через десять лет после Победы мы побывали на московском заводе ТЭГов, оказалось, что они ещё находят сбыт. У многих деревенских жителей были тогда экономичные радиоприемники „Родина“ на лампах прямого накала, работающие от батареи. Вместо них зачастую использовали ТЭГи.

Беда керосинового ТЭГа — его низкий КПД (всего около 3,5%) и невысокая предельная температура (350°К). Но простота и надёжность этих приборов привлекали разработчиков. Так, полупроводниковые преобразователи, разработанные группой И.Г. Гвердцители в Сухумском физико-техническом институте, нашли применение в космических установках типа „Бук“.

В свое время А.Ф. Иоффе предложил ещё один термоэмиссионный преобразователь — диод в вакууме. Принцип его действия следующий: нагретый катод испускает электроны, часть их, преодолевающая потенциал анода, совершает работу. От этого прибора ожидали значительно большего КПД (20-25%) при рабочей температуре выше 1000°К. Кроме того, в отличие от полупроводника вакуумный диод не боится нейтронного излучения, и его можно совместить с ядерным реактором. Однако оказалось, что осуществить идею „вакуумного“ преобразователя Иоффе невозможно. Как и в ионном движителе, в вакуумном преобразователе нужно избавиться от объёмного заряда, но на этот раз не ионов, а электронов. А.Ф. Иоффе предполагал использовать в вакуумном преобразователе микронные зазоры между катодом и анодом, что в условиях высоких температур и термических деформаций практически невозможно. Вот тут-то и пригодился цезий: один ион цезия, полученный за счёт поверхностной ионизации на катоде, компенсирует объёмный заряд около 500 электронов! По сути дела, цезиевый преобразователь — это „обращённый“ ионный движитель. Физические процессы в них близки.

«Гирлянды» В.А. Малыха

Одним из результатов работ ФЭИ над термоэмиссионными преобразователями были создание В.А. Малыхом и серийный выпуск в его отделении тепловыделяющих элементов из последовательно соединённых термоэмиссионных преобразователей — „гирлянд“ для реактора „Топаз“. Они давали до 30 В — раз в сто больше, чем одноэлементные преобразователи, созданные „конкурирующими организациями“ — ленинградской группой М.Б. Барабаша и позднее — Институтом атомной энергии. Это позволяло „снимать“ с реактора в десятки и сотни раз большую мощность. Однако надёжность системы, напичканной тысячами термоэмиссионных элементов, вызывала опасения. В то же время паро- и газотурбинные установки работали без сбоев, поэтому мы обратили внимание и на „машинное“ преобразование ядерного тепла в электричество.

Вся трудность заключалась в ресурсе, ведь в дальних космических полётах турбогенераторы должны работать год, два, а то и несколько лет. Чтобы уменьшить износ, „обороты“ (скорость вращения турбины) нужно сделать по возможности более низкими. С другой стороны, турбина работает эффективно, если скорость молекул газа или пара близка к скорости её лопаток. Поэтому сначала мы рассматривали применение самого тяжёлого — ртутного пара. Но нас испугала интенсивная радиационно-стимулированная коррозия железа и нержавеющей стали, которая возникала в охлаждаемом ртутью ядерном реакторе. За две недели коррозия „съела“ тепловыделяющие элементы опытного быстрого реактора „Клементина“ в Аргонской лаборатории (США, 1949 год) и реактора БР-2 в ФЭИ (СССР, Обнинск, 1956 год).

Заманчивым оказался калиевый пар. Реактор с кипящим в нём калием лёг в основу разрабатываемой нами энергетической установки космического корабля малой тяги — калиевый пар вращал турбогенератор. Такой „машинный“ способ преобразования тепла в электричество позволял рассчитывать на КПД до 40%, в то время как реальные термоэмиссионные установки давали кпд всего около 7%. Однако КАЭС с „машинным“ преобразованием ядерного тепла в электричество не получили развития. Дело завершилось выпуском подробного отчёта, по сути — „физической записки“ к техническому проекту космического корабля малой тяги для полёта с экипажем к Марсу. Сам проект так и не был разработан.

В дальнейшем, я думаю, просто пропал интерес к космическим полётам с использованием ядерных ракетных двигателей. После смерти Сергея Павловича Королёва поддержка работ ФЭИ по ионным движителям и „машинным“ ядерно-энергетическим установкам заметно ослабла. ОКБ-1 возглавил Валентин Петрович Глушко, у которого не было интереса к смелым перспективным проектам. Созданное им ОКБ „Энергия“ строило мощные химические ракеты и возвращаемый на Землю космический корабль „Буран“.

«Бук» и «Топаз» на спутниках серии «Космос»

Работы по созданию КАЭС с прямым преобразованием тепла в электричество, теперь уже в качестве источников питания для мощных радиотехнических спутников (космических радиолокационных станций и телетрансляторов), продолжались до начала перестройки. С 1970 по 1988 год в космос запустили около 30 радиолокационных спутников с ядерно-энергетическими установками „Бук“ с полупроводниковыми реакторами-преобразователями и два — с термоэмиссионными установками „Топаз“. „Бук“, по сути дела, представлял собой ТЭГ — полупроводниковый преобразователь Иоффе, только вместо керосиновой лампы в нём использовался ядерный реактор. Это был быстрый реактор мощностью до 100 кВт. Полная загрузка высокообогащённого урана составляла около 30 кг. Тепло из активной зоны передавалось жидким металлом — эвтектическим сплавом натрия с калием полупроводниковым батареям. Электрическая мощность достигала 5 кВт.

Установку „Бук“ под научным руководством ФЭИ разрабатывали специалисты ОКБ-670 М.М. Бондарюка, позднее — НПО „Красная звезда“ (главный конструктор — Г.М. Грязнов). Создать ракету-носитель для вывода спутника на орбиту поручили днепропетровскому КБ „Южмаш“ (главный конструктор — М.К. Янгель).

Время работы „Бука“ — 1-3 месяца. Если установка отказывала, спутник переводили на орбиту длительного существования высотой 1000 км. За почти 20 лет запусков было три случая падения спутника на Землю: два — в океан и один — на сушу, в Канаде, в окрестности Большого Невольничьего озера. Туда упал „Космос-954“, запущенный 24 января 1978 года. Он проработал 3,5 месяца. Урановые элементы спутника полностью сгорели в атмосфере. На земле нашли лишь остатки бериллиевого отражателя и полупроводниковых батарей. (Все эти данные приведены в совместном отчёте атомных комиссий США и Канады об операции „Утренний свет“.)

В термоэмиссионной ядерно-энергетической установке „Топаз“ использовался тепловой реактор мощностью до 150 кВт. Полная загрузка урана составляла около 12 кг — значительно меньше, чем у „Бука“. Основой реактора были тепловыделяющие элементы — „гирлянды“, разработанные и изготовленные группой Малыха. Они представляли собой цепочку термоэлементов: катод — „напёрсток“ из вольфрама или молибдена, заполненный окисью урана, анод — тонкостенная трубка из ниобия, охлаждаемая жидким натрий-калием. Температура катода достигала 1650°C. Электрическая мощность установки доходила до 10 кВт.

Первый лётный образец — спутник „Космос-1818“ с установкой „Топаз“ вышел на орбиту 2 февраля 1987 года и безотказно проработал полгода, до исчерпания запасов цезия. Второй спутник — „Космос-1876“ был запущен через год. Он отработал на орбите почти в два раза дольше. Главным разработчиком „Топаза“ было ОКБ ММЗ „Союз“, возглавляемое С.К. Туманским (бывшее КБ конструктора авиамоторов А.А. Микулина).

Это было в конце 1950-х годов, когда мы занимались ионным движителем, а он — двигателем третьей ступени, предназначавшимся для ракеты, которой предстояло облететь Луну и совершить посадку на неё. Воспоминания о мельниковской лаборатории свежи и поныне. Она располагалась в Подлипках (ныне г. Королёв), на площадке № 3 ОКБ-1. Огромный цех площадью около 3000 м2, уставленный десятками письменных столов со шлейфными осциллографами, производящими запись на 100-миллиметровой рулонной бумаге (это была ещё прошлая эпоха, сегодня хватило бы одного персонального компьютера). У передней стены цеха — стенд, где монтируется камера сгорания двигателя „лунной“ ракеты. К осциллографам идут тысячи проводов от датчиков скорости газов, давления, температуры и других параметров. День начинается в 9.00 с зажигания двигателя. Он работает несколько минут, затем сразу после остановки бригада механиков первой смены разбирает его, тщательно осматривает и измеряет камеру сгорания. Одновременно анализируются ленты осциллографов и вырабатываются рекомендации по изменениям конструкции. Вторая смена — конструкторы и рабочие мастерских вносят рекомендованные изменения. В третью смену на стенде монтируются новая камера сгорания и система диагностики. Через сутки, ровно в 9.00, — следующий сеанс. И так без выходных недели, месяцы. Более 300 вариантов двигателя за год!

Так создавались двигатели химических ракет, которым предстояло работать всего 20-30 минут. Что же говорить об испытаниях и доработках ядерно-энергетических установок — расчёт был на то, что они должны работать не один год. Это требовало поистине гигантских усилий.

Безопасный способ использования ядерной энергии в космосе изобретен еще в СССР, и сейчас ведутся работы по созданию на его основе ядерной установки, сообщил генеральный директор Государственного научного центра РФ «Исследовательский центр имени Келдыша», академик Анатолий Коротеев.

«Сейчас институт активно в этом направлении работает в большой кооперации предприятий Роскосмоса и Росатома. И я надеюсь, что в установленные сроки мы здесь получим положительный эффект», – заявил А.Коротеев на ежегодных «Королевских чтениях» в МГТУ имени Баумана во вторник.

По его словам, «Центр имени Келдыша» изобрел схему безопасного использования ядерной энергии в космическом пространстве, которая позволяет обойтись без выбросов и работает по замкнутой схеме, что делает установку безопасной даже в случае отказа и падения ее на Землю.

«Эта схема в значительной степени снижает риск использования ядерной энергии, особенно с учетом того, что одним из основополагающих моментов является эксплуатация этой системы на орбитах выше 800-1000 км. Тогда, в случае отказа, время «высвечивания» такое, что оно делает безопасным возвращение через большой промежуток времени этих элементов на Землю», — уточнил ученый.

А.Коротеев сообщил, что ранее в СССР уже применялись космические аппараты, работающие на ядерной энергии, но они были потенциально опасными для Земли, и впоследствии от них пришлось отказаться. «СССР использовал ядерную энергию в космосе. В космосе было 34 космических аппарата с ядерной энергией, из которых 32 советских и два американских», — напомнил академик.

По его словам, разрабатываемая в России ядерная установка будет облегчена за счет использования бескаркасной системы охлаждения, при которой охладитель ядерного реактора будет циркулировать непосредственно в космическом пространстве без системы трубопроводов.

А ведь еще еще в начале 1960-х годов конструкторы рассматривали ядерные ракетные двигатели как единственную реальную альтернативу для путешествия к другим планетам Солнечной системы. Давайте узнаем историю этого вопроса.

Соревнование между СССР и США, в том числе и в космосе, шло в это время полным ходом, инженеры и ученые вступили в гонку по созданию ЯРД, военные тоже поддержали вначале проект ядерного ракетного двигателя. Поначалу задача казалась очень простой - нужно только сделать реактор, рассчитанный на охлаждение водородом, а не водой, пристроить к нему сопло, и - вперед, к Марсу! Американцы собирались на Марс лет через десять после Луны и не могли даже помыслить о том, что астронавты когда-нибудь его достигнут без ядерных двигателей.

Американцы очень быстро построили первый реактор-прототип и уже в июле 1959 года провели его испытания (они назывались KIWI-A). Эти испытания всего лишь показали, что реактор можно использовать для нагрева водорода. Конструкция реактора - с незащищенным топливом из оксида урана - не годилась для высоких температур, и водород нагревался всего до полутора тысяч градусов.

По мере накопления опыта конструкция реакторов для ядерного ракетного двигателя - ЯРД - усложнялась. Оксид урана был заменен на более термостойкий карбид, вдобавок его стали покрывать карбидом ниобия, но при попытках достигнуть проектной температуры реактор начинал разрушаться. Больше того, даже при отсутствии макроскопических разрушений происходила диффузия уранового топлива в охлаждающий водород, и потеря массы достигала 20% за пять часов работы реактора. Так и не был найден материал, способный работать при 2700-3000 0 С и противостоять разрушению горячим водородом.

Поэтому американцы приняли решение пожертвовать эффективностью и в проект летного двигателя заложили удельный импульс (тяга в килограммах силы, достигаемая при ежесекундном выбросе одного килограмма массы рабочего тела; единица измерений - секунда). 860 секунд. Это вдвое превышало соответствующий показатель кислород-водородных двигателей того времени. Но когда у американцев сталочто-то получаться, интерес к пилотируемым полетам уже упал, программа «Аполлон» была свернута, а в 1973 году окончательно закрыли проект «NERVA» (так назвали двигатель для пилотируемой экспедиции на Марс). Выиграв лунную гонку, американцы не захотели устраивать марсианскую.

Но уроки, извлеченные из десятка построенных реакторов и нескольких десятков проведенных испытаний, состояли в том, что американские инженеры слишком увлеклись натурными ядерными испытаниями, вместо того чтобы отрабатывать ключевые элементы без вовлечения ядерной технологии там, где этого можно избежать. А где нельзя - использовать стенды меньшего размера. Американцы почти все реакторы «гоняли» на полной мощности, но не смогли добраться до проектной температуры водорода - реактор начинал разрушаться раньше. Всего с 1955 по 1972 годы на программу ядерных ракетных двигателей было потрачено $1,4 млрд. - примерно 5% стоимости лунной программы.

Также в США был придуман проект «Орион», соединявший в себе оба варианта ЯРД (реактивный и импульсный). Сделано это было следующим образом: из хвостовой части корабля выбрасывались небольшие ядерные заряды мощностью около 100 тонн в тротиловом эквиваленте. Вслед за ними отстреливались металлические диски. На расстоянии от корабля производился подрыв заряда, диск испарялся, и вещество разлеталось в разные стороны. Часть его попадала в усиленную хвостовую часть корабля и двигала его вперед. Небольшую прибавку к тяге должно было давать испарение плиты, принимающей на себя удары. Удельная стоимость такого полета должна была быть всего 150 тогдашних долларов на килограмм полезной нагрузки.

Дошло даже до испытаний: опыт показал, что движение при помощи последовательных импульсов возможно, как и создание кормовой плиты достаточной прочности. Но проект «Орион» был закрыт в 1965 году как неперспективный. Тем не менее, это пока единственная существующая концепция, которая может позволить осуществлять экспедиции хотя бы по Солнечной системе.

В первой половине 1960-х годов советские инженеры рассматривали экспедицию на Марс как логичное продолжение разворачиваемой в то время программы полета человека на Луну. На волне воодушевления, вызванного приоритетом СССР в космосе, даже такие чрезвычайно сложные проблемы оценивались с повышенным оптимизмом.

Одной из самых главных проблем была (и остается по сей день) проблема энергодвигательного обеспечения. Было ясно, что ЖРД, даже перспективные кислородно-водородные, если и могут в принципе обеспечить пилотируемый полет на Марс, то только при огромных стартовых массах межпланетного комплекса, с большим количеством стыковок отдельных блоков на монтажной околоземной орбите.

В поисках оптимальных решений ученые и инженеры обратились к ядерной энергии, постепенно присматриваясь к этой проблеме.

В СССР исследования по проблемам использования энергии ядра в ракетно-космической технике начались во второй половине 50-х годов, еще до запуска первых ИСЗ. В нескольких научно-исследовательских институтах возникли небольшие группы энтузиастов, поставивших целью создание ракетных и космических ядерных двигателей и энергоустановок.

Конструкторы ОКБ-11 С.П.Королева совместно со специалистами НИИ-12 под руководством В.Я.Лихушина рассматривали несколько вариантов космических и боевых (!) ракет, оснащенных ядерными ракетными двигателями (ЯРД). В качестве рабочего тела оценивались вода и сжиженные газы – водород, аммиак и метан.

Перспектива была многообещающей; постепенно работы нашли понимание и финансовое обеспечение в правительстве СССР.

Уже самый первый анализ показал, что среди множества возможных схем космических ядерных энергодвигательных установок (ЯЭДУ) наибольшие перспективы имеют три:

  • с твердофазным ядерным реактором;
  • с газофазным ядерным реактором;
  • электроядерные ракетные ЭДУ.

Схемы отличались принципиально; по каждой из них наметили несколько вариантов для развертывания теоретических и экспериментальных работ.

Наиболее близким к реализации представлялся твердофазный ЯРД. Стимулом к развертыванию работ в этом направлении послужили аналогичные разработки, проводившиеся в США с 1955 г. по программе ROVER, а также перспективы (как тогда казалось) создания отечественного межконтинентального пилотируемого самолета-бомбардировщика с ЯЭДУ.

Твердофазный ЯРД работает как прямоточный двигатель. Жидкий водород поступает в сопловую часть, охлаждает корпус реактора, тепловыделяющие сборки (ТВС), замедлитель, а далее разворачивается и попадает внутрь ТВС, где нагревается до 3000 К и выбрасывается в сопло, ускоряясь до высоких скоростей.

Принципы работы ЯРД не вызывали сомнений. Однако конструктивное выполнение (и характеристики) его во многом зависели от «сердца» двигателя – ядерного реактора и определялись, прежде всего, его «начинкой» – активной зоной.

Разработчики первых американских (и советских) ЯРД стояли за гомогенный реактор с графитовой активной зоной. Несколько особняком шли работы поисковой группы по новым видам высокотемпературного топлива, созданной в 1958 г. в лаборатории №21 (руководитель – Г.А.Меерсон) НИИ-93 (директор – А.А.Бочвар). Под влиянием развернутых в то время работ по реактору для самолета (соты из оксида бериллия) в группе предприняли попытки (опять же поисковые) получить материалы на основе карбида кремния и циркония, стойкие к окислению.

По воспоминаниям Р.Б. Котельникова, сотрудника НИИ-9, весной 1958 г. у руководителя лаборатории №21 состоялась встреча с представителем НИИ-1 В.Н.Богиным. Он рассказал, что в качестве основного материала для тепловыделяющих элементов (твэлов) реактора в их институте (кстати, в то время головном в ракетной отрасли; начальник института В.Я.Лихушин, научный руководитель М.В.Келдыш, начальник лаборатории В.М.Иевлев) применяют графит. В частности, уже научились наносить на образцы покрытия для защиты от водорода. Со стороны НИИ-9 было предложено рассмотреть возможность применения карбидов UC-ZrC как основы твэлов.

Спустя короткое время появился еще один заказчик на твэлы – ОКБ М.М.Бондарюка, которое идейно конкурировало с НИИ-1. Если последний стоял за многоканальную цельноблочную конструкцию, то ОКБ М.М.Бондарюка взяло курс на разборный пластинчатый вариант, ориентируясь на легкость механообработки графита и не смущаясь сложностью деталей – пластин миллиметровой толщины с такими же ребрышками. Карбиды обрабатываются гораздо сложнее; в то время из них невозможно было изготовить такие детали, как многоканальные блоки и пластины. Стала ясна необходимость создания какой-то иной конструкции, соответствующей специфике карбидов.

В конце 1959 г. – начале 1960 г. было найдено решающее условие для твэлов ЯРД – стержневой тип сердечника, удовлетворяющий заказчиков – НИИ Лихушина и ОКБ Бондарюка. Как основную для них обосновали схему гетерогенного реактора на тепловых нейтронах; ее основные достоинства (по сравнению с альтернативным гомогенным графитовым реактором) таковы:

  • возможно использовать низкотемпературный водородосодержащий замедлитель, что позволяет создать ЯРД с высоким массовым совершенством;
  • возможно разработать малоразмерный прототип ЯРД тягой порядка 30…50 кН с высокой степенью преемственности для двигателей и ЯЭДУ следующего поколения;
  • возможно широко применять в твэлах и других деталях конструкции реактора тугоплавкие карбиды, что позволяет максимально увеличить температуру нагрева рабочего тела и обеспечить повышенный удельный импульс;
  • возможно поэлементно автономно отработать основные узлы и системы ЯРД (ЯЭДУ), такие как тепловыделяющие сборки, замедлитель, отражатель, турбонасосный агрегат (ТНА), систему управления, сопло и др.; это позволяет проводить отработку параллельно, сокращая объем дорогостоящих комплексных испытаний энергоустановки в целом.

Примерно в 1962–1963 гг. работы по проблеме ЯРД возглавил НИИ-1, имеющий мощную экспериментальную базу и прекрасные кадры. Им не хватало только технологии по урану, а также ядерщиков. С привлечением НИИ-9, а потом и ФЭИ сложилась кооперация, которая взяла за идеологию создание минимального по тяге (около 3.6 тс), но «настоящего» летнего двигателя с «прямоточным» реактором ИР-100 (испытательный или исследовательский, мощностью 100 МВт, главный конструктор – Ю.А.Трескин). Поддержанный постановлениями правительства, НИИ-1 строил электродуговые стенды, неизменно поражавшие воображение – десятки баллонов по 6–8 м высоты, громадные горизонтальные камеры мощностью свыше 80 кВт, броневые стекла в боксах. Участников совещаний вдохновляли красочные плакаты со схемами полетов к Луне, Марсу и т.д. Предполагалось, что в процессе создания и испытаний ЯРД будут решены вопросы конструкторского, технологического, физического плана.

По мнению Р.Котельникова, дело, к сожалению, осложнялось не очень ясной позицией ракетчиков. Министерство общего машиностроения (МОМ) с большими трудностями финансировало программу испытаний и строительство стендовой базы. Казалось, что МОМ не имеет желания или возможностей продвигать программу ЯРД.

К концу 1960-х годов поддержка конкурентов НИИ-1 – ИАЭ, ПНИТИ и НИИ-8 – была значительно серьезнее. Министерство среднего машиностроения («атомщики») активно поддерживало их разработку; «петлевой» реактор ИВГ (с активной зоной и сборками центрального канала стержневого типа разработки НИИ-9) в итоге к началу 70-х годов вышел на первый план; в нем начались испытания ТВС.

Сейчас, спустя 30 лет, представляется, что линия ИАЭ была более правильной: сначала – надежная «земная» петля – отработка твэлов и сборок, а потом создание летного ЯРД нужной мощности. Но тогда казалось, что можно очень быстро сделать настоящий двигатель, пусть маленький… Однако, поскольку жизнь показала, что объективной (или даже субъективной) потребности в таком двигателе не было (к этому можно еще прибавить, что серьезность негативных моментов этого направления, например международных соглашений о ядерных устройствах в космосе, поначалу сильно недооценивалась), то соответственно более правильной и продуктивной оказалась фундаментальная программа, цели которой не были узкими и конкретными.

1 июля 1965 г. был рассмотрен эскизный проект реактора ИР-20-100. Кульминацией стал выпуск техпроекта тепловыделяющих сборок ИР-100 (1967 г.), состоящих из 100 стержней (UC-ZrC-NbC и UC-ZrC-C для входных секций и UC-ZrC-NbC для выходной). НИИ-9 был готов к выпуску крупной партии стержневых элементов будущей активной зоны ИР-100. Проект был весьма прогрессивен: спустя примерно 10 лет практически без существенных изменений он был использован в зоне аппарата 11Б91, и даже сейчас все основные решения сохраняются в сборках подобных реакторов другого назначения, уже совсем с другой степенью расчетного и экспериментального обоснования.

«Ракетная» часть первого отечественного ядерного РД-0410 была разработана в воронежском Конструкторском бюро химической автоматики (КБХА), «реакторная» (нейтронный реактор и вопросы радиационной безопасности) – Институтом физики и энергии (Обнинск) и Курчатовским институтом атомной энергии.

КБХА известно своими работами в области ЖРД для баллистических ракет, КА и РН. Здесь было разработано около 60 образцов, 30 из которых доведено до серийного производства. В КБХА к 1986 г. был создан и самый мощный в стране однокамерный кислородно-водородный двигатель РД-0120 тягой 200 тс, использованный в качестве маршевого на второй ступени комплекса «Энергия-Буран». Ядерный РД-0410 создавался совместно со многими оборонными предприятиями, КБ и НИИ.

Согласно принятой концепции, жидкие водород и гексан (ингибирующая присадка, снижающая наводораживание карбидов и увеличивающая ресурс твэлов) подавались с помощью ТНА в гетерогенный реактор на тепловых нейтронах с ТВС, окруженными замедлителем из гидрида циркония. Их оболочки охлаждались водородом. Отражатель имел приводы для поворота поглотительных элементов (цилиндров из карбида бора). ТНА включал трехступенчатый центробежный насос и одноступенчатую осевую турбину.

За пять лет, с 1966 по 1971 гг., были созданы основы технологии реакторов-двигателей, а еще через несколько лет была введена в действие мощная экспериментальная база под названием «экспедиция №10», впоследствии опытная экспедиция НПО «Луч» на Семипалатинском ядерном полигоне.
Особые трудности встретились при испытаниях. Обычные стенды для запуска полномасштабного ЯРД использовать было невозможно из-за радиации. Испытания реактора решили проводить на атомном полигоне в Семипалатинске, а «ракетной части» – в НИИхиммаш (Загорск, ныне Сергиев Посад).

Для изучения внутрикамерных процессов было выполнено более 250 испытаний на 30 «холодных двигателях» (без реактора). В качестве модельного нагревательного элемента использовалась камера сгорания кислородно-водородного ЖРД 11Д56 разработки КБхиммаш (главный конструктор – А.М.Исаев). Максимальное время наработки составило 13 тыс сек при объявленном ресурсе в 3600 сек.

Для испытаний реактора на Семипалатинском полигоне были построены две специальные шахты с подземными служебными помещениями. Одна из шахт соединялась с подземным резервуаром для сжатого газообразного водорода. От использования жидкого водорода отказались из финансовых соображений.

В 1976 г. был проведен первый энергетический пуск реактора ИВГ-1. Параллельно в ОЭ создавался стенд для испытания «двигательного» варианта реактора ИР-100, и через несколько лет были проведены его испытания на разной мощности (один из ИР-100 впоследствии был переоборудован в материаловедческий исследовательский реактор малой мощности, который работает до сих пор).

Перед экспериментальным запуском реактор опускался в шахту с помощью установленного на поверхности козлового крана. После запуска реактора водород поступал снизу в «котел», раскалялся до 3000 К и огненной струей вырывался из шахты наружу. Несмотря на незначительную радиоактивность истекающих газов, в течение суток находиться снаружи в радиусе полутора километров от места испытаний не разрешалось. К самой же шахте нельзя было подходить в течение месяца. Полуторакилометровый подземный тоннель вел из безопасной зоны сначала к одному бункеру, а из него – к другому, находящемуся возле шахт. По этим своеобразным «коридорам» и передвигались специалисты.

Иевлев Виталий Михайлович

Результаты экспериментов, проведенных с реактором в 1978– 1981 гг., подтвердили правильность конструктивных решений. В принципе ЯРД был создан. Оставалось соединить две части и провести комплексные испытания.

Примерно в 1985 году РД-0410 (по другой системе обозначений 11Б91) мог бы совершить своей первый космический полет. Но для этого нужно было разработать разгонный блок на его основе. К сожалению, эта работа не была заказана ни одному космическому КБ, и тому есть множество причин. Главная из них - так называемая Перестройка. Необдуманные шаги привели к тому, что вся космическая отрасль мгновенно оказалась «в опале» и в 1988 году работы по ЯРД в СССР (тогда еще существовал СССР) были прекращены. Произошло это не из-за технических проблем, а по сиюминутным идеологическим соображениям.А в 1990-м году умер идейный вдохновитель программ ЯРД в СССР Виталий Михайлович Иевлев…

Каких же основных успехов достигли разработчики, создавая ЯРД схемы «А»?

Проведено более полутора десятков натурных испытаний на реакторе ИВГ-1, и получены следующие результаты: максимальная температура водорода – 3100 К, удельный импульс – 925 сек, удельное тепловыделение до 10 МВт/л, общий ресурс более 4000 сек при последовательных 10 включениях реактора. Эти итоги значительно превосходят американские достижения на графитовых зонах.

Следует заметить, что за все время испытаний ЯРД, несмотря на открытый выхлоп, выход радиоактивных осколков деления не превышал допустимых норм ни на полигоне, ни за его пределами и не был зарегистрирован на территории сопредельных государств.

Важнейшим результатом работы явилось создание отечественной технологии таких реакторов, получение новых тугоплавких материалов, а факт создания реактора-двигателя породил ряд новых проектов и идей.

Хотя дальнейшее развитие таких ЯРД было приостановлено, полученные достижения являются уникальными не только в нашей стране, но и в мире. Это неоднократно подтверждено в последние годы на международных симпозиумах по космической энергетике, а также на встречах отечественных и американских специалистов (на последних было признано, что реактор-стенд ИВГ – единственный на сегодня в мире работоспособный испытательный аппарат, который может сыграть важную роль в экспериментальной отработке ТВС и атомных ЭДУ).

источники
http://newsreaders.ru
http://marsiada.ru
http://vpk-news.ru/news/14241

Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Осторожно много букв.

Летный образец космического аппарата с ядерной энергодвигательной установкой (ЯЭДУ) в России планируется создать к 2025 году. Соответствующие работы заложены в проекте Федеральной космической программы на 2016–2025 годы (ФКП-25), направленной Роскосмосом на согласование в министерства.

Ядерные системы электроэнергии считают основными перспективными источниками энергии в космосе при планировании масштабных межпланетных экспедиций. Обеспечить мегаваттные мощности в космосе в перспективе позволит ЯЭДУ, созданием которой сейчас занимаются предприятия «Росатома».

Все работы по созданию ЯЭДУ идут в соответствии с запланированными сроками. Мы можем с большой долей уверенности говорить, что работы будут сданы в срок, предусмотренный целевой программой, - говорит руководитель проекта департамента коммуникаций госкорпорации «Росатом» Андрей Иванов.

За последнее время в рамках проекта пройдено два важных этапа: создана уникальная конструкция тепловыделяющего элемента, обеспечивающая работоспособность в условиях высоких температур, больших градиентов температур, высокодозного облучения. Также успешно завершены технологические испытания корпуса реактора будущего космического энергоблока. В рамках этих испытаний корпус подвергали избыточному давлению и проводили 3D-измерения в зонах основного металла, кольцевого сварного соединения и конического перехода.

Принцип действия. История создания.

С атомным реактором для космического применения нет принципиальных затруднений. В период с 1962 по 1993 год в нашей стране был накоплен богатый опыт производства аналогичных установок. Похожие работы велись и в США. С начала 1960-х годов в мире было разработано несколько типов электрореактивных двигателей: ионный, стационарный плазменный, двигатель с анодным слоем, импульсный плазменный двигатель, магнитоплазменный, магнитоплазмодинамический.

Работы по созданию ядерных двигателей для космических аппаратов активно велись в СССР и США в прошлом веке: американцы закрыли проект в 1994 году, СССР - в 1988-м. Закрытию работ во многом способствовала чернобыльская катастрофа, которая негативно настроила общественное мнение в отношении использования ядерной энергии. К тому же испытания ядерных установок в космосе не всегда проходили штатно: в 1978 году советский спутник «Космос-954» вошел в атмосферу и развалился, разбросав тысячи радиоактивных осколков на территории в 100 тыс. кв. км в северо-западных районах Канады. Советский Союз выплатил Канаде денежную компенсацию в объеме более $10 млн.

В мае 1988 года две организации - Федерация американских ученых и Комитет советских ученых за мир против ядерной угрозы - сделали совместное предложение о запрещении использования ядерной энергии в космосе. Формальных последствий то предложение не получило, однако с тех пор ни одна страна не производила запусков космических аппаратов с ядерными энергетическими установками на борту.

Большими достоинствами проекта являются практически важные эксплуатационные характеристики - высокий ресурс (10 лет эксплуатации), значительный межремонтный интервал и продолжительное время работы на одном включении.

В 2010 году были сформулированы технические предложения по проекту. С этого года началось проектирование.

ЯЭДУ содержит три главные устройства: 1) реакторную установку с рабочим телом и вспомогательными устройствами (теплообменник-рекуператор и турбогенератор-компрессор); 2) электроракетную двигательную установку; 3) холодильник-излучатель.

Реактор.

С физической точки зрения это компактный газоохлаждаемый реактор на быстрых нейтронах.
В качестве топлива используется соединение (диоксид или карбонитрид) урана, но, поскольку конструкция должна быть очень компактной, уран имеет более высокое обогащение по изотопу 235, чем в твэлах на обычных (гражданских) атомных станциях, возможно, выше 20%. А оболочка их - монокристаллический сплав тугоплавких металлов на основе молибдена.

Этому топливу придется работать при очень высоких температурах. Поэтому необходимо было выбрать такие материалы, которые смогут сдерживать негативные факторы, связанные с температурой, и в то же время позволят топливу выполнять его основную функцию - нагревать газовый теплоноситель, с помощью которого будет производиться электроэнергия.

Холодильник.

Охлаждение газа в процессе работы ядерной установки совершенно необходимо. Как же сбрасывать тепло в открытом космосе? Единственная возможность - охлаждение излучением. Нагретая поверхность в пустоте охлаждается, излучая электромагнитные волны в широком диапазоне, в том числе видимый свет. Уникальность проекта в использовании специального теплоносителя - гелий-ксеноновой смеси. В установке обеспечивается высокий коэффициент полезного действия.

Двигатель.

Принцип действия ионного двигателя следующий. В газоразрядной камере с помощью анодов и катодного блока, расположенных в магнитном поле, создается разреженная плазма. Из нее эмиссионным электродом "вытягиваются" ионы рабочего тела (ксенона или другого вещества) и ускоряются в промежутке между ним и ускоряющим электродом.

Для реализации задуманного в период с 2010 по 2018 год было обещано 17 млрд рублей. Из этих средств 7,245 млрд рублей предназначались госкорпорации "Росатом" на создание самого реактора. Другие 3,955 млрд - ФГУП "Центр Келдыша" на создание ядерной - энергодвигательной установки. Еще 5,8 млрд рублей - для РКК "Энергия", где в те же сроки предстоит сформировать рабочий облик всего транспортно-энергетического модуля.

По планам, к концу 2017 года будет осуществлена подготовка ядерной энергодвигательной установки для комплектации транспортно-энергетического модуля (перелетного межпланетного модуля). К концу 2018 года ЯЭДУ будет подготовлена к летно-конструкторским испытаниям. Финансирование проекта осуществляется за счет средств федерального бюджета.

Не секрет, что работы по созданию ядерных ракетных двигателей были начаты в США и в СССР еще в 60-х годах прошлого века. Как далеко они продвинулись? И с какими проблемами пришлось столкнуться на этом пути?

Анатолий Коротеев: Действительно, работы по использованию ядерной энергии в космосе были начаты и активно велись у нас и в США в 1960-70-е годы.

Первоначально была поставлена задача создать ракетные двигатели, которые вместо химической энергии сгорания горючего и окислителя использовали бы нагрев водорода до температуры около 3000 градусов. Но оказалось, что такой прямой путь все-таки неэффективен. Мы на короткое время получаем большие тяги, но при этом выбрасываем струю, которая в случае нештатной работы реактора может оказаться радиоактивно зараженной.

Определенный опыт был накоплен, но ни нам, ни американцам не удалось тогда создать надежных двигателей. Они работали, но мало, потому что нагреть водород до 3000 градусов в ядерном реакторе - серьезная задача. А кроме того, возникали проблемы экологического свойства во время наземных испытаний таких двигателей, поскольку радиоактивные струи выбрасывались в атмосферу. Уже не секрет, что подобные работы проводились на специально подготовленном для ядерных испытаний Семипалатинском полигоне, который остался в Казахстане.

То есть критичными оказались два параметра - запредельная температура и выбросы радиации?

Анатолий Коротеев: В общем, да. В силу этих и некоторых других причин работы у нас и в США были прекращены или приостановлены - оценивать можно по-разному. И возобновить их таким, я бы сказал, лобовым образом, чтобы сделать ядерный двигатель со всеми уже названными недостатками, нам показалось неразумным. Мы предложили совершенно иной подход. От старого он отличается тем же, чем отличается гибридный автомобиль от обычного. В обычном авто двигатель крутит колеса, а в гибридных - от двигателя вырабатывается электроэнергия, и уже это электричество крутит колеса. То есть создается некая промежуточная электростанция.

Вот и мы предложили схему, в которой космический реактор не нагревает струю, выбрасываемую из него, а вырабатывает электричество. Горячий газ от реактора крутит турбину, турбина крутит электрогенератор и компрессор, который обеспечивает циркуляцию рабочего тела по замкнутому контуру. Генератор же вырабатывает электричество для плазменного двигателя с удельной тягой в 20 раз выше, чем у химических аналогов.

Мудреная схема. По существу, это мини-АЭС в космосе. И в чем ее преимущества перед прямоточным ядерным двигателем?

Анатолий Коротеев: Главное - выходящая из нового двигателя струя не будет радиоактивной, поскольку через реактор проходит совершенно другое рабочее тело, которое содержится в замкнутом контуре.

Кроме того, нам не надо при этой схеме нагревать до запредельных значений водород: в реакторе циркулирует инертное рабочее тело, которое нагревается до 1500 градусов. Мы серьезно упрощаем себе задачу. И в итоге поднимем удельную тягу не в два раза, а в 20 раз по сравнению с химическими двигателями.

Немаловажно и другое: отпадает потребность в сложных натурных испытаниях, для которых нужна инфраструктура бывшего Семипалатинского полигона, в частности, та стендовая база, что осталась в городе Курчатове.

В нашем случае все необходимые испытания можно провести на территории России, не втягиваясь в длинные международные переговоры об использовании ядерной энергии за пределами своего государства.

Ведутся ли сейчас подобные работы в других странах?

Анатолий Коротеев: У меня была встреча с заместителем руководителя НАСА, мы обсуждали вопросы, связанные с возвращением к работам по ядерной энергии в космосе, и он заявил, что американцы проявляют к этому большой интерес.

Вполне возможно, что и Китай может ответить активными действиями со своей стороны, поэтому работать надо быстро. И не только ради того, чтобы опередить кого-то на полшага.

Работать надо быстро в первую очередь для того, чтобы в формирующейся международной кооперации, а де-факто она формируется, мы выглядели достойно.

Я не исключаю, что уже в ближайшей перспективе может быть инициирована международная программа по ядерной космической энергоустановке наподобие реализуемой сейчас программы по управляемому термоядерному синтезу.

Можно было бы начать эту статью традиционным пассажем про то, как писатели-фантасты выдвигают смелые идеи, а ученые потом воплощают их в жизнь. Можно, но писать штампами не хочется. Лучше вспомнить, что современные ракетные двигатели, твердотопливные и жидкостные, имеют более чем неудовлетворительные характеристики для полетов на относительно дальние дистанции. Вывести груз на орбиту Земли они позволяют, доставить что-то на Луну – тоже, хотя и обходится такой полет дороже. А вот полететь на Марс с такими двигателями уже нелегко. Им подавай горючее и окислитель в нужных объемах. И объемы эти прямо пропорциональны расстоянию, которое надо преодолеть.


Альтернатива традиционным химическим ракетным двигателям – двигатели электрические, плазменные и ядерные. Из всех альтернативных двигателей до стадии разработки двигателя дошла только одна система – ядерная (ЯРД). В Советском Союзе и в США еще в 50-х годах прошлого века были начаты работы по созданию ядерных ракетных двигателей. Американцы прорабатывали оба варианта такой силовой установки: реактивный и импульсный. Первая концепция подразумевает нагрев рабочего тела при помощи ядерного реактора с последующим выбросом через сопла. Имульсный ЯРД, в свою очередь, движет космический аппарат за счет последовательных взрывов небольшого количества ядерного топлива.

Также в США был придуман проект «Орион», соединявший в себе оба варианта ЯРД. Сделано это было следующим образом: из хвостовой части корабля выбрасывались небольшие ядерные заряды мощностью около 100 тонн в тротиловом эквиваленте. Вслед за ними отстреливались металлические диски. На расстоянии от корабля производился подрыв заряда, диск испарялся, и вещество разлеталось в разные стороны. Часть его попадала в усиленную хвостовую часть корабля и двигала его вперед. Небольшую прибавку к тяге должно было давать испарение плиты, принимающей на себя удары. Удельная стоимость такого полета должна была быть всего 150 тогдашних долларов на килограмм полезной нагрузки.

Дошло даже до испытаний: опыт показал, что движение при помощи последовательных импульсов возможно, как и создание кормовой плиты достаточной прочности. Но проект «Орион» был закрыт в 1965 году как неперспективный. Тем не менее, это пока единственная существующая концепция, которая может позволить осуществлять экспедиции хотя бы по Солнечной системе.

До строительства опытного экземпляра удалось дойти только реактивным ЯРД. Это были советский РД-0410 и американский NERVA. Они работали по одинаковому принципу: в «обычном» ядерном реакторе нагревается рабочее тело, которое при выбросе из сопел и создает тягу. Рабочим телом обоих двигателей был жидкий водород, но на советском в качестве вспомогательного вещества использовался гептан.

Тяга РД-0410 составляла 3,5 тонны, NERVA давал почти 34, однако имел и большие габариты: 43,7 метров длины и 10,5 в диаметре против 3,5 и 1,6 метров соответственно у советского двигателя. При этом американский двигатель в три раза проигрывал советскому по ресурсу – РД-0410 мог работать целый час.

Однако оба двигателя, несмотря на перспективность, тоже остались на Земле и никуда не летали. Главная причина закрытия обоих проектов (NERVA в середине 70-х, РД-0410 в 1985 году) – деньги. Характеристики химических двигателей хуже, чем у ядерных, но цена одного запуска корабля с ЯРД при одинаковой полезной нагрузке может быть в 8-12 раз больше пуска того же «Союза» с ЖРД. И это еще без учета всех расходов, необходимых для доведения ядерных двигателей до пригодности к практическому применению.

Вывод из эксплуатации «дешевых» Шаттлов и отсутствие в последнее время революционных прорывов в космической технике требует новых решений. В апреле этого года тогдашний глава Роскосмоса А. Перминов заявил о намерении разработать и ввести в эксплуатацию совершенно новый ЯРД. Именно это, по мнению Роскосмоса, должно кардинально улучшить «обстановку» во всей мировой космонавтике. Теперь же выяснилось, кто должен стать очередными революционерами космонавтики: разработкой ЯРД займется ФГУП «Центр Келдыша». Генеральный директор предприятия А. Коротеев уже обрадовал общественность о том, что эскизный проект космического корабля под новый ЯРД будет готов уже в следующем году. Проект двигателя должен быть готов к 2019, а испытания запланированы на 2025 год.

Комплекс получил название ТЭМ – транспортно-энергетический модуль. Он будет нести ядерный реактор с газовым охлаждением. С непосредственным движителем пока не определились: либо это будет реактивный двигатель наподобие РД-0410, либо электрический ракетный двигатель (ЭРД). Однако последний тип пока нигде в мире массово не применялся: ими оснащались всего три космических аппарата. Но в пользу ЭРД говорит тот факт, что от реактора можно запитывать не только двигатель, но и множество других агрегатов или вообще использовать весь ТЭМ как космическую электростанцию.

Уже в конце нынешнего десятилетия в России может быть создан космический корабль для межпланетных путешествий на ядерной тяге. И это резко изменит ситуацию и в околоземном пространстве, и на самой Земле.

Ядерная энергодвигательная установка (ЯЭДУ) будет готова к полету уже в 2018 году. Об этом сообщил директор Центра имени Келдыша, академик Анатолий Коротеев . «Мы должны подготовить первый образец (ядерной энергетической установки мегаваттного класса. – Прим. "Эксперта Online") к летно-конструкторским испытаниям в 2018 году. Полетит она или нет, это другое дело, там может быть очередь, но она должна быть готова к полету», – передало его слова РИА « Новости» . Сказанное означает, что один из самых амбициозных советско-российских проектов в области освоения космоса вступает в фазу непосредственной практической реализации.

Суть этого проекта, корни которого уходят еще в середину прошлого века, вот в чем. Сейчас полеты в околоземное пространство осуществляются на ракетах, которые движутся за счет сгорания в их двигателях жидкого или твердого топлива. По сути, этот тот же двигатель, что и в автомобиле. Только в автомобиле бензин, сгорая, толкает поршни в цилиндрах, передавая через них свою энергию колесам. А в ракетном двигателе сгорающие керосин или гептил непосредственно толкают ракету вперед.

За прошедшие полвека эта ракетная технология была отработана во всем мире до мелочей. Но и сами ракетостроители признают, что . Совершенствовать – да, нужно. Пытаться увеличить грузоподъемность ракет с нынешних 23 тонн до 100 и даже 150 тонн на основе «усовершенствованных» двигателей сгорания – да, нужно пытаться. Но это тупиковый путь с точки зрения эволюции. «Сколько бы специалисты всего мира по ракетным двигателям ни трудились, максимальный эффект, который мы получим, будет исчисляться долями процентов. Из существующих ракетных двигателей, будь это жидкостные или твердотопливные, грубо говоря, выжато все, и попытки увеличения тяги, удельного импульса просто бесперспективны. Ядерные же энергодвигательные установки дают увеличение в разы. На примере полета к Марсу – сейчас надо лететь полтора-два года туда и обратно, а можно будет слетать за два-четыре месяца », – оценивал в свое время ситуацию экс-глава Федерального космического агентства России Анатолий Перминов .

Поэтому ещё в 2010 году, тогдашнем президентом России, а ныне премьер-министром Дмитрием Медведевым было дано распоряжение к концу этого десятилетия создать в нашей стране космический транспортно-энергетический модуль на основе ядерной энергетической установки мегаваттного класса. На разработку этого проекта до 2018 года из средств федерального бюджета, «Роскосмоса» и «Росатома» запланировано выделить 17 млрд рублей. 7,2 млрд из этой суммы выделено госкопорации «Росатом» на создание реакторной установки (этим занимается Научно-исследовательский и конструкторский институт энерготехники имени Доллежаля), 4 млрд – Центру имени Келдыша на создание ядерной энергодвигательной установки. 5,8 млрд рублей предназначается РКК «Энергия» для создания транспортно-энергетического модуля, то есть, проще говоря, ракеты-корабля.

Естественно, все эти работы делаются не на пустом месте. С 1970 по 1988 годы в космос только СССР запустил более трех десятков спутников-шпионов, оснащенных ядерными силовыми установками малой мощности типа «Бук» и «Топаз». Они использовались при создании всепогодной системы наблюдения за надводными целями на всей акватории Мирового океана и выдачи целеуказания с передачей на носители оружия или командные пункты – система морской космической разведки и целеуказания «Легенда» (1978 год).

NASA и американские компании, производящие космические аппараты и средства их доставки, так и не смогли за это время, хоть и трижды пытались, создать ядерный реактор, который бы устойчиво работал в космосе. Поэтому в 1988 году через ООН был проведен запрет на использование космических аппаратов с ядерными энергетическими двигательными установками, и производство спутников типа УС-А с ЯЭДУ на борту в Советском Союзе было прекращено.

Параллельно в 60-70-е годы прошлого века Центр имени Келдыша вел активные работы по созданию ионного двигателя (электроплазменного двигателя), который наиболее подходит для создания двигательной установки большой мощности, работающей на ядерном топливе. Реактор выделяет тепло, оно генератором преобразуется в электричество. С помощью электричества инертный газ ксенон в таком двигателе сначала ионизируется, а затем положительно заряженные частицы (положительные ионы ксенона) ускоряются в электростатическом поле до заданной скорости и создают тягу, покидая двигатель. Вот такой принцип работы ионного двигателя, прототип которого уже создан в Центре имени Келдыша.

«В 90-х годах XX века мы в Центре Келдыша возобновили работы по ионным двигателям. Сейчас должна быть создана новая кооперация для такого мощного проекта. Уже есть прототип ионного двигателя, на котором можно отрабатывать основные технологические и конструктивные решения. А штатные изделия еще нужно создавать. У нас срок определен – к 2018 году изделие должно быть готово к летным испытаниям, а к 2015 году должна быть завершена основная отработка двигателя. Дальше – ресурсные испытания и испытания всего агрегата в целом », – отмечал в прошлом году начальник отдела электрофизики Исследовательского центра имени М.В. Келдыша, профессор факультета аэрофизики и космических исследований МФТИ Олег Горшков.

Какая практическая польза России от этих разработок? Эта польза намного превышает те 17 млрд рублей, которые государство намерено потратить до 2018 года на создание ракеты-носителя с ядерной силовой установкой на борту мощностью 1 МВт. Во-первых, это резкое расширение возможностей нашей страны и человечества вообще. Космический корабль с ядерным двигателем дает реальные возможности людям совершить и другим планетам. Сейчас многие страны таких кораблей. Возобновились они и в США в 2003 году, после того как к американцам попали два образца российских спутников с ядерными силовыми установками.

Однако, несмотря на это, член спецкомиссии NASA по пилотируемым полетам Эдвард Кроули, например, считает, что на корабле для международного полета к Марсу должны стоять российские ядерные двигатели. «Востребован российский опыт в сфере разработки ядерных двигателей. Я думаю, у России есть очень большой опыт как в разработке ракетных двигателей, так и в ядерных технологиях. У нее есть также большой опыт адаптации человека к условиям космоса, поскольку российские космонавты совершали очень долгие полеты », – сказал Кроули журналистам весной прошлого года после лекции в МГУ, посвященной американским планам пилотируемых исследований космоса.

Во-вторых , такие корабли позволяют резко активизировать деятельность и в околоземном пространстве и дают реальную возможность началу колонизации Луны (уже есть проекты строительства на спутнике Земли атомных станций). «Использование ядерных энергодвигательных установок рассматривается для больших пилотируемых систем, а не для малых космических аппаратов, которые могут летать на других типах установок, использующих ионные двигатели или энергию солнечного ветра. Использовать ЯЭДУ с ионными двигателями можно на межорбитальном многоразовом буксире. К примеру, возить грузы между низкими и высокими орбитами, осуществлять полеты к астероидам. Можно создать многоразовый лунный буксир или отправить экспедицию на Марс », – считает профессор Олег Горшков. Подобные корабли резко меняют экономику освоения космоса. По расчетам специалистов РКК «Энергия», ракета-носитель на ядерной тяге обеспечивает снижение стоимости выведения полезного груза на окололунную орбиту более чем в два раза по сравнению с жидкостными ракетными двигателями.

В-третьих , это новые материалы и технологии, которые будут созданы в ходе реализации этого проекта и затем внедрены в другие отрасли промышленности – металлургию, машиностроение и т.д. То есть это один из таких прорывных проектов, которые реально могут толкнуть вперед и российскую, и мировую экономику.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...