Солеотложения при добыче нефти. Химический способ предупреждения отложения неорганических солей


Изобретение относится к составам ингибиторов для предотвращения карбонатных, сульфатных, железоокисных отложений, а также для разрушения этих отложений, в частности в оборотных циклах систем охлаждения, мокрой очистки газов, теплоснабжения и гидротранспорта. Ингибитор включает, % мас.: фосфатный ингибитор 5-40, фосфонатный ингибитор 5-40, безводная гигроскопическая соль щелочных или щелочноземельных металлов неорганических от 4-х до 12-ти молекул воды, например, сульфаты и карбонаты натрия, калия, кальция, ортофосфаты натрия, калия остальное. Ингибитор включает, % мас.: водорастворимый полимер (молекулярная масса 3000-20000) 5-40, безводная гигроскопическая соль щелочных или щелочноземельных металлов неорганических кислот, молекула которой может присоединять от 4-х до 12-ти молекул воды, например, сульфаты и карбонаты натрия, калия, кальция, ортофосфаты натрия, калия остальное. Технический результат: получение ингибитора в твердом состоянии путем улучшения контакта частиц компонентов ингибитора между собой и получение в результате твердой массы, которая легко поддается формованию, например, в виде твердых таблеток или гранул. 2 н.и 7 з.п. ф-лы.

Предлагаемое изобретение относится к составу ингибиторов для предотвращения карбонатных, сульфатных, железоокисных отложений, а также для разрушения этих отложений, находящихся на теплообменных поверхностях, и может быть использовано в области теплотехники и водоснабжения, в частности в оборотных циклах систем охлаждения, мокрой очистки газов, теплоснабжения и гидротранспорта.

Известен ингибитор карбонатных, сульфатных, железоокисных отложений в системах оборотного водоснабжения, содержащий оксиэтилидендифосфоновую кислоту (ОЭДФК), лигносульфонаты, цинковый комплекс ОЭДФК, сульфонат порошок - продукт синтеза производства сульфонатов, и воду (1).

Наиболее близким по технической сущности и достигаемому результату является ингибитор коррозии и солеотложения, включающий фосфатный и фосфонатный ингибиторы. Ингибитор содержит, % маc.: фосфатный ингибитор 0,1-70, преимущественно, 5-30, фосфонатный ингибитор 0,1-30,0, преимущественно, 5-20, вода - остальное.

Фосфонатный ингибитор выбран из ряда: оксиэтилидендифосфоновая кислота, нитрилотриметилфосфоновая кислота, аминоалканфосфоновая кислота, алкандифосфоновая кислота с количеством углеродных атомов в алкане от 1 до 6, или их водорастворимые соли.

Кроме того, ингибитор дополнительно содержит водорастворимый полимер с молекулярной массой 3000-20000 в количестве 1-7% маc. и/или ингибитор ряда азола 3-10% мас. (2).

Известные ингибиторы изготавливают в виде водных растворов, содержащих от 30 до 90% маc. воды, и, в связи с этим, требуют значительного грузооборота, специальной технологии транспортировки и использования по назначению. У потребителя требуют использования дополнительного оборудования - специальных дозаторов, рассчитанных на малые величины дозирования сильно разбавленных растворов ингибиторов.

Исследованиями установлено, что известный ингибитор коррозии и солеотложения (2) не изготавливают в твердом состоянии в виде, например, таблетированных или прессованных таблеток, в связи с тем, что в условиях высокого давления, необходимого для формирования твердой массы ингибитора, не обеспечивается достаточно прочного сцепления частиц компонентов между собой из-за их недостаточного контакта.

В основу изобретения поставлена задача усовершенствования известного ингибитора коррозии и солеотложения, в котором, путем изменения качественного и количественного состава компонентов ингибитора, в частности, введения дополнительного вещества, самого по себе известного в технике, обеспечивается возможность изготовления ингибитора в удобном для транспортирования и использования в твердом состоянии.

Поставленная задача решается тем, что известный ингибитор коррозии и солеотложения, включающий фосфатный и фосфонатный ингибиторы, согласно предлагаемому изобретению, дополнительно содержит, по меньшей мере, одну безводную гигроскопическую соль щелочных или щелочноземельных металлов неорганических кислот, молекула которой может присоединять от 4-х до 12-ти молекул воды, например, сульфаты и карбонаты натрия, калия, кальция, ортофосфаты натрия, калия, при следующем соотношении компонентов, % маc.:

фосфатный ингибитор 5-40

фосфонатный ингибитор 5-40,

Поставленная задача решается тем, что фосфатный ингибитор выбран из ряда: полифосфаты натрия, в частности, триполифосфат натрия, гексаметафосфат натрия, пирофосфат натрия.

Поставленная задача решается тем, что фосфонатный ингибитор выбран из ряда: оксиэтилидендифосфоновая кислота, аминоалканфосфоновая кислота, алкандифосфоновая кислота с количеством углеродных атомов в алкане от 1 до 6, или их водорастворимые соли; ингибитор солеотложения ИОМС-1, в виде водного раствора натриевых солей нитрилотриметилфосфоновой кислоты с содержанием основного вещества - не менее 25% маc.

Технический результат предлагаемого изобретения заключается в получении ингибитора в твердом состоянии благодаря улучшению контакта компонентов ингибитора между собой и получению в результате их совместного взаимодействия - общей твердой массы, которая легко поддается формованию, например в виде твердых таблеток или гранул.

Удобство упаковки;

Еще одним преимуществом предлагаемого изобретения является то, что ингибитор не требует у потребителя дополнительного расхода воды для его растворения, потому что он может быть растворен в воде, которая подлежит обработке.

Еще одним преимуществом предлагаемого изобретения является возможность использования исходных компонентов - фосфатного и фосфонатного ингибиторов в виде концентрированных водных растворов, потому что вода с их раствора легко поглощается безводными гигроскопическими солями щелочных или щелочноземельных металлов, молекулы которых могут присоединять от 4-х до 12-ти молекул воды.

Ингибитор характеризуется высокой эффективностью защиты от коррозии и солеотложений: >90%.

Предлагаемый ингибитор коррозии и солеотложения содержит фосфатный и фосфонатный ингибиторы и, по меньшей мере, одну безводную гигроскопическую соль щелочных или щелочноземельных металлов неорганических кислот, молекула которой может присоединять от 4-х до 12-ти молекул воды, например, сульфаты и карбонаты натрия, калия, кальция, ортофосфаты натрия, калия, при следующем соотношении компонентов, % маc.:

фосфатный ингибитор 5-40

фосфонатный ингибитор 5-40,

безводная гигроскопическая соль щелочных или щелочноземельных металлов неорганических кислот, молекула которой может присоединять от 4-х до 12-ти молекул воды, например, сульфаты и карбонаты натрия, калия, кальция, ортофосфаты натрия, калия - остальное.

Кроме того, ингибитор может дополнительно содержать неионогенные поверхностно-активные вещества 0-5% мас. для улучшения смачивания ингибитора водой.

Фосфатный ингибитор выбран из ряда: полифосфаты натрия, в частности, триполифосфат натрия, гексаметафосфат натрия, пирофосфат натрия.

Фосфонатный ингибитор выбран из ряда: оксиэтилидендифосфоновая кислота, аминоалканфосфоновая кислота, алкандифосфоновая кислота с количеством углеродных атомов в алкане от 1 до 6, или их водорастворимые соли; ингибитор солеотложения ИОМС-1, в виде водного раствора натриевых солей нитрилотриметилфосфоновой кислоты с содержанием основного вещества - не менее 25% маc., ТУ 2439-369-05763441-2003.

Неионогенные поверхностно-активные вещества выбраны из ряда: полиоксиэтилированные эфиры жирных кислот, спиртов, аминов, алкилфенолы, полигликоли.

Ингибитор изготавливают путем смешения компонентов в предлагаемом соотношении. Дальше полученную массу формуют в таблетмашине или на прессе в виде таблеток размером 5-20× 5-20 мм, или гранулируют в тарельчатом грануляторе. Готовый ингибитор упаковывают в мешки или пакеты и отправляют потребителю. Используют ингибитор из расчета 30-60 г ингибитора на 1 м 3 физического объема воды, что подлежит обработке, или добавочной воды системы оборотного водоснабжения.

Предлагаемое изобретение поясняется конкретными примерами №1, 2 изготовления и использования ингибитора.

Известен также ингибитор коррозии и солеотложения, включающий водорастворимый полимер с молекулярной массой 3000-20000.

В качестве водорастворимого полимера с молекулярной массой 3000-20000 используют, например, полималеиновую или полиакриловую кислоты, или их сополимеры, или их водорастворимые соли.

Кроме того, ингибитор коррозии и солеотложения включает фосфатный и фосфонатный ингибиторы и воду (2).

Водорастворимые полимеры медленно набухают и растворяются в воде, требуют специального оборудования (высокоскоростных мешалок) для их предварительного растворения и поэтому их используют исключительно в виде готовых слабоконцентрированных водных растворов.

Недостатком известных ингибиторов является неудобство в их транспортировке и использовании, обусловленное изготовлением ингибиторов в жидком состоянии - в виде водных растворов.

Известный ингибитор коррозии и солеотложения на основе водорастворимых полимеров не изготавливают в твердом состоянии в виде, например, таблетированных или прессованных таблеток, в связи с тем, что формование полимеров требует использования специальных связующих или смазывающих компонентов (графита, каменноугольного пека, извести), которые отрицательно влияют на качество воды.

В основу изобретения поставлена задача усовершенствования известного ингибитора коррозии и солеотложения, в котором, путем изменения качественного и количественного состава компонентов ингибитора, в частности, введения дополнительного вещества, самого по себе известного в технике, обеспечивается возможность изготовления ингибитора в удобном для транспортирования и использования твердом состоянии.

Поставленная задача решается тем, что известный ингибитор коррозии и солеотложения, включающий водорастворимый полимер с молекулярной массой 3000-20000, согласно предлагаемому изобретению, дополнительно содержит, по меньшей мере, одну безводную гигроскопическую соль щелочных или щелочноземельных металлов неорганических кислот, молекула которой может присоединять от 4-х до 12-ти молекул воды, например, сульфаты и карбонаты натрия, калия, кальция, ортофосфаты натрия, калия, при следующем соотношении компонентов, % маc.: водорастворимый полимер с молекулярной массой 3000-20000 - 5-40, безводная гигроскопическая соль щелочных или щелочноземельных металлов неорганических кислот, молекула которой может присоединять от 4-х до 12-ти молекул воды, например, сульфаты и карбонаты натрия, калия, кальция, ортофосфаты натрия, калия - остальное.

Поставленная задача решается тем, что как водорастворимый полимер с молекулярной массой 3000-20000 используют, например, полималеиновую или полиакриловую кислоты, или их сополимеры, или их водорастворимые соли.

Поставленная задача решается тем, что ингибитор дополнительно содержит неионогенные поверхностно-активные вещества, 0-5% мас.

Поставленная задача решается тем, что неионогенные поверхностно-активные вещества выбраны из ряда: полиоксиэтилированные эфиры жирных кислот, спиртов, аминов, алкилфенолы, полигликоли.

Технический результат предлагаемого изобретения заключается в улучшении контакта частиц полимера между собой при изготовлении ингибитора в твердом состоянии.

Преимуществом предлагаемого ингибитора в сравнении с известными ингибиторами, что изготавливаются в виде водных растворов, являются:

Исключение расхода деминерализованной воды для его изготовления;

Удобство упаковки;

Уменьшение грузооборота и отсутствие необходимости разработки специальной технологии транспортирования и использования по назначению. У потребителя отпадает необходимость использования специальных дозаторов и другого оборудования, например трубопроводов для подачи ингибитора по назначению.

Еще одним преимуществом предлагаемого изобретения является улучшение растворения полимеров в процессе использования ингибитора, потому что в процессе растворения молекулы дополнительно введенной в состав ингибитора безводной гигроскопической соли щелочных или щелочноземельных металлов неорганических кислот вместе с молекулами воды проникают между молекулами полимеров, значительно увеличивая расстояние между ними в процессе набухания и растворения.

Еще одним преимуществом предлагаемого изобретения является возможность использования исходного компонента - водорастворимого полимера в виде концентрированных водных растворов, потому что вода с их раствора легко поглощается безводными гигроскопическими солями щелочных и щелочноземельных металлов, молекулы которых могут присоединять от 4-х до 12-ти молекул воды.

Предлагаемый ингибитор коррозии и солеотложения включает водорастворимый полимер с молекулярной массой 3000-20000 и, по меньшей мере, одну безводную гигроскопическую соль щелочного или щелочноземельного металла неорганических кислот, молекула которой может присоединять от 4-х до 12-ти молекул воды, например, сульфаты и карбонаты натрия, калия, кальция, ортофосфаты натрия, калия, при следующем соотношении компонентов, % маc.: водорастворимый полимер с молекулярной массой 3000-20000 - 5-40, безводная гигроскопическая соль щелочных или щелочноземельных металлов неорганических кислот, молекула которой может присоединять от 4-х до 12-ти молекул воды, например, сульфаты и карбонаты натрия, калия, кальция, ортофосфаты натрия, калия - остальное.

Как водорастворимый полимер с молекулярной массой 3000-20000 используют, например, полималеиновую или полиакриловую кислоты, или их сополимеры, или их водорастворимые соли.

Кроме того, ингибитор может включать неионогенные поверхностно-активные вещества, 0-5% мас.

Ингибитор изготавливают путем смешения компонентов в предложенном соотношении. Далее полученную массу формуют в таблетмашине или на прессе в виде таблеток размером 5-20× 5-20 мм, или в грануляторе - в виде гранул. Готовый ингибитор упаковывают в мешки или пакеты и отправляют потребителю. Используют ингибитор из расчета 30-60 г ингибитора на 1 м 3 физического объема воды системы, подлежащей обработке, или добавочной воды системы оборотного водоснабжения.

Предлагаемое изобретение поясняется конкретным примером №3 изготовления и использования ингибитора.

Пример №1.

Берут 30 кг ОЭДФК, 30 кг гексаметафосфата натрия и 40 кг безводного сульфата натрия, который может присоединять 10 молекул воды (Na 2 SO 4 · 10H 2 O), тщательно перемешивают, загружают в таблетмашину и под давлением формуют таблетки размером 10× 10 мм. Полученные таблетки ингибитора коррозии и солеотложения добавляют в добавочную воду системы оборотного водоснабжения, или просто в воду системы оборотного водоснабжения из расчета 50 г ингибитора на 1 м 3 физического объема воды. Эффективность защиты от солеотложения и коррозии составляет 92%.

Пример №2.

30 кг ОЭДФК, 20 кг ИОМС-1, содержащий 35% маc. натриевых солей нитрилотриметилфосфоновой кислоты в пересчете на сухой продукт, 30 кг гексаметафосфата натрия и 20 кг безводного сульфата натрия, смешивают, загружают в таблетмашину и под давлением формуют таблетки размером 10× 10 мм. Полученные таблетки ингибитора коррозии и солеотложения добавляют в добавочную воду системы оборотного водоснабжения или просто в воду системы оборотного водоснабжения из расчета 60 г ингибитора на 1 м 3 физического объема воды, которая имеет общую жесткость 12 мг· экв/дм 3 , общую щелочность 3,5 мг· экв/дм 3 , концентрацию хлор-ионов 600 мг/л, скорость коррозии 1,5 мм/год. После обработки воды предлагаемым ингибитором эффективность защиты от солеотложения составляет 99%, скорость коррозии стали 0,08-0,1 мм/год.

Пример №3.

Берут 50 кг 35%-ного водного раствора натриевой соли полиакриловой кислоты с молекулярной массой 5000 и 50 кг безводного карбоната натрия, который может присоединять 10 молекул воды (Nа 2 СО 3 · 10Н 2 O), тщательно перемешивают, загружают в таблетмашину и под давлением формуют таблетки размером 10× 10 мм. Полученные таблетки ингибитора коррозии и солеотложения добавляют в добавочную воду системы оборотного водоснабжения или просто в воду системы оборотного водоснабжения из расчета 60 г ингибитора на 1 м 3 физического объема воды. Эффективность защиты от коррозии и солеотложения составляет 92%.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Ингибитор коррозии и солеотложения, включающий фосфатный и фосфонатный ингибиторы, отличающийся тем, что он дополнительно содержит, по меньшей мере, одну безводную гигроскопическую соль щелочных или щелочноземельных металлов неорганических кислот, молекула которой может присоединять от 4-х до 12-ти молекул воды, например, сульфаты и карбонаты натрия, калия, кальция, ортофосфаты натрия, калия при следующем соотношении компонентов, мас. %:

Фосфатный ингибитор 5-40

Фосфонатный ингибитор 5-40

Безводная гигроскопическая соль щелочных или

щелочноземельных металлов неорганических

кислот, молекула которой может присоединять

от 4-х до 12-ти молекул воды, например,

сульфаты и карбонаты натрия, калия,

кальция, ортофосфаты натрия, калия Остальное

2. Ингибитор по п.1, отличающийся тем, что он дополнительно содержит неионогенные поверхностно-активные вещества 0-5 мас.%.

3. Ингибитор по п.1, отличающийся тем, что фосфатный ингибитор выбран из ряда: полифосфаты натрия, в частности, триполифосфат натрия, гексаметафосфат натрия, пирофосфат натрия.

4. Ингибитор по п.1, отличающийся тем, что фосфонатный ингибитор выбран из ряда: оксиэтилидендифосфоновая кислота, аминоалканфосфоновая кислота, алкандифосфоновая кислота с количеством углеродных атомов в алкане от 1 до 6 или их водорастворимые соли, ингибитор солеотложения ИОМС-1 в виде водного раствора натриевых солей нитрилотриметилфосфоновой кислоты с содержанием основного вещества не менее 25 мас.%.

5. Ингибитор по любому из пп.1 и 2, отличающийся тем, что неионогенные поверхностно-активные вещества выбраны из ряда: полиоксиэтилированные эфиры жирных кислот, спиртов, аминов, алкилфенолы, полигликоли.

6. Ингибитор коррозии и солеотложения, включающий водорастворимый полимер с молекулярной массой 3000-20000, отличающийся тем, что он дополнительно содержит, по меньшей мере, одну безводную гигроскопическую соль щелочных или щелочноземельных металлов неорганических кислот, молекула которой может присоединять от 4-х до 12-ти молекул воды, например, сульфаты и карбонаты натрия, калия, кальция, ортофосфаты натрия, калия, при следующем соотношении компонентов, мас.%:

Водорастворимый полимер с молекулярной

массой 3000-20000 5-40,

Безводная гигроскопическая соль щелочных

или щелочноземельных металлов неорганических

кислот, молекула которой может присоединять

от 4-х до 12-ти молекул воды, например, сульфаты

и карбонаты натрия, калия, кальция, ортофосфаты

натрия, калия Остальное

7. Ингибитор по п.6, отличающийся тем, что в качестве водорастворимого полимера с молекулярной массой 3000-20000 используют, например, полималеиновую или полиакриловую кислоты, или их сополимеры, или их водорастворимые соли.

8. Ингибитор по любому из пп.6 и 7, отличающийся тем, что он дополнительно содержит неионогенные поверхностно-активные вещества 0-5 мас.%.

9. Ингибитор по п.8, отличающийся тем, что неионогенные поверхностно-активные вещества выбраны из ряда: полиоксиэтилированные эфиры жирных кислот, спиртов, аминов, алкилфенолы, полигликоли.

В технологических процессах различных отраслей промышленности происходит отложение солей и иных осадков на оборудовании. Солеобразование в процессе разработки и эксплуатации нефтяных месторождений является сложнейшей проблемой. Отложение солей приводит к порче насосных установок, закупориванию трубопроводов и внутренних поверхностей оборудования. Солеобразования могут развиваться в порах пород призабойной зоны, снижая их проницаемость. В состав отложений входит гипс, кальцит, барит. В виде примесей в отложениях встречаются сульфид железа, твердые углеводородные соединения нефти, кварцевые и глинистые частицы породы.

Источником выделения солей являются пластовые воды, добываемые совместно с нефтью, в которых, в результате изменения температуры и давления, содержание неорганических веществ оказывается выше предела насыщения.

Обычно солеотложения представляют собой смесь одного или нескольких основных неорганических компонентов с продуктами коррозии, частицами песка, причем отложения пропитаны или покрыты асфальто-смоло-парафиновыми веществами. Без удаления органической составляющей солеотложений невозможно успешно провести обработку скважин.

Неорганические отложения встречаются в трех формах:

  • в виде тонкой накипи или рыхлых хлопьев – имеют рыхлую структуру, проницаемы и легко удаляются;
  • в слоистой форме, такие как гипс, представляют собой несколько слоев кристаллов, иногда в виде пучка лучин, заполняющих все сечение трубы;
  • в кристаллической форме, такие как барит и ангидрит, образуют очень твердые, плотные и непроницаемые отложения. Барит настолько плотен и непроницаем, что с помощью химических обработок удалить его со стенок оборудования не представляется возможным.

Существует достаточно много способов борьбы с солеотложениями, которые делятся на три вида:

  • Физические методы. К ним относится использование влияния различных электомагнитных, аккустических полей, что является достаточно трудным в техническом исполнении, и требует больших расходов электроэнергии.
  • Технологические методы, исключающие смешение химически несовместимых вод, способствующие увеличению скорости водонефтяного потока (турбулизация). К этому методу относится и применение защитных покрытий (стекло, эмали, различные лаки, эпоксидная смола). Покрытия не предупреждают полностью отложения солей, но снижают интенсивность роста их образования, поэтому их рекомендуют использовать на скважинах с умеренной интенсивностью солеотложений.
  • Химические методы – ингибиторная защита скважин.

Химические методы предотвращения отложений, основанные на применении химических реагентов-ингибиторов, в настоящее время являются наиболее известными, эффективными и технологичными способами предотвращения отложения неорганических солей.

Ингибиторы могут применяться по следующим технологиям:

  • Путем непрерывной или периодической подачи в систему, используя специальные дозировочные устройства. Этот метод применим при отложении солей в подземном оборудовании и трубах лифта.
  • Периодической закачкой раствора в скважину с последующей задавкой его в призабойную зону. Для этого в призабойную зону закачивается ингибитор солеотложения в виде водного раствора, который в начале адсорбируется на поверхности породы пласта, затем постепенно, в процессе отбора жидкости из скважины десорбируется и выносится из призабойной зоны, обеспечивая существенное снижение солеобразовательных процессов.

Ингибиторы солеотложений разработаны для предотвращения возникновения карбонатных, сульфатных и барийсодержащих отложений, образующихся на технологическом оборудовании (котлы, котельные и компрессорные установки, бойлероы, трубопроводы, аммиачные установки, холодильники и т.п.).

Однако неотъемлемым условием достижения успеха является правильное ведение водно-химического режима, включая дозирование ингибиторов и аналитический контроль. Подбор ингибиторов солеотложений – сложная задача, включающая в себя этапы по анализу сред и отложений на предмет установления состава и количества солеотложений, лабораторные испытания ингибитора солеотложений, мониторинг эффективности действия ингибитора солеотложений и пр.

Проблема защиты технологического оборудования от солеотложений и коррозии исключительно актуальна для современных систем добычи, транспортировки, переработки нефти. Если существует проблема, ее необходимо отслеживать и не допускать негативных явлений, приводящих к затратам и потерям, особенно в условиях рыночных отношений, когда разработка нефтяных месторождений должна быть экономически эффективной.

Возникают ситуации, когда не представляется возможным взять пробу воды непосредственно с проблемного объекта и доставить ее для анализа в лабораторию. В этом случае достаточно иметь для исследования образцы твердых солеотложений с поверхности компоновок насосного оборудования (погружной элетродвигатель, газосепаратор, погружные насосы (включая детали проточной части ЭЦН, ШГН), насосно-компрессорные трубы (НКТ), штанги и другое подвесное оборудование), фонтанной и запорной арматуры, транспортных (магистральных) трубопроводов, теплообменников (охладителей и нагревателей продукции), резервуаров установок по обработке и очистке пластового флюида. Определение компонентного состава образца солевых отложений в нашей лаборатории проводится в соответствии с ПНД Ф 16.1.8-98 «МВИ массовых концентраций ионов NO 3 - , NO 2 - , Cl - , F - , SO 4 2- , PO 4 3- в пробах почв методом ионной хроматографии», ПНД Ф 14.1:2:4.135-2008 «МВИ массовой концентрации элементов в пробах питьевой, природных, сточных вод и атмосферных осадков методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой»*. Используя последнюю методику, возможно определить следующие элементы в образце солеотложений: Li, Be, B, Na, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Mo, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Ce, Nd, Tb, W, Tl, Pb, Bi, Th, U.

Имея данные по компонентному составу солеотложений, специалисты определят их тип (карбонатно-кальциевые, сульфатно-кальциевые, баритовые, стронциевые осадки и т.д.), и, предполагая компонентный состав воды на объекте, приготовят модельную среду (минерализованную воду), схожую по компонентному составу с водой на проблемном участке. Данная модельная среда послужит объектом для проведения лабораторных испытаний ингибиторов солеотложений.

Проблема солеобразования актуальна не только для нефтяной области, но и для отраслей промышленности, где для различных целей используется техническая вода. Ярким примером служит система жилищно-коммунального хозяйства, где для обогрева теплосетей используется вода.

Наша лаборатория предлагает Вам определение химического состава солеотложений на промышленном и нефтепромысловым оборудовании.

Если на Вашем объекте возникли проблемы, связанные с накипеобразованием и (или) коррозией в тепловых сетях, в системе горячего водоснабжения, мы можем помочь Вам выбрать необходимое оборудование и технологию противонакипной и противокоррозионной обработки воды.

*Применяется пробоподготовка, заключающаяся в извлечении подвижных форм элементов раствором азотной кислоты.

Опытные сотрудники Группы компаний Коррсистем проведут теоретические расчеты возможности выпадения солей в средах, проверим эффективность ингибиторов солеотложения, используемых на Вашем предприятии для защиты от солеотложений, а также остаточное содержание ингибиторов в воде для обеспечения продуктивной работы оборудования. Ведь известно, что легче предупредить проблему, чем бороться с её последствиями.

Мы поможем Вам сэкономить средства и время!!!

Союз Советскик

Социалистических

Республик

С 02 F 5/14 с присоединением заявки М (23) Приоритет

Государствеииый комитет

СССР яо делам изобретений и открытий (53) УДК ббз.бзг. .7 (088.8) Опубликовано 230181. Бюллетень Й9 11

С.Ф. Люшин, Г. В. Галеева, Н.М. Дятлова и Е.М. Уринович

F (71) Заявитель

/ с (5 4) ИН ГИБИТОР СОЛЕОТЛОЖЕ НИЙ

Изобретение относится к веществам, предупреждающим отложения неорганических солей (сульфата бария, сульфата и карбоната кальция, в скважинах, промысловой системе сбора и транспорта нефти, а также в призабойной зоне пласта.

Известны различные ингибиторы для предупреждения отложений солей (1j .

Однако известные реагенты не предупреждают образования всех видов солей (сульфата бария, карбоната кальция, сульфата кальция),т.е. не обладают универсальными свойствами, что ограничивает их применение на нефтяных промыслах. Кроме того, многие реагенты, эффективные в системах водоснабжения, где применяются практически пресные воды, оказываются неэффективными в условиях нефтяных скважин.

Наиболее близким к изобретению по технической. сущности и достигаемому результату является способ, где в качестве ингибитора отложений cof лей использует этилендиамино-N, N, М и -тетраметилфосфоновую кислоту (21 .

Однако использование данного ингибитора солеотложений оказывается неэффективным для предупреждения от- ложения солей сульфата бария, которые вызывают серьезные осложнения в работе нефтепромыслового оборудования на многих месторождениях.

Цель изобретения - снижение интенсивности отложений неорганических солей, в том числе сульфата бария.

Поставлейная цель достигается применением динатриевой соли оксиалкилидендифосфоновой кислоты общей формулы где R — алкил С, Н1-С ЗН2 в качестве ингибитора солеотложений.

Применение динатриевой соли оксиалкилидендифосфоновой кислоты в качестве эффективного ингибитора солеотложений, в частности, сульфата бария, возможно благодаря присутствию длинной углеводородной цепочки С -С резко усиливакщей способность фосфор814897

Таблица 1

Общая минерализация, мг/л

Наименование вод

".Бариевая" Отсут- 36573, О 540,8 — 314,7 — 23848,9 ствует

"Карбоновая" 454,4 6900,0 Отсут- 240 Отсут- 150 4077,6 ствует ствует

"Гипсовая" Отсут- 10250,0 4256,0 2445 Отсут- 81 5715,0

22747,0 ст вует ствует

Т абли ца 2

Для сульфата бария

Предлагаемый

Известный

Для карбоната кальция

Предлагаемый. 92 . 100 100

Известный 87 90 100

Для сульфата кальция

Предлагаемый

Известный

Динатриевую соль оксналкилидендифосфоновой кислоты получают взаимо.действием хлорангидридов высших синтетических жирных кислот (фракция

С,-С,) с фосфористой кислотой, прячем в качестве источника последней могут быть использованы отходы производства тех же хлорангидридов.

В пробы ввоцят ингибиторы солеотложений в различных концентрациях, после чего пробы выдерживают при

20-25 С (при этих температурах наблюдается максимальное выпадение осадка сульфата бария из раствора в течение 24 ч. Проводят оценку количества выпавшего осадка через 2,4,8 и 24 ч.

Затем осадки отделяют, и в растворах проб определяют титрованием остаточное содержание осадкообразующих ионов.

По полученным данным рассчитывают эффективность ингибирующего действия реагента по формуле:

Предотвращение выпадения солей с использованием ингибиторов оценивают как для сульфата бария, так и для карбоната и сульфата кальция.

Опыты проводят с применением вод, солевой состав которых подобен ïëàñтовым водам нефтяных месторождений.

Характеристика вод приведена в. табл. 1. где С„„- содержание осадкообразующих ионов в исходном растворе пробы, определенное до опыта, мг/л, C> — содержание осадкообраэующих ионов в растворе пробы, не содержащем ингибитор, определенное после опыта, мг/л, С„ - содержание осадкообразующих ионов в растворе пробы, содержащем ингибитор, опреде. —, ленное после опыта, мг/л, Степень ингибирующего действия реагентов оценивают при выдержке пробы воды при 80 С в течение 8 ч для карбонатных.вод и 16 ч - для гипсовых.

Полученные сравнительные результаты опытов приведены в табл. 2.

Формула изобретения

Составитель Л. Ананьева

Редактор Г. Кацалап Техред Н,Граб

Корректор М. Демчик

Заказ 946/34 Тираж -1007 Подписное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

Как видно из табл. 2, предлагаемый ингибитор обладает высокой эффективностью предупреждения выпадения осадков солей, содержащихся в нефтеносных водах (80-100% при дозировке 0,002-0,005%).

Особо ценным свойством динатриевой соли оксиалкилидендифосфоновой кислоты является 90-100%-ная эффективность предовращения выпадения осадка сульфата бария. Применение этилендиамино-й,tl,N,tl-тетраметилфосфоновой кислоты (ЭДАТф), для этих целей в укаэанных концентрациях неэффективно.

Технико-экономическое преимущество использования предлагаемого ингибито- 15 ра заключается в следующем:

1. Применение динатриевой соли оксиалкилидендифосфоновой кислоты позволяет предотвратить отложения сульфата бария, а также уменьщить Щ отложения неорганических солей, состоящих из карбоната и сульфата кальция и включающих сульфат бария, по сравнению с использованием известных реагентов. 25

2. Реализация метода предупреждения отложения солей и, в первую очеедь, сульфата бария с испольэованим предлагаемого ингибитора освобождает от необходимости частой замены оборудования, так как отложения сульфата бария с помощью известных реагентов практически удалить невозможно.

3. Применение ингибитора солеотложений на промыслах исключает необходимость проведения подземных и капитальных ремонтов скважин и другого нефтепромыслового оборудования, связанных с отложением неорганических солей.

Динатриевая соль оксиалкилидеидифосфоновой кислоты общей формулы

О где А"С Н -С Н „ в качестве ий.гйбитора солеотложений.

Источники информации, принятые во внимание при экспертизе

1. Патент CttlA Р 3634257, кл. С 02 В 5/06, 1972.

9 541973, кл. Е 21 В 43/12, 1974 (прототип).

В работе исследованы промышленно выпускаемые ингибиторы.

Наиболее эффективными оказываются ингибиторы ОЭДФ и НТФ. Однако в связи с их высокой стоимостью рассмотрены возможности использование смеси реагентов. В составленные ингибирующие композиции введен ингибитор коррозии Акма (50г/т), что существенно снижает коррозионную активность.

Испытания промышленно выпускаемых ингибиторов солеотложений в процессах образования сульфида железа проводились на реальных водах Боголюбовского и Сосновского месторождений.

Произведенными исследованиями установлено, что устойчивость комплекса железа с низкомолекулярными карбоновыми кислотами увеличивается в присутствии ингибиторов ОЭДФ и НТФ. Применение разработанного состава позволяет ингибировать процесс образования неорганических осадков при смешении вод девонского и угленосного потоков.

Причиной образования нерастворимых солей является пересыщенность попутно добываемой воды сульфатами кальция и сульфидом железа на нефтяных месторождениях Самарского региона . Процесс осадкообразования на Сосновской установке предварительного сброса вод (УСПВ-95) является следствием химического равновесия ионов, входящих в состав пластовой воды, в результате смешения девонских и угленосных потоков. Если химическим путем (путем ингибирования) не допустить образование нерастворимых солей - гипса и сульфида железа, то при смешении потоков не будет образовываться стойкая трудноразделимая эмульсия, образование которой приводит к выявленным ранее осложнениям в работе системы повышения пластового давления (ППД) Сосновского месторождения. Следовательно, решение проблемы совместной подготовки нефти и воды на Сосновском месторождении сводится к решению проблемы ингибирования двух параллельно протекающих процессов образования сульфида железа и гипсообразования.

Для исследования процесса гипсообразования использовалась модельная вода с коэффициентом пересыщенности - 1,85. Приготовление растворов осуществлялось смешением двух частей воды: одной - содержащей ионы кальция, другой - содержащей ионы сульфатов. Приготовленные исследуемые пробы после смешения выдерживались в течение 8 часов при температуре 80 о С, после этого горячие пробы фильтровались, и в растворе определяли содержание ионов кальция трилонометрическим методом. Эффективность ингибирования F рассчитывалась по формуле:

где - содержание осадкообразующих ионов кальция в растворе пробы с ингибитором, определенное аналитически после опыта, мг/л; - содержание осадкообразующих ионов кальция в растворе пробы без ингибитора, определенное аналитически после опыта, мг/л; - содержание осадкообразующих ионов кальция в исходном растворе пробы с ингибитором, определенное аналитически после опыта, мг/л.

Результаты предварительных исследований эффективности некоторых промышленно-выпускаемых ингибиторов солеотложений в процессе гипсообразования приведены в таблице 1.

ТАБЛИЦА 1.

Эффективность ингибирующего действия промышленных реагентов на процессы гипсообразования в модельных растворах

Марка ингибитора

Дозировка ингибитора, г/м 3

Эффективность, %

Инкредол

FLOSPERSE DISSOLVER

Предварительные исследования показали, что эффективность испытанных промышленно выпускаемых ингибиторов для процесса гипсообразования высокая и находится примерно на одном уровне. Испытания промышленно выпускаемых ингибиторов солеотложений в процессах образования сульфида железа проводились на реальных водах Боголюбовского и Сосновского месторождений. На 1 м этапе проведена качественная оценка ингибиторов солеотложений. Результаты исследований приведены в таблице 2.

ТАБЛИЦА 2.

Количество железа, удерживаемого ингибитором в растворе, мг/л

Концентрация ингибиторов, г/т

Ингибитор

Количество железа в растворе, мг/л

Из представленных данных видно, что наиболее эффективными ингибиторами являются оксиэтилидендифосфоновая кислота (ОЭДФ) и нитрилотриметилфосфоновая кислота (НТФ). Однако, учитывая высокую стоимость этих промышленно выпускаемых реагентов, были рассмотрены возможности использование смеси реагентов .

Известно, что кроме хелатных соединений, входящих в состав промышленных ингибиторов солеотложений достаточно прочные комплексы с ионами железа образуют низкомолекулярные карбоновые кислоты. Комплексная форма железа с ними может быть представлена соединением типа: RCOO-Fe-OOCR.

Произведенными исследованиями установлено, что устойчивость комплекса железа с низкомолекулярными карбоновыми кислотами увеличивается в присутствии ингибиторов ОЭДФ и НТФ. Результаты качественной оценки эффективности комплексных составов на основе ингибиторов ОЭДФ и НТФ и низкомолекулярной карбоновой кислоты (НМКК) представлены в таблицах 3, 4.

ТАБЛИЦА 3.

Эффективность ингибирования процесса образования сульфида железа на основе ОЭДФ и низкомолекулярной карбоновой кислоты (НМКК)

Концентрация, мг/л

Эффективность, %

ТАБЛИЦА 4.

Эффективность ингибирования процесса образования сульфида железа на основе НТФ и низкомолекулярной карбоновой кислоты (НМКК)

Концентрация, мг/л

Концентрация железа в осадке, мг/л

Эффективность, %

На основании полученных данных можно сделать вывод, что в присутствии добавки НТФ удовлетворительные результаты получены при дозировке НМКК в количестве 300 г/т добываемой воды (при содержании НТФ 30 г/т). При использовании в качестве ингибирующего состава кислоты и ОЭДФ возможно снижение содержания уксусной кислоты до 200 г/т добываемой воды (при содержании ОЭДФ 20 г/т).

Использование состава с ОЭДФ является предпочтительным, поскольку в его присутствии требуется меньшее количество кислоты. Но, кроме экономической целесообразности уменьшения количества реагента, в данном выборе играет большую роль требование к такому показателю закачиваемых вод, как водородный показатель. Использование в качестве составной части ингибирующего состава органической кислоты неизбежно приводит к понижению pH закачиваемой в нефтяные пласты воды. В связи с этим были произведены исследования по влиянию полученного состава на изменение pH среды. Водородный показатель pH смешанного потока без добавления ингибирующего состава равен 6,20. Результаты исследований представлены в таблицах 5, 6.

ТАБЛИЦА 5.

Концентрация

pH раствора

ТАБЛИЦА 6.

Концентрация

Концентрация карбоновой кислоты, г/т

pH раствора

В соответствии с требованиями, предъявляемыми к качеству вод, используемых в системе ППД, величина pH воды должна находиться в пределах 4,50-8,50.Таким образом, установлено, что при использовании дозировок карбоновой кислоты в составе ингибирующего состава выше 200 г/т не рекомендуется.

Несмотря на то, что по показателю pH в присутствии ингибирующего состава закачиваемая вода удовлетворяет требованиям, ингибирование процесса солеобразования таким составом неизбежно повлечет за собой увеличение коррозионной активности среды, поскольку коррозионный процесс в большей степени зависит от кислотности среды. Поэтому в состав ингибирующей композиции необходимо введение ингибитора коррозии. Но поскольку на данном этапе исследований было подобрано соотношение реагентов для ингибирования процесса образования сульфида железа, до подбора ингибитора коррозии был сделан подбор соотношения компонентов и композиции для ингибирования процесса гипсообразования. Исследования по предотвращению гипсообразования ингибирующими компонентами были проведены с использованием модельной минерализованной воды, имеющий больший коэффициент перенасыщенности гипсом, чем вода, образующаяся при смешении потоков Боголюбовского и Сосновского месторождений. Результаты эффективности приведены в таблице 7.

ТАБЛИЦА 7.

Эффективность ингибирования процесса гипсообразования композициями на основе ингибиторов НТФ, ОЭДФ и НМКК

Концентрация комплексона, мг/л

Концентрация карбоновой кислоты (МНКК), мг/л

Эффективность, %

Низкие значения эффективности гипсообразования композицией на основе ОЭДФ и НМКК указывают на необходимость введения в эту композицию дополнительного компонента - НТФ, показавшего высокие эффективности при достаточно низких концентрациях . С целью снижения коррозионной агрессивности среды в присутствии ингибирующей композиции в систему вводились добавки промышленно выпускаемых ингибиторов коррозии, которые в настоящее время успешно применяются для защиты от коррозии нефтепромыслового оборудования водорастворимый ингибитор «Кормастер», нефтерастворимый деэмульгатор коррозии «АМ-7Б», нефтерастворимый ингибитор «Акма». Для подбора ингибитора коррозии в качестве ингибирующей композиции был использован следующий состав: НМКК (200 г/т воды); ОЭДФ (30 г/т воды); НТФ(20 г/т воды). Определение скоростей коррозии проводилось электромеханическим методом с помощью прибора «Corrator1120» фирмы Magma. В качестве агрессивной среды использовались пластовые воды Сосновского и Боголюбовского месторождений. Полученные результаты для различных композиций представлены на рисунке 1.


РИС.1. Изменение скорости коррозии во времени в исследованных средах:

1 - смешанный поток Сосновского и Боголюбовского месторождений без добавок; 2 - смешанные потоки с добавкой состава; 3 - смешанные потоки с добавкой состава и ингибитора коррозии «АМ-7Б» (15 г/т); 4 - смешанные потоки с добавкой состава и ингибитора коррозии «Акма» (50 г/т); 5 - смешанные потоки с добавкой состава и ингибитора коррозии «Кормастер» (50 г/т).

Параллельно исследовались полнота и скорость разрушения водонефтяных эмульсий без добавки ингибирующей композиции только в присутствии Диссольван 2830. Кинетику деэмульсации проб с разработанной ингибирующей композицией и без нее проводили стандартным методом бутылочных проб при температуре 40 о С. О динамике разрушения эмульсии судили по количеству воды, отстоявшейся от нефти через определенные интервалы времени. Результаты проведенных исследований представлены в таблице 8.

ТАБЛИЦА 8.

Кинетика расслоения эмульсии при совместном присутствии разработанного ингибирующего состава и деэмульгатора Диссольван 2830

Применение разработанного состава позволяет ингибировать процесс образования неорганических осадков при смешении вод девонского и угленосного потоков. Анализ результатов, представленных на рис.1 позволяет сделать заключение о том, что добавка ингибирующей композиции процессов образования неорганических солей значительно увеличивает и без того высокую коррозионную агрессивность закачиваемой воды Сосновского месторождения. Поэтому введение в ингибирующую композицию ингибитора коррозии «Акма»(50 г/т) существенно снизила коррозионную активность даже по сравнению с закачиваемой водой без добавок. При использовании данного ингибитора коррозии и ингибирующей композиции происходит не только нивелирование ее коррозионного действия, но и снижение исходной скорости коррозии водной среды.

Как видно из приведенных данных, введение в эмульсию даже только ингибирующей композиции не дает образовываться прочным бронирующим оболочкам водных капель в водонефтяной эмульсии, что позволяет эмульсии разделяться без добавления деэмульгатора.

Announcement in English

The paper studied inhibitors commercially available. The most effective are inhibitors HEDP and NTF. However, due to high cost of inhibitors HEDP and NTF the possibilities of use of the reagent mixture are considered. The inhibitory composition composed introduced a corrosion inhibitor "Akmal" (50g / t), which significantly reduces the corrosiveness. Tests commercially available scale inhibitors in the formation of iron sulphide were performed on real water Bogolyubov and Sosnowski fields. Produced studies have established that the stability of the complex of iron with low molecular weight carboxylic acids in the presence of increasing HEDP inhibitors and NTF. Application of the developed composition makes it possible to inhibit the formation of inorganic deposits on mixing waters of the Devonian and coal-bearing streams.

Литература

1. Елашева О.М., Смирнова Л.Н. Влияние реагента ингибитора коррозии Сонкор на процесс выпадения солей в пластовых водах Южно-Неприковского месторождения. - Евразийский союз ученых, 2016. № 3. С. 80-83.

2. Елашева О.М., Смирнова Л.Н. Улучшение прокачиваемости нефти на магистральных нефтепроводах с использованием растворителя на основе местного углеводородного сырья. // Национальная ассоциация ученых (НАУ) Ежемесячный научный журнал. - 2016 №18.- С. 29-33.

3. Трейгер Л.М. Исследование состава природных стабилизаторов и предварительное обезвоживание ставропольских нефтей. // Разработка эксплуатация и обустройство нефтяных месторождений. Сборник научных трудов. Институт «Гипровостокнефть». - Самара - 2000. - №59. - С.129-143.

4. Елашева О.М. Повышение ресурсов углеводородного сырья вовлечение в переработку нефтесодержащих отходов. Дис. Елашевой О.М. канд. техн. наук: 05.17.07. / Самара: Самар. гос. техн. ун-т, 2002. - 115 с.

5. ЗАО «Опытный завод Нефтехим». Солеобразование при добыче нефти // Инженерная практика. - 2010. - № 4. - С. 40-42.

Предназначены для защиты нефтепромыслового оборудования в процессах добычи и подготовки нефти от отложений неорганических солей, включающих сульфаты, карбонаты кальция и магния, сульфат бария, а также соединения железа.

Применяются для предотвращения отложений:

Выберите регион применения… Казахстан Россия Астраханская область Иркутская область Красноярский край Оренбургская область Пермский край Республика Башкортостан Республика Калмыкия Республика Коми Республика Татарстан Самарская область Удмуртская Республика ХМАО - Югра

  • ИНГИБИТОР СОЛЕОТЛОЖЕНИЙ СНПХ-5311T

    Для предотвращения отложений карбоната кальция

    Применение

    Ингибитор СНПХ-5311-Т обладает высокой эффективностью предотвращения карбонатных отложений на всём пути технологического процесса добычи нефти. Обеспечивает защиту глубинного и поверхностного нефтепромыслового оборудования от солеотложений, проявляет высокую противонакипную активность в теплообменниках установок термохимического обезвоживания и обессоливания нефти, а также в теплоэнергетических системах, в промышленных охлаждающих системах и в системах очистки вод.

    Ингибитор СНПХ-5311-Т является коррозионно не агрессивным по отношению к металлу нефтепромыслового оборудования, обладает низкими вязкостными характеристиками при минусовых температурах.

    Основные характеристики

    Расход

    Ингибитор хорошо растворим в воде. Удельный расход ингибитора 5-30 г на тонну обрабатываемой воды в зависимости от минерализации промысловых вод.

    Ингибитор СНПХ-5311-Т не оказывает отрицательного влияния на процессы подготовки и переработки нефти и нефтепродуктов.

    Сертификация

    Ингибитор солеотложений СНПХ-5311Т прошел сертификацию в системе ТЭКСЕРТ.

    Награды

    В 2009 году ингибитор солеотложений СНПХ-5311Т был удостоен дипломов лауреата конкурса «Лучшие товары Республики Татарстан» и лауреата конкурса программы «100 лучших товаров России».

    Регионы применения

    ХМАО - Югра, Оренбургская область.

  • ИНГИБИТОР СОЛЕОТЛОЖЕНИЙ СНПХ-5312

    Описание

    Ингибитор СНПХ-5312 выпускается в виде трёх марок: СНПХ-5312-С, СНПХ-5312-Т, СНПХ-5312-Т- 1, что позволяет избирательно подбирать реагент к конкретным условиям.

    Применение

    Ингибитор СНПХ-5312-С предназначен для защиты скважин и нефтепромыслового оборудования от отложений сульфата, и карбоната кальция. Обладает хорошей совместимостью с попутно-добываемыми водами высокой минерализации.

    Ингибитор СНПХ-5312-Т, СНПХ-5312-Т-1 предотвращают отложения сульфата и карбоната кальция, а также сульфата бария.

    СНПХ-5312-С, СНПХ-5312-Т являются коррозионно не агрессивными по отношению к металлу нефтепромыслового оборудования, обладают низкими вязкостными характеристиками при минусовых температурах.

    Основные характеристики

    Показатели СНПХ-5312-С СНПХ-5312-Т СНПХ-5312-Т-1
    Внешний вид жидкость
    Плотность при 20°С, кг/м 3 1080-1170 1000-1110 1000-1130
    Водородный показатель, рН Не менее 1,0 Не менее 8,0 Не менее 5,5
    Температура застывания, °С минус 40 минус 40 минус 45

    Расход

    Ингибиторы серии СНПХ-5312 не оказывают отрицательного влияния на процесс подготовки нефти и нефтепродуктов.

    Сертификация

    Ингибитор солеотложений СНПХ-5312 прошел сертификацию в системе ТЭКСЕРТ.

    Регионы применения

  • ИНГИБИТОР СОЛЕОТЛОЖЕНИЙ СНПХ-5313

    Для предотвращения отложений карбоната и сульфата кальция, сульфата бария, соединений железа (сульфидов, оксидов)

    Описание

    Ингибитор СНПХ-5313 выпускается в виде двух марок: СНПХ-5313-С, СНПХ-5313-Н.

    Применение

    Ингибитор СНПХ-5313-С предназначен для защиты скважин и нефтепромыслового оборудования от отложений карбоната и сульфата кальция, соединений железа (сульфидов, оксидов) в водах высокой минерализации.

    Ингибитор СНПХ-5313-Н предназначен для защиты оборудования от отложений карбоната кальция, сульфата бария, оксидов железа.

    Основные характеристики

    Расход

    Хорошо растворяются в воде. Удельный расход ингибиторов составляет 10-70 г на тонну попутно-добываемой воды.

    Ингибиторы СНПХ-5313-С, СНПХ-5313-Н не оказывают отрицательного влияния на процесс подготовки нефти и нефтепродуктов.

    Сертификация

    Ингибитор солеотложений СНПХ-5313 прошел сертификацию в системе ТЭКСЕРТ.

    Регионы применения

    Республика Татарстан, Республика Башкортостан, Республика Коми; Казахстан.

  • ИНГИБИТОР СОЛЕОТЛОЖЕНИЙ СНПХ-5314

    Для предотвращения отложений соединений железа (оксидов и гидроксидов), карбоната кальция и сульфата бария

    Применение

    Ингибитор СНПХ-5314 предназначен для защиты нефтепромыслового оборудования от отложений соединений железа (оксидов и гидроксидов), а также отложений карбоната кальция и сульфата бария.

    Основные характеристики

    Расход

    Хорошо растворим в воде. Удельный расход ингибитора 10 — 70 г на тонну попутно-добываемой воды. Ингибитор СНПХ-5314 не оказывает отрицательного влияния на процесс подготовки нефти и нефтепродуктов.

    Сертификация

    Ингибитор солеотложений СНПХ-5314 прошел сертификацию в системе ТЭКСЕРТ.

    Регион применения

    Республика Татарстан.

  • ИНГИБИТОР СОЛЕОТЛОЖЕНИЙ СНПХ-5315

    Для защиты от отложений сульфата и карбоната кальция

    Применение

    Ингибитор СНПХ-5315 предназначен для защиты газоконденсатных скважин и нефтепромыслового оборудования от отложений сульфата, и карбоната кальция.

    Хорошо совместим с водно-метанольными средами.

    Ингибитор СНПХ-5315 является коррозионно не агрессивным по отношению к металлу нефтепромыслового оборудования.

    Основные характеристики

    Расход

    Ингибитор СНПХ-5315 не оказывает отрицательного влияния на процессы подготовки и переработки нефти и нефтепродуктов.

    Сертификация

    Ингибитор солеотложений СНПХ-5315 прошел сертификацию в системе ТЭКСЕРТ.

    Регионы применения

    Самарская область, Республика Татарстан, Красноярский край, Астраханская область, Удмуртская Республика, Оренбургская область, Пермский край, Республика Коми, Иркутская область.

  • ИНГИБИТОР СОЛЕОТЛОЖЕНИЙ СНПХ-5316

    Для защиты скважин и нефтепромыслового оборудования от отложений сульфата, и карбоната кальция

    Применение

    Ингибитор СНПХ-5316 предназначен для защиты скважин и нефтепромыслового оборудования от отложений сульфата, и карбоната кальция.

    Ингибитор СНПХ-5316 является коррозионно не агрессивным по отношению к металлу нефтепромыслового оборудования, обладает низкими вязкостными характеристиками при минусовых температурах.

    Основные характеристики

    Расход

    Удельный расход ингибиторов составляет 20-30 г на тонну попутно-добываемой воды.

    Ингибитор СНПХ-5316 не оказывает отрицательного влияния на процессы подготовки и переработки нефти и нефтепродуктов.

    Сертификация

    Ингибитор солеотложений СНПХ-5316 прошел сертификацию в системе ТЭКСЕРТ.

    Регион применения

    Пермский край.

  • ИНГИБИТОР СОЛЕОТЛОЖЕНИЙ СНПХ-5325

    Для предотвращения отложений сульфата и карбоната кальция в условиях высокой минерализации промысловых вод

    Описание

    Ингибитор СНПХ-5325 выпускается в виде трёх марок: СНПХ-5325, СНПХ-5325(1), СНПХ-5325(2), что позволяет избирательно подбирать реагент к конкретным условиям.

    Ингибиторы СНПХ-5325, СНПХ-5325(1), СНПХ-5325(2) являются коррозионно не агрессивными по отношению к металлу нефтепромыслового оборудования, обладают низкими вязкостными характеристиками при минусовых температурах.

    Применение

    Ингибитор СНПХ-5325 предназначен для защиты скважин и нефтепромыслового оборудования от отложений сульфата, и карбоната кальция в водах высокой минерализации.

    Основные характеристики

    Показатели СНПХ-5325 СНПХ-5325(1) СНПХ-5325(2)
    Внешний вид жидкость
    Плотность при 20 °С, кг/м 3 1000-1100 1045-1155 1045-1155
    Водородный показатель, рН 8,0-9,5 8,0-9,5 8,0-9,5
    Температура застывания, °С, минус 50 минус 55 минус 40

    Расход

    Удельный расход ингибиторов составляет 5-30 г. на тонну обрабатываемой воды, в зависимости от степени минерализации промысловых вод.

    Ингибиторы серии СНПХ-5325 не оказывают отрицательного влияния на процесс подготовки нефти и нефтепродуктов.

    Сертификация

    Ингибитор солеотложений СНПХ-5325 прошел сертификацию в системе ТЭКСЕРТ.

    Регионы применения

    Самарская область, Республика Татарстан, Красноярский край, Астраханская область, Удмуртская Республика, Оренбургская область, Пермский край, Республика Коми, Иркутская область.

  • ИНГИБИТОР СОЛЕОТЛОЖЕНИЙ СНПХ-5317

    Для предотвращения отложений сульфата и карбоната бария, стронция, карбоната и сульфата кальция

    Применение

    Ингибитор СНПХ-5317 предназначен для защиты нефтепромыслового оборудования от отложений сульфата и карбоната бария, стронция в водах высокой минерализации, а также карбоната и сульфата кальция.

    Ингибитор СНПХ-5317 является коррозионно не агрессивным по отношению к металлу нефтепромыслового оборудования.

    Основные характеристики

    Расход

    Удельный расход ингибитора 10-30 г на тонну обрабатываемой воды.

    Ингибитор СНПХ-5317 не оказывает отрицательного влияния на процессы подготовки и переработки нефти и нефтепродуктов.

    Сертификация

    Ингибитор солеотложений СНПХ-5317 прошел сертификацию в системе ТЭКСЕРТ.

    Регионы применения

    Республика Калмыкия, ХМАО - Югра.

  • РАСТВОРИТЕЛЬ СОЛЕОТЛОЖЕНИЙ СНПХ-53R

    Для растворения карбонатных отложений с примесью сульфидов и оксидов железа

    Описание

    СНПХ-53R представляет собой композицию, состоящую из минеральных и органических кислот и неионогенных ПАВ в водной среде.

    СНПХ-53R в зависимости от условий применения выпускается в виде двух марок: СНПХ-53R-01 и СНПХ-53R-01В.

    Применение

    Растворитель СНПХ-53R предназначен для растворения минеральных отложений на поверхности оборудования скважин, трубопроводов системы подготовки и транспортировки нефти и воды, а также в теплоэнергетическом оборудовании.

    СНПХ-53R обладает высокой эффективностью растворения карбонатных отложений с примесью сульфидов и оксидов железа, имеет низкую коррозионную агрессивность.

    Основные характеристики

    Наименование

    показателя

    Норма для марок
    СНПХ-53R-01 СНПХ-53R-01В
    Внешний вид Жидкость
    Температура застывания, о С, не выше минус 30 минус 50
    Плотность при 20 о С, кг/м 3 1075 ± 5% 1115 ± 5%
    Скорость коррозии металлических пластин Ст3 в товарной форме растворителя при 20 о С, г/м 2 . ч,

    Сертификация

    Растворитель СНПХ-53R прошел сертификацию в системе ТЭКСЕРТ.

    Регионы применения

    Урало-Поволжье, Западная Сибирь, дальний Восток, Казахстан.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...