Изменение активности почвенных ферментов под действием. Изменение ферментативной активности почв при нефтяном загрязнении


1

Проведено исследование ферментативной активности почвы в агросистемах Верхневолжья, сформированных в длительных стационарных опытах на дерново-подзолистой и серой лесной почве, с целью оценки их экологического состояния. В дерново-подзолистой почве лесных экосистем средний уровень инвертазной активности составляет 21,1 мг глюкозы /1г почвы, а в почве агросистем – 8,6 мг глюкозы/1г почвы. Сельскохозяйственное использование снизило активность инвертазы в среднем в 2,5 раза. Особенно сильная депрессия инвертазы просматривается на нулевых фонах, где ежегодно проводятся агротехнические мероприятия по выращиванию сельскохозяйственных культур, без внесения удобрительных материалов. Средняя активность уреазы в почве агроэкосистем составила 0,10 мг N- NН4/1г почвы, незначительно выше она и в почве лесных экосистем – 0,13 мг N- NН4/1г, что обусловлено, в первую очередь, генетическими особенности дерново-подзолистых почв и уровнем их плодородия. На серой лесной почве изучаемый уровень агрогенной нагрузки не оказал негативного влияния на активность почвенных ферментов, а, наоборот, наблюдается тенденция повышения их активности на пашне, что сопровождается мобилизацией общей активности биологических процессов в почве по сравнению с залежью. Интенсивность воздействия на почвенный покров разнообразными технологическими приемами проявилась в снижении показателей ферментативной активности только у дерново-подзолистых почв. В экологическом плане эти результаты можно считать признаком ответной реакции почвенного покрова на внешние нагрузки антропогенного характера.

агроландшафты

инвертаза

кататаза

дерново- подзолистые

серые лесные почвы

ферментатиная активность

1. Виттер А.Ф. Обработка почвы как фактор регулирования почвенного плодородия /А.Ф. Виттер, В.И. Турусов, В.М. Гармашов, С.А. Гаврилова. – М.: Инфра–М, 2014. – 174 с.

2. Джанаев З.Г. Агрохимия и биология почв юга России / З.Г. Джанаев. – М.: Изд-во МГУ, 2008. – 528 с.

3. Звягинцев Д.Г. Биология почв / Д.Г. Звягинцев, Н.А. Бабьева. – М., 2005. – 520 c.

4. Зинченко М.К. Ферментативный потенциал агроландшафтов серой лесной почвы Владимирского ополья / М.К. Зинченко, С.И. Зинченко // Успехи современного естествознания. – 2015. – № 1. – С. 1319-1323.

5. Зинченко М.К. Реакция почвенной микрофлоры серой лесной почвы на длительное применение разных по уровню интенсификации систем удобрения/ М.К. Зинченко, Л.Г. Стоянова // Достижения науки и техники АПК. – 2016. – № 2. – Т. 30. – С.21-24.

6. Емцев В.Т. Микробиология: учебник для вузов / В.Т. Емцев. – М.: Дрофа, 2005. – 445 с.

7. Енкина О.В. Микробиологические аспекты сохранения плодородия черноземов Кубани/ О.В. Енкина, Н.Ф. Коробский. – Краснодар, 1999. – 140 с.

8. Методы почвенной микробиологии и биохимии; [под ред. Д.Г. Звягинцева]. – М.: Изд- во МГУ, 1991. – 292 с.

9. Хазиев Ф.Х. Ферментативная активность почв агроценозов и перспективы ее изучения / Ф.Х. Хазиев, А.Е. Гулько // Почвоведение. – 1991. – № 8. – С. 88-103.

10. Хазиев Ф.Х. Методы почвенной энзимологии / Ф.Х. Хазиев. – М.: Наука, 2005. – 254 с.

Агроэкологические функции почв выражаются определенными количественными и качественными параметрическими характеристиками, важнейшими из которых являются биологические показатели. Процессы разложения растительных остатков, синтез и минерализация гумуса, превращение труднодоступных форм питательных веществ в усвояемые для растений формы, ход аммонификации, нитрификации и фиксации свободного азота воздуха обусловлены деятельностью почвенных микроорганизмов.

Процессы обмена веществ и энергии при разложении и синтезе органических соединений, переход трудноусвояемых питательных веществ в формы, легкодоступные для растений и микроорганизмов, происходят при участии ферментов. Поэтому ферментативная активность почвы является важнейшим диагностическим показателем воздействия антропогенной нагрузки на почвенные системы. Особенно это актуально для агроэкосистем с ежегодным агротехническим воздействием на почву. Определение активности почвенных ферментов очень важно для выявления степени влияния агротехнических мероприятий и агрохимических средств на активность биологических процессов, чтобы судить о скорости мобилизации основных органогенных элементов .

Целью исследований было оценить экологическое состояние почв в агросистемах Верхневолжья по показателям ферментативной активности. Объектами исследований были дерново-подзолистые почвы разной степени оподзоленности и серые лесные почвы на сопряженных целинных и окультуренных ландшафтах.

Материалы и методы исследования

Так как объективные данные о плодородии почв и ее биологической активности можно получить в длительных стационарных опытах, то для исследования отбирались образцы почв на вариантах многолетних стационарных опытов, расположенных на базе Костромского НИИСХ, Ивановской СХА и Владимирского НИИСХ. В результате активность ферментов анализировалась в дерново-подзолистой легкосуглинистой почве (Опыт 1, Кострома), дерново-среднеподзолистой легкосуглинистой почве (Опыт 2, Иваново); серной лесной среднесуглинистой почве (Опыт 3, Суздаль).

Чтобы иметь возможность выявить степень влияния различного рода антропогенной нагрузки на почвы агроэкосистем, мы изучили эталонные образцы почвы ненарушеных экосистем, прилегающих к опытным участкам. Целинные варианты дерново-подзолистых почв представляли собой участки под сосновым лесом с примесью лиственных пород. Серые лесные почвы многолетней залежи сформированы под широколиственными лесами с обильным разнотравьем в наземном покрове.

Серые лесные почвы Владимирского ополья характеризуются средней аккумуляцией органического вещества. Содержание гумуса в горизонте А1 (А п) составляет 1,9 - 4%; гумусовый горизонт маломощный (17-37 см). Значение кислотности, характерное для этих почв, меньше, чем для дерново-подзолистых, преобладают слабо кислые почвы (рН=5,2-6,0). Поэтому серые лесные почвы Владимирской области характеризуются более благоприятными агрохимическими показателями по сравнению с дерново-подзолистыми. Стационарный полевой опыт на серой лесной почве заложен в 1997 г. для изучения эффективности адаптивно-ландшафтных систем земледелия (АЛСЗ). На изучаемых вариантах за ротацию 6-ти польного севооборота вносится: на нулевом фоне - навоз 40т/га (единовременно); среднем - N 240 Р 150 К 150 ; высокоинтенсивном минеральном- N 510 Р 480 К 480 ; высокоинтенсивном органоминеральном - навоз 80т/га (единовременно) + N 495 Р 300 К 300 .

Содержание гумуса в почвы опытного участка Ивановской сельскохозяйственной академии составляет 1,92 %; рН ксl - 4,6-6,4; Р 2 О 5 - 170-180 мг/кг почвы, К 2 О - 110-170 мг/кг почвы. Мощность пахотного слоя - 21-23 см. Опыт заложен в 1987 году. Образцы почвы отбирали в четырехпольном севообороте на нормальном фоне (N 30 Р 60 К 60) по двум приемам обработки почвы - отвальной вспашке на глубину 20-22см (ОВ) и безотвальной плоскорезной обработке на 20-22 см (ПО).

Плодородие дерново-подзолистой почвы длительного стационарного опыта Костромского НИИСХ в период отбора образцов характеризовалось следующми средними показателями: содержание гумуса 1,39-1,54 %; рН ксl - 4,6-6,4; Р 2 О 5 - 105-126 мг/кг; К 2 О - 104-156 мг/кг. Длительный стационарный полевой опыт по изучению влияния извести на свойства почвы и урожайность сельскохозяйственных культур был заложен в 1978 году. Исследования проводились в ротации семипольного севооборота. Для данной работы были отобраны образцы почвы в вариантах N 45 Р 45 К 45 - нулевой фон; - нормальный и Са 2,5 (N 135 Р 135 К 135) - интенсивный. Мелиорантом в опыте была доломитовая мука, внесенная однократно при закладке опыта в дозе 25 т/га в физическом весе для варианта Са 2,5 (NPK) 3 . В варианте Cа 0,5 +Са 0,5 (NPK) 1 мелиорант применяли дробно, первый раз - при закладке опыта в дозе 5 т/га, по 0,5 гидролитической кислотности; повторно - по окончании четвертой ротации в 2007 году осенью, под перепашку, в дозе 3,2 т/га, по 0,5 от потребности по гидролитической кислотности.

В почвенных образцах определяли: каталазную активность газометрическим методом по Галстяну , инвертазную активность методом И.Н. Ромейко, С.М. Малиновской и уреазную активность методом Т.А. Щербаковой . Активность этих ферментов почвы непосредственно касается превращения углерода, азота и окислительно-восстановительных процессов, а значит, характеризует функциональное состояние микроорганизмов почвы. Комплексное определение указанных параметров дает возможность точнее выяснить направление изменений в активности ферментативного пула почвенных разностей.

Биохимические исследования активности ферментов проводились в период с 2011-2013 гг. в слое почвы 0-20 см, поскольку основная биологическая активность и наибольшая биогенность присущи верхним слоям почвенного профиля, максимально обогащенных органическим веществом, с наиболее благоприятным для микрофлоры гидротермическим и воздушным режимом.

Результаты исследований и их обсуждение

Важнейшим звеном круговорота углерода в природе является стадия ферментативного превращения углеводов в почвенной среде. Она обеспечивает передвижение поступающего в почву в огромных количествах органического материала и накопленной в нем энергии, а также аккумуляцию его в почве в форме гумуса, так как при этом образуются предгумусовые компоненты .

Поступающие в почву растительные остатки на 60 % состоят из углеводов. В почве обнаружены моно-, ди- и полисахариды (целлюлозы, гемицеллюлозы, крахмал и др.). Очевидно, что агроэкологические воздействия, приводящие к изменению физико- химического и биологического состояния почв, оказывают влияние на активность ферментов углеводного обмена. Данные инвертазной активности почвы представлены в таблице 1.

Таблица 1

Активность инвертазы в почвах агроэкосистем

Место отбора проб

Агроэкосистемы

Активность инвертазы, мг глюкозы /1г почвы за 40 часов

Дерново- подзолистая

легкосуглинистая почва

Кострома

Лес (контроль)

Нулевой фон

N 45 Р 45 К 45

Нормальный

Cа 0,5 +Са 0,5 (N 45 Р 45 К 45)

Интенсивный

Са 2,5 (N 135 Р 135 К 135)

Дерново-среднеподзолистая

легкосуглинистая

Лес (контроль)

Нормальный N 30 Р 60 К 60

Нормальный N 30 Р 60 К 60

Залежь (контроль)

*Нулевой фон

N 30-60 Р 30 - 60 К 30-60

Высокоинтенсивный

минеральный

N 120 Р 120 К 120

N 120 Р 120 К 120 ;

Навоз 80т/га + N 90

Примечание: В таблице дозы удобрений на серой лесной почве приводятся в период исследований.

Выявлено, что в дерново-подзолистой почве лесных экосистем средний уровень инвертазной активности составляет 21,1 мг глюкозы /1г почвы, а в почве агросистем - 8,6 мг глюкозы/1г почвы. То есть сельскохозяйственное использование пашни оказало значительное влияние на активность инвертазы, снизив ее в среднем в 2,5 раза.

Особенно сильная депрессия инвертазы просматривается на нулевых фонах, где ежегодно проводятся агротехнические мероприятия по выращиванию сельскохозяйственных культур, без внесения удобрительных материалов. Это может быть связано с незначительным поступлением мортмассы в виде корне-пожнивных остатков, а также с изменением физико- химических свойств в результате обработок почвы.

Агротехническое использование серой лесной почвы не значительно снижает активность углеводного обмена по сравнению с почвой залежи. На участках многолетней залежи средний показатель активности инвертазы составляет 50,0 мг глюкозы на 1 г почвы за 40 часов, что на 9 % выше, чем в среднем на пашне. Вариация значений фермента в серой лесной почве агросистем за 2 года исследований (2012-2013 гг.) составила V= 7,6 %, при среднем показателе XS = 45,8 мг глюкозы / 1г почвы за 40 часов. Влияние систем удобрений на активность инвертазы наиболее выражено на среднем фоне. На этом варианте показатели активности фермента были достоверно выше (НСР 05 = 2,9), чем на других фонах интенсификации. Поэтому при использовании средних доз удобрений создаются благоприятные условия для превращений органических соединений ароматического ряда в компоненты гумуса. Это подтверждают данные о содержании органического углерода, так как максимальные запасы гумуса накоплены на среднем фоне - 3,62 %.

Одним из информативных показателей ферментативной активности почвы является активность уреазы. Многими исследователями уреазная активность рассматривается в качестве показателя самоочищающей способности почвы, загрязненной ксенобитиками органической природы. Действие уреазы связано с гидролитическим расщеплением связи между азотом и углеродом (СО- NН) в молекулах азотсодержащих органических соединений. В агроэкосистемах быстрое нарастание активности уреазы также свидетельствует о способности накопления в почве аммиачного азота. Поэтому многими исследователями отмечается положительная корреляция активности уреазы с содержанием азота и гумуса в почвах .

О том, что описываемые дерново-подзолистые почвы слабо обеспечены исходным органическим субстратом, свидетельствует низкая активность этого фермента (табл. 2). В наших исследованиях средняя активность уреазы в почве агроэкосистем составила 0,10 мгN-NН 4 /1г почвы, незначительно выше она и в почве лесных экосистем - 0,13 мг N- NН 4 /1г, что обусловлено, в первую очередь, генетическими особенности дерново-подзолистых почв и уровнем их плодородия.

Таблица 2

Активность уреазы в почвах агросистем

Место отбора проб

Агроэкосистемы

Активность уреазы, мг N-NН 4 /1г почвы за 4 часа

Дерново- подзолистая

легкосуглинистая почва

Кострома

Лес (контроль)

Нулевой фон

N 45 Р 45 К 45

Нормальный

Cа 0,5 +Са 0,5 (N 45 Р 45 К 45)

Интенсивный

Са 2,5 (N 135 Р 135 К 135)

Дерново-среднеподзолистая

легкосуглинистая

Лес (контроль)

Нормальный N 30 Р 60 К 60

Серая лесная среднесуглинистая почва

Залежь (контроль)

Нулевой фон

N 30-60 Р 30 - 60 К 30-60

Высокоинтенсивный

минеральный

N 120 Р 120 К 120

Высокоинтенсивный органоминеральный

N 120 Р 120 К 120 ;

Навоз 80т/га + N 90

На уровне природных биотопов сохраняется активность уреазы в опыте 1, где агротехнические мероприятия, кроме применения минеральных удобрений, включали известкование почвы. На фоне уменьшения содержания в почвенном - поглощающем комплексе ионов водорода и алюминия наблюдается стабилизация активности фермента.

Окультуривание дерново-подзолистых почв без систематического внесения известковых материалов, даже при использовании средних доз минеральных удобрений, по отвальной вспашке и плоскорезному рыхлению (Опыт 2) приводит к снижению уреазной активности по сравнению с их природными аналогами.

Исследования на серых лесных почвах показывают, что в среднем уровень уреазной активности этих почв в 2,5 раза выше, чем у дерново-подзолистых, что обусловлено генезисом почвообразования и уровнем их плодородия. Об этом свидетельствуют данные, как природных биотопов залежи, так и почв агроэкосистем. Многими исследователями установлено, что активность уреазы находится в прямо пропорциональной зависимости от количества органического углерода в почве.

На уровне природных биотопов показатель уреазной активности отмечен на высокоинтенсивном органоминеральном фоне - 0,34мгN-NН 4 /1гпочвы (Опыт 3). На высокоинтенсивном органоминеральном фоне был повышен уровень уреазной активности относительно других агроэкосистем и залежи. Это обусловлено, в первую очередь, тем, что в период исследований на этом варианте было внесено 80 т/га навоза, что обогатило почву свежим органическим веществом, мочевиной и стимулировало развитие комплекса уробактерий. Как и в почве многолетней залежи, при длительном использовании органоминеральных удобрительных средств, формируется органическое вещество с наиболее широким отношением углерода к азоту (С:N). Такому типу органического вещества соответствует наибольшая активность уреазы . Наблюдаемая тенденция свидетельствует о способности почвы этих экосистем к интенсивному накоплению аммиачного азота. Достоверно ниже (при НСР 05 = 0,04) активность фермента в почве других агроэкосистем. Самый низкий показатель (0,21мгN-NН 4 /1г) отмечен на высокоинтенсивном минеральном фоне, где в течение 18 лет вносились только высокие дозы минеральных удобрений. Можно предположить, что при использовании только минеральных удобрений, из-за недостатка специфического энергетического субстрата, в микробном пуле почвы снижается эколого-трофическая группа бактерий, продуцирующих уреазу.

Рассматривая ферментативную активность почв, нужно обратить внимание на окисление продуктов гидролиза органических соединений с образованием предгумусовых веществ. Эти реакции идут при участии оксиредуктаз, важным представителем которых является каталаза. Каталазная активность характеризует процессы биогенеза гумусовых веществ. Значения показателей каталазной активности дерново-подзолистых почв демонстрируют пространственно-временную вариабельность, но в целом обнаруживают колебания в пределах 0,9-2,8мл О 2 /1г почвы в мин. (табл. 3). В агроэкосистемах дерново- подзолистой почвы, сформированных в Ивановской и Костромской области, показатели активности каталазы находятся на уровне их природных аналогов (почвы леса). То есть, степень антропогенной нагрузки не оказала существенного влияния на процессы биогенеза гумусовых веществ. Они протекают с одинаковой интенсивностью как в почвах этих агросистем, так и в почве природных биотопов. Это является положительной тенденцией, так как формирование агроэкосистем на дерново-подзолистых почвах с легким гранулометрическим составом, без использования органических удобрений, может вызвать увеличение активности каталазы. Возрастание активности фермента характеризует интенсивную трансформацию гумусовых веществ в почве в сторону их минерализации, для обеспечения элементами питания возделываемых культур. Активизация этих процессов способна привести к уменьшению содержания гумуса в почве и снижению потенциального плодородия почвы.

Таблица 3

Активность каталазы в почвах агросистем

Место отбора проб

Агроэкосистемы

Активность каталазы, мл О 2 /1г почвы в минуту

Дерново- подзолистая

легкосуглинистая почва

Кострома

Лес (контроль)

Нулевой фон

N 45 Р 45 К 45

Нормальный

Cа 0,5 +Са 0,5 (N 45 Р 45 К 45)

Интенсивный

Са 2,5 (N 135 Р 135 К 135)

Дерново-среднеподзолистая

легкосуглинистая

Лес (контроль)

Нормальный N 30 Р 60 К 60 (ОВ)

Нормальный

N 30 Р 60 К 60

Серая лесная среднесуглинистая почва

Залежь (контроль)

Нулевой фон

N 30-60 Р 30 - 60 К 30-60

Высокоинтенсивный

минеральный

N 120 Р 120 К 120

Высокоинтенсивный органоминеральный

N 120 Р 120 К 120 ;

Навоз 80т/га + N 90

Коэффициент вариации значений каталазной активности в серой лесной почве агроэкосистем составляет V= 18,6 %. В целом обнаруживаются колебания в пределах 1,8-2,9мл О 2 /1г почвы. При существующем уровне антропогенной нагрузки на пашню наблюдается тенденция активизации окислительно-восстановительных процессов по сравнению с почвой залежи. Наибольшая активность этих процессов наблюдается при использовании средних доз удобрений, что характеризуется достоверным повышением активности каталазы (при НСР 05 = 0,4) на среднем фоне интенсификации. Это связано с достаточным обогащением почвы органической массой и улучшением режима ее трансформации за счет увеличения численности и мобилизационной деятельности микробного пула пашни .

Чтобы оценить степень агрогенного влияния на активность различных ферментов и определить общую ферментативную активность каждой агроэкосистемы в сопоставимых единицах, нами была использована методика О.В. Енкиной . Более точно судить об уровне ферментативной активности отдельных агрофонов, интерпретировав обширный экспериментальный материал, возможно, если сравнить их активность с контролем (в нашем случае с почвой природных экосистем), принимая показатели их ферментативной активности за 100 %. То есть, степень влияния антропогенной нагрузки на различные группы ферментов отражается отношением показателей их активности в агросистемах к природным аналогам (табл. 4).

В результате исследований установлено, что в большинстве дерново-подзолистых почв региона уровень ферментативной активности агроландшафтов ниже, чем в их природных аналогах. Ферментативный потенциал дерново-подзолистой почвы в опыте 1 (Кострома) снизился на 31 % по сравнению с контролем, а в опыте 3 (Иваново) - на 24 %. На изучаемых фонах в этих опытах вносились средние и высокие дозы минеральных удобрений. Длительное применение минеральных удобрений, особенно азотных, часто нарушает экологический фон для размножения полезных микроорганизмов на почвах с низким потенциальным плодородием. Это, как правило, происходит за счет подкисления почвенного раствора, присутствия в почвенно-поглощающем комплексе ионов алюминия и железа, корневых выделений растений, вызывающих активное размножение микроскопических грибов, способствующих увеличению биологической токсичности почвы . Негативные изменения при этом сопровождаются не только перестройкой структуры микробоценоза, но и снижением ферментативной активности почвы, потерей потенциального и эффективного плодородия.

Таблица 4

Уровень ферментативной активности почв агросистем (в % к почве природных экосистем)

Место отбора проб

Агроэкосистемы

Каталаза

Инвертаза

Средний показатель активности ферментов

Кострома

Лес (контроль)

Нулевой фон

Нормальный

Интенсивный

В среднем по опыту,%

Лес (контроль)

Нормальный

Нормальный

В среднем по опыту,%

Высокоинтенсивный минеральный

Высокоинтенсивный органоминеральный

В среднем по опыту,%

Таким образом, основные показатели ферментативной активности дерново- подзолистых почв, связанные с их эффективным плодородием, более высоки в природных экосистемах, чем в почвах пашни.

При повышенном уровне плодородия почвы влияние агрогенных факторов на ферментативный потенциал почвы несколько сглаживается. Это мы наблюдаем в агросистемах серой лесной почвы. Установлено, что в течение 3-х лет исследований самый высокий ферментативный потенциал сформировался на среднем фоне - 108 %. Средние дозы минеральных и органических удобрений (40 т/га навоза 1 раз в 6 лет) обусловили повышение каталазной и инвертазной активности почвы, что характеризует активизацию процессов синтеза гумусовых веществ.

Заключение

Установлено, что на серой лесной почве изучаемый уровень агрогенной нагрузки не оказал негативного влияния на активность почвенных ферментов, а, наоборот, наблюдается тенденция повышения их активности на пашне, что сопровождается интенсификацией общей активности биологических процессов в почве по сравнению с залежью. Интенсивность воздействия на почвенный покров разнообразными технологическими приемами проявилась в снижении показателей ферментативной активности дерново-подзолистых почв. В экологическом плане эти результаты можно считать признаком ответной реакции почвенного покрова на внешние нагрузки антропогенного характера.

В целях рационального использования и охраны плодородия почв показатели ферментативной активности необходимо использовать при проведении биомониторинга и биодиагностики почв. Это особенно важно при проведении производственных задач в сельском хозяйстве.

Библиографическая ссылка

Зинченко М.К., Зинченко С.И., Борин А.А., Камнева О.П. ФЕРМЕНТАТИВНАЯ АКТИВНОСТЬ АГРАРНЫХ ПОЧВ ВЕРХНЕВОЛЖЬЯ // Современные проблемы науки и образования. – 2017. – № 3.;
URL: http://science-education.ru/ru/article/view?id=26458 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Введение...3

1. Обзор литературы...5

1.1 Понятие о ферментативной активности почв...5

1.2 Влияние тяжелых металлов на ферментативную активность

1.3. Влияние агрохимических средств на ферментативную активность почв...23

2. Экспериментальная часть...32

2.1 Объекты, методы и условия проведения исследований...32

2.2. Влияние агрохимических фонов на ферментативную активность дерново-подзолистой почвы, загрязненной свинцом...34

2.2.1. Агрохимическая характеристика почвы при загрязнении свинцом и содержание его в почве опыта...34

2.2.2. Влияние агрохимических фонов на урожай яровых зерновых культур в фазе колошения на почве, загрязненной свинцом...41

2.2.3. Влияние агрохимических фонов на ферментативную активность почвы, загрязненной свинцом...43

2.3. Влияние агрохимических фонов на ферментативную активность дерново-подзолистой почвы, загрязненной кадмием...54

2.3.1. Агрохимическая характеристика почвы при загрязнении кадмием и содержание его в почве опыта...54

2.3.2. Влияние агрохимических фонов на урожай яровых зерновых культур в фазе колошения на почве, загрязненной кадмием...60

2.3.3. Влияние агрохимических фонов на ферментативную активность почвы, загрязненной кадмием...62

2.4. Влияние агрохимических фонов на ферментативную активность дерново-подзолистой почвы, загрязненной цинком...69

2.4.1. Агрохимическая характеристика почвы при загрязнении цинком и содержание его в почве опыта...69

2.4.2. Влияние агрохимических фонов на урожай яровых зерновых культур в фазе колошения на почве, загрязненной цинком...75


2.4.3. Влияние агрохимических фонов на ферментативную активность

почвы, загрязненной цинком...76

2.5. Влияние агрохимических фонов на ферментативную активность дерново-подзолистой почвы, загрязненной медью...82

2.5.1. Агрохимическая характеристика почвы при загрязнении медью и содержание его в почве опыта...83

2.5.2. Влияние агрохимических фонов на урожай яровых зерновых культур в фазе колошения на почве, загрязненной медью...89

2.5.3. Влияние агрохимических фонов на ферментативную активность

почвы, загрязненной медью...90

Заключение...96

Выводы...99

Список литературы...101

Приложение

Введение

Введение.

Использование агрохимических средств в агроэкосистеме является важнейшим условием развития современного земледелия. Это продиктовано необходимостью поддержания и улучшения уровня плодородия почв, и, как следствие, получение высоких и стабильных урожаев.

Агрохимические средства выполняют целый ряд экологических функций в агроценозе (Минеев, 2000). Одной из важнейших функций агрохимии является снижение негативных последствий от локального и глобального техногенного загрязнения агроэкосистем тяжелыми металлами (ТМ) и другими токсическими элементами.

Агрохимические средства снижают негативное влияние ТМ несколькими путями, в том числе инактивацией их в почве и усилением физиологических барьерных функций растений, препятствующих поступлению в них ТМ. Если по вопросу инактивации ТМ в почве в литературе встречается много сведений (Ильин, 1982 и т. д, Обухов, 1992, Алексеев, 1987 и др.), то по усилению барьерных функций растений - единичные исследования. Благодаря усилению физиологических барьерных функций под действием агрохимических средств, в растения поступает значительно меньше ТМ при их одинаковом содержании на разных агрохимических фонах (Соловьева, 2002). Усиление барьерных функций сопровождается оптимизацией питания растений, и как следствие улучшением биологической обстановки в почве.

Эта экологическая функция, а именно - улучшение биологической активности и структуры микробоценоза почвы загрязненной ТМ под действием агрохимических средств - пока не имеет достаточного экспериментального обоснования.

Известно, что некоторые показатели биологической активности при возникновении в почве стрессовой ситуации изменяются раньше, чем

другие почвенные характеристики, например, агрохимические (Звягинцев, 1989, Лебедева, 1984). Ферментативная активность почвы является одним из таких показателей. Многочисленными исследованиями установлено негативное влияние тяжелых металлов на активность ферментов. В тоже время известно, что агрохимические средства оказывают протекторное действие по отношению к ферментативной активности почвы. Мы попытались рассмотреть эту проблему в комплексе и выявить проявляются ли экологические защитные свойства агрохимических средств по отношению к ферментативной активности почвы при загрязнении биогенными и абиогенными металлами. Эту сторону агрохимических средств можно обнаружить только в том случае, если в разных вариантах опыта будет одинаковое количество ТМ, а такое возможно лишь при одинаковых показателях почвенной кислотности. Таких экспериментальных данных нам не удалось встретить в литературе.

1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Понятие о ферментативной активности почв.

Все биологические процессы, связанные с превращением веществ и энергии в почве, осуществляются с помощью ферментов, играющих важную роль в мобилизации элементов питания растений, а так же, обуславливающих интенсивность и направленность наиболее важных биохимических процессов, связанных с синтезом и распадом гумуса, гидролизом органических соединений и окислительно-восстановительным режимом почвы (,1976; 1979 и др.).


Формирование и функционирование ферментативной активности почвы - сложный и многофакторный процесс. Согласно системно-экологической концепции он представляет собой единство экологически обусловленных процессов поступления, стабилизации и проявления активности ферментов в почве (Хазиев, 1991). Эти три звена определены как блоки продуцирования, иммобилизации и действия ферментов (Хазиев, 1962).

Ферменты в почве - это продукты метаболизма почвенного биоценоза, но мнения о вкладе различных компонентов в их накоплении противоречивы. Ряд исследователей (Козлов, 1964, 1966, 1967; Красильников, 1958; и др.) считает, что основная роль в обогащении почвы ферментами принадлежит корневым выделениям растений, другие (Кацнельсон, Ершов, 1958 и др.) - почвенным животным, большинство же (Галстян, 1963; Пейве, 1961; Звягинцев, 1979; Козлов, 1966; Дробник, 1955; Hofmann, Seegerer, 1951; Seegerer, 1953; Hofmann, Hoffmann, 1955,1961; Kiss et al., 1958, 1964, 1971; Sequi, 1974; и др.) придерживаются мнения о том, что ферментативный пул в почве состоит из внутриклеточных и внеклеточных ферментов, преимущественно микробного происхождения

Почвенные ферменты участвуют при распаде растительных, животных и микробных остатков, а также синтезе гумуса. В результате ферментативных процессов питательные вещества из трудно усвояемых

соединений переходят в легко доступные формы для растений и микроорганизмов. Ферменты отличаются исключительно высокой активностью, строгой специфичностью действия и большой зависимостью от различных условий внешней среды. Последняя особенность имеет большое значение в регулировании их активности в почве (Хазиев, 1982 и

Ферментативная активность почв по (1979 г)

складывается из:

а) внеклеточных иммобилизованных ферментов;

б) внеклеточных свободных ферментов;

в) внутриклеточных ферментов мертвых клеток;

г) внутриклеточных и внеклеточных ферментов, образованных в искусственных условиях эксперимента и не характерных для данной почвы.

Установлено, что каждый фермент действует лишь на вполне определенное вещество или сходную группу веществ и вполне определенный тип химической связи. Это вызвано их строгой специфичностью.

По своей биохимической природе все ферменты представляют собой высокомолекулярные белковые вещества. Полипептидная цепочка белков - ферментов расположена в пространстве исключительно сложным образом, неповторимым для каждого фермента. При определенном пространственном расположении функциональных групп аминокислот в молек6).

Ферментативный катализ начинается с образования активного промежуточного соединения - фермент-субстратного комплекса. Комплекс - результат присоединения молекулы субстрата к каталитически активному центру фермента. При этом пространственные конфигурации молекул субстрата несколько видоизменяются. Новое ориентированное

размещение на ферменте реагирующих молекул обеспечивает высокую эффективность ферментативных реакций, способствующих снижению энергии активации (Хазиев, 1962).

За каталитическую активность фермента ответственны не только активный центр фермента, но и вся структура молекулы в целом. Скорость ферментативной реакции регулируется множеством факторов: температурой, рН, концентрацией фермента и субстрата, наличием активаторов и ингибиторов. В роли активаторов могут выступать органические соединения, но чаще различные микроэлементы (Купревич, Щербакова, 1966).

Почва способна регулировать протекающие в ней ферментативные процессы в связи с изменением внутренних и внешних факторов посредством факторной или аллостерической регуляции (Галстян 1974, 1975). Под воздействием внесенных в почву химических соединений, в том числе удобрений, происходит аллостерическая регуляция. Факторная регуляция обусловлена кислотностью среды (рН), химическим и физическим составом, температурой, влажностью , водно-воздушным режимом и т. д. Влияние специфики почвы, содержания гумуса и биомассы и других факторов на активность ферментов, используемых для характеристики биологической активности почв, неоднозначно (Галстян, 1974; Kiss,1971,; Dalai, 1975, McBride, 1989, Tiler,1978).

Ферментативную активность почвы можно использовать в качестве диагностического показателя плодородия различных почв, потому что активность ферментов отражает не только биологические свойства почвы, но и их изменения под влиянием агроэкологических факторов (Галстян, 1967; Чундерова,1976; Чугунова, 1990 и др.).

Основные пути поступления ферментов в почву - это прижизненно выделяемые внеклеточные ферменты микроорганизмов и корней растений и внутриклеточные ферменты, поступающие в почву после отмирания почвенных организмов и растений.

Выделения ферментов в почву микроорганизмами и корнями растений обычно носит адаптивный характер в форме ответной реакции на присутствие или отсутствие субстрата для действия фермента или продукта реакции, что особенно четко проявляется с фосфатазами. При недостатке в среде подвижного фосфора микроорганизмы и растения резко усиливают выделение ферментов. На такой взаимосвязи и основано применение величины фосфатазной активности почвы как диагностического показателя обеспеченности растений доступным фосфором (Наумова, 1954, Котелев, 1964).

Ферменты, попадая из различных источников в почву, не разрушаются, а сохраняются в активном состоянии. Нужно полагать, что ферменты, являясь наиболее активным компонентом почвы, сосредоточены там, где наиболее напряженно идет жизнедеятельность микроорганизмов, то есть на поверхности раздела между почвенными коллоидами и почвенным раствором. Экспериментально доказано, что ферменты в почве находятся главным образом в твердой фазе (Звягинцев, 1979).

Многочисленные эксперименты, проведенные в условиях подавления синтеза ферментов в микробных клетках при помощи толуола (Drobnik, 1961; Beck, Poshenrieder, 1963), антибиотиков (Купревич, 1961; Kiss, 1971) или облучения (McLaren et al., 1957) свидетельствуют о том, что в почве содержится большое количество "аккумулированных ферментов", достаточное, чтобы осуществлять трансформацию субстрата в течение некоторого времени. Среди таких ферментов могут быть названы инвертаза, уреаза, фосфатаза, амилаза и др. Другие ферменты гораздо более активны в отсутствие антисептика , а значит, накапливаются в почве незначительно (а - и Р-галактозидазы, декстраназа, леваназа, малатэстераза и др.). Третья группа ферментов не аккумулируется в почве, активность их проявляется лишь в период вспышки жизнедеятельности микробов и индуцируется субстратом. Полученные к настоящему времени

экспериментальные данные свидетельствуют о различии в ферментативной активности почв разных типов (Коновалова, 1975; Звягинцев, 1976; Хазиев, 1976; Галстян, 1974, 1977, 1978; и др.).

Наиболее хорошо изученными ферментами в почве являются гидролазы, которые представляют обширный класс ферментов, осуществляющих реакции гидролиза разнообразных сложных органических соединений, действуя на различные связи: сложноэфирные, глюкозидные, амидные, пептидные и др. Гидролазы широко распространены в почвах и играют важную роль в обогащении их подвижными и достаточными для растений и микроорганизмов питательными веществами, разрушая высокомолекулярные органические соединения. К этому классу относятся ферменты уреаза (амидаза), инвертаза (карбогидраза), фосфатаза (фосфогидролаза) и др., активность которых является важнейшим показателем биологической активности почв (Звягинцев, 1980).

Уреаза - фермент, участвующий в регуляции азотного обмена в почве. Этот фермент катализирует гидролиз мочевины до аммиака и углекислого газа, вызывая гидролитическое расщепление связи между азотом и углеродом в молекулах органических веществ.

Из ферментов азотного обмена уреаза изучена лучше других. Она обнаруживается во всех почвах. Ее активность коррелирует с активностью всех основных ферментов азотного метаболизма (Галстян, 1980).

В почве уреаза находится в двух основных формах: внутриклеточной и внеклеточной. Наличие в почве свободной уреазы позволило Бриггсу и Сегалу (Briggs et al., 1963) выделить фермент в кристаллическом виде.

Часть внеклеточной уреазы адсорбирована почвенными коллоидами, имеющими высокое сродство к уреазе. Связь с почвенными коллоидами предохраняет фермент от разложения микроорганизмами и способствует ее аккумуляции в почве. Каждая почва имеет свой стабильный уровень уреазной активности, определяемый способностью почвенных коллоидов,

главным образом органических, проявлять защитные свойства (Звягинцев, 1989).

В почвенном профиле наиболее высокую активность фермента проявляет гумусовый горизонт, дальнейшее распределение по профилю зависит от генетических особенностей почвы.

В связи с широким применением мочевины в качестве азотного удобрения, вопросы, связанные с ее превращениями под действием уреазы, являются практически значимыми. Высокая уреазная активность большинства почв препятствует использованию мочевины в качестве универсального источника азотного питания, так как высокая скорость гидролиза мочевины почвенной уреазой приводит к локальной аккумуляции ионов аммония , повышению реакции среды до щелочных значений, и как следствие этого, потерям азота из почвы в виде аммиака (Tarafdar J. C, 1997). Расщепляя мочевину, уреаза предотвращает изомеризацию её в фототоксичный цианат аммония. Хотя сама мочевина частично используется растениями, однако в результате активного действия уреазы она не может долго сохраняться в почве. В исследованиях ряда ученых отмечено улетучивание из почвы азота мочевины в форме аммиака при высокой активности уреазы, а при внесении в почву различных ингибиторов уреазы замедлялся гидролиз мочевины и потери были меньше (Tool P. O., Morgan M. A.,1994). На скорость гидролиза мочевины в почве влияют температура (Иванов, Баранова, 1972; Галстян, 1974; Cortez et al., 1972 и др), кислотность почвы (Галстян, 1974; Моисеева, 1974 и др). Отрицательное воздействие оказывает насыщенность почвы карбонатами (Галстян, 1974), присутствие в значительных количествах солей мышьяка, цинка, ртути, сульфат-ионов, соединений меди и бора, из органических соединений существенно ингибируют уреазу алифатические амины, дегидрофенолы и хиноны (Paulson, 1970, Briggsatel., 1951).

Активность инвертазы - один из наиболее устойчивых показателей, обнаруживающий наиболее четкие коррелятивные связи с воздействующими факторами. Исследованиями (1966, 1974) установлена корреляция инвертазы с активностью других почвенных карбогидраз.

Активность инвертазы исследована во многих почвах и обсуждена в нескольких обзорных работах (Александрова, Шмурова, 1975; Купревич, Щербакова, 1971; Kiss et al.,1971, и др.). Инвертазная активность в почве убывает по профилю, коррелирует с содержанием гумуса (Пухитская, Ковриго, 1974; Галстян, 1974; Калатозова, 1975; Кулаковская, Стефанькина, 1975; Симонян, 1976; Toth, 1987 и др.). Корреляция с гумусом может отсутствовать при значительном содержании в почве алюминия , железа, натрия. Тесная связь активности инвертазы с количеством почвенных микроорганизмов и их метаболической активностью (Маштаков и др.,1954; Кацнельсон, Ершов, 1958; Козлов, 1964; Чундерова, 1970; Kiss, 1958; Hofinann, 1955 и др.) свидетельствуют о преимуществе в почве инвертазы микробного происхождения. Однако такая зависимость не всегда подтверждается (Низова, 1970), активность инвертазы значительно более устойчивый показатель и непосредственно может быть не связана с колебаниями численности микроорганизмов (Ross, 1976).

По сообщению (1974) почвы с тяжелым гранулометрическим составом обладают более высокой ферментативной активностью. Однако имеются сообщения, что инвертаза заметно инактивируется при адсорбции глинистыми минералами (Hofmann et al., 1961; Skujins, 1976; Rawald, 1970) и почвы с высоким содержанием монтмориллонита обладают низкой инвертазной активностью. Зависимость инвертазной активности от влажности и температуры почвы исследована недостаточно, хотя многие авторы объясняют сезонные изменения активности гидротермическими условиями.

Влияние температуры на потенциальную активность инвертазы подробно исследовал (1975), установив оптимум при температуре около 60°, порог инактивации фермента после прогревания почв при 70° и полную инактивацию после трехчасового прогревания при 180°С.

Многими авторами рассмотрена инвертазная активность почв в зависимости от произрастающих растений (Самцевич, Борисова, 1972; Галстян, 1974, Ross 1976; Cortez et al.,1972 и др.). Развитие лугового процесса, образование мощной дернины под травянистым покровом способствует увеличению инвертазной активности (Галстян, 1959). Однако имеются такие работы, в которых влияние растений на активность инвертазы не установлено (Коновалова, 1975).

В почвах в большом количестве имеется фосфор в форме органических соединений, поступающий с отмирающими остатками растений, животных и микроорганизмов. Высвобождение фосфорной кислоты из этих соединений осуществляется сравнительно узкой группой микроорганизмов, имеющих специфические ферменты фосфатазы (Чимитдоржиева и др., 2001).

Среди ферментов фосфорного обмена наиболее полно исследована активность ортофосфорных монофосфоэстераз (Александрова, Шмурова, 1974,; Skujins J. J., 1976; Котелев и др., 1964). Продуцентами фосфатаз преимущественно являются клетки почвенных микроорганизмов (Красильников, Котелев, 1957, 1959; Котелев и др., 1964).

Фосфатазная активность почвы определяется ее генетическими особенностями, физико-химическими свойствами и уровнем культуры земледелия. Среди физико-химических свойств почвы для фосфатазной активности особенно важна кислотность. Дерново-подзолистые и серые лесные почвы, имеющие кислую реакцию, преимущественно содержат кислые фосфатазы, в почвах со слабо щелочной реакцией преобладают щелочные фосфатазы. Следует отметить, что оптимум активности кислых

фосфатаз находится в слабокислой зоне, даже тогда, когда почвы имеют сильнокислую реакцию (Хазиев, 1979; Щербаков и др., 1983, 1988). Этот факт подтверждает важность известкования кислых почв для ускорения гидролиза сложных органических фосфатов и обогащения почвы доступным фосфором.

Наблюдаемое характерное распределение фосфатаз в почвах в зависимости от их кислотности обусловлено составом микрофлоры. В почве функционируют приспособленные к определенным условиям среды микробные сообщества, которые выделяют ферменты, активные в данных условиях.

Суммарная фосфатазная активность почвы зависит от содержания гумуса и органического фосфора, который является субстратом для фермента.

Наиболее высокой фосфатазной активностью характеризуются черноземы. В дерново-подзолистых и серых лесных почвах активность фосфатазы невелика. Низкая активность этих кислых почв обусловлена более сильной адсорбцией фосфатаз почвенными минералами. Вследствие малого содержания органического вещества в таких почвах адсорбирующая поверхность минералов больше обнажена по сравнению с высокогумусными черноземами, где глинистые минералы покрыты гумифицированным органическим веществом.

Активность фосфатазы динамична в течение вегетационного периода. В активные фазы роста растений при высокой температуре почвы и достаточной влажности в летние месяцы фосфатазная активность почв максимальна (Евдокимова, 1989).

В некоторых почвах отмечена корреляция фосфатазной активности с общей численностью микроорганизмов (Котелев и др., 1964; Алиев, Гаджиев, 1978, 1979; Арутюнян, 1975, 1977; и др.) и количеством микроорганизмов, минерализующих органические соединения фосфора (Пономарева и др., 1972), в других - связь активности фосфатазы с числом

микроорганизмов не установлена (Ramirez-Martinez, 1989). Влияние гумуса проявляется в характере изменения активности фермента по профилю, при сопоставлении почв разной степени гумусированности и проведении мероприятий по окультуриванию почвы (Александрова, Шмурова, 1975; Арутюнян, 1977). Исследования многих авторов свидетельствуют о прямой зависимости фосфатазной активности почв от содержания в почве органического фосфора (Гаврилова и др., 1973; Арутюнян, Галстян, 1975; Арутюнян, 1977; и др.).

Рассмотрим несколько подробнее общие закономерности формирования фосфатазного пула почв.

Значительную часть общего фосфора в почве составляют фосфорорганические соединения: нуклеиновые кислоты, нуклеотиды, фитин, лецитин и др. Большинство из встречающихся в почве органофосфатов непосредственно растениями не усваивается. Их поглощению предшествует ферментативный гидролиз, осуществляемый фосфогидролазами. Субстратами почвенных фосфатаз являются специфические гумусовые вещества, включающие фосфор гумусовых кислот, а также не специфические индивидуальные соединения, представленные нуклеиновыми кислотами, фосфолипидами и фосфопротеинами, а также метаболическими фосфатами. Первые накапливаются в почве в результате биогенеза гумусовых веществ, вторые, как правило, поступают в почву с растительными остатками и накапливаются в ней, как продукты промежуточных метаболических реакций.

Роль высших растений в формировании фосфатазного пула почв, используемых в сельском хозяйстве , ниже, чем микроорганизмов и связана в основном с поступлением в почву пожнивных остатков и корневых выделений, что подтверждается данными и (1994), которые исследовали в вегетационном опыте влияние различных сельскохозяйственных культур на активность гидролитических

и окислительно-восстановительных ферментов; фосфатазы, инвертазы, протеазы, уреазы, каталазы на маломощной торфяной почве. Активность фосфатазы оказалась примерно одинаковой под всеми культурами: ячменем, картофелем и черным паром и лишь немного больше под многолетними травами, тогда как активность других ферментов значительно различалась в зависимости от характера использования почв.

, (1972) отмечают увеличение активности фосфатазы в ризосфере пшеницы и бобовых, что может быть связано как с увеличением численности микроорганизмов в ризосфере, так и с внеклеточной фосфатазной активностью корней. С агрохимической точки зрения важен конечный результат - рост ферментативного пула почв с увеличением мощности корневых систем растений.

Обедненность агроценозов растениями приводит к снижению ризосферного эффекта и, как следствие, к уменьшению активности фосфатазы почвы. Отмечено значительное снижение фосфатазной активности почв при возделывании монокультуры. Включение почв в севооборот создает условия для улучшения гидролитических процессов, что приводит к увеличению метаболизма фосфорных соединений. (Евдокимова, 1992)

(1994) исследовала дерново-подзолистые почвы, сформированные под естественной (лесной) растительностью разного состава и определяла распределение фосфатазной активности в профиле почвы, соотношение между лабильными и стабильными формами ферментов, пространственную и временную их вариабельность. Установлено, что в почвах, сформированных под естественной лесной растительностью, генетические горизонты различаются по активности фосфатазы, распределение которой в профиле тесно коррелирует с содержанием гумуса. По данным, наибольшая фосфатазная активность наблюдалась в подстилочном слое, затем в раз уменьшалась в гумусово-аккумулятивном и резко падала в почвенном слое

ниже 20 см в почве под ельником (лесная растительность). Под луговой растительностью несколько иное распределение: максимальная активность в дерновом горизонте, в 1,5-2 раза ниже в гумусово-аккумулятивном, а дальнейшее значительное снижение наблюдается только после 40 - 60 см. На основании вышеизложенного можно сделать вывод, что максимальный вклад в формирование фосфатазного пула под естественной растительностью вносят микроорганизмы и растительные остатки в качестве субстрата, корневые выделения и постморально поступающие внутриклеточные ферменты играют несколько меньшую роль.

Интенсивность биохимических процессов в почве и уровень её плодородия зависит как от условий существования живых организмов, которые поставляют ферменты в почву, так и от факторов, способствующих закреплению ферментов в почве и регулирующих их актуальную активность.

1.2. Влияние тяжёлых металлов и микроэлементов на ферментативную активность почв.

Одним из перспективных направлений использования ферментативной активности для диагностики биологических свойств почв является выявление уровня загрязненности почв ТМ.

Тяжелые металлы, поступая в почву в виде различных химических соединений, могут накапливаться в ней до высоких уровней, представляющих существенную опасность для нормального функционирования почвенной биоты. В литературе накоплено большое количество данных, свидетельствующих о негативном влиянии загрязнения почв ТМ на почвенную биоту. При нарушении химического равновесия в почве возникает стрессовая ситуация. Существуют данные о том, что биологические показатели раньше агрохимических реагирует на изменение условий, влияющих на различные свойства почвы (Лебедева,

Список литературы

Инвертаза - катализирует реакции гидролитического расщепления сахарозы на эквимолярные количества глюкозы и фруктозы, воздействует также на другие углеводы с образованием молекул фруктозы - энергетического продукта для жизнедеятельности микроорганизмов, катализирует фруктозотрансферазные реакции. Исследования многих авторов показали, что активность инвертазы лучше других ферментов отражает уровень плодородия и биологической активности почв.[ ...]

Анализы инвертазы после 1 года свидетельствуют о дальнейшем уменьшении ее во всех образцах в 2-3 раза в зависимости от типа почв, что, по-видимому, объясняется истощением почвы углеродсодержащими соединениями.[ ...]

Из класса гидролаз изучена активность инвертазы, гидролизирующей сахарозу на глюкозу и фруктозу, и уреазы, катализирующей гидролиз мочевины. Активность этих ферментов в грунте очень низкая, но при внесении торфа увеличивается пропорционально его дозам и мало зависит от количества минеральных удобрений. Следует отметить, что внесение самой большой дозы (ЫРКЦ, а также СаСОэ не имеет преимуществ перед меньшими дозами удобрений в стимулировании активности как гидролаз, так и оксидоредуктаз.[ ...]

Для трассы аэропорт - пос. Кангалассы обратная зависимость между активностью уреазы, инвертазы и протеазы и содержанием свинца не обнаружена. Это свидетельствует об отсутствии ингибирующего эффекта свинца в дозе, не превышающей ПДК. Отмечается параллельное увеличение активности всех ферментов и свинца по мере удаления от источника загрязнения, что в данном случае объясняется увеличением гумусированности почв. Известно, что почвы с высоким содержанием гумуса в большей степени накапливают ТМ и характеризуются повышенной ФА.[ ...]

Соединения данной группы задерживают рост новых побегов, временно снижают активность инвертазы в сахарной свекле и подавляют биосинтез хлорофилла. И все же их первичное действие - это подавление биосинтеза ароматических аминокислот. Соединения типа Ы-фосфонметилглицина подавляют этот синтез, действуя на участках преобразования дегидрохинной и префеновой кислот.[ ...]

По-видимому, образование сахарозы происходит в паренхимных клетках флоэмы, откуда она поступает в ситовидные трубки, которые лишены ферментов, разлагающих сахарозу (инвертазы), что и определяет сохранность этого соединения на всем пути его транспорта.[ ...]

Проведенная работа позволяет заключить, что накопление подвижных форм свинца и никеля в дозах, превышающих ПДК, приводит к снижению активности ферментов в почвах. Понижение активности протеазы, уреазы и инвертазы в почвах обусловливает соответствующее торможение процессов гидролиза белков, мочевины и олигосахаридов, что в целом приводит к снижению биологической активности почв. Изменение ФА -перспективный метод диагностики экологического состояния почв. Из рассмотренных нами ферментов наиболее высокие диагностические свойства проявляет уреаза.[ ...]

Состояние почв оценивалось двумя биоиндикационными методами: по ферментативной активности почв и мутационному воздействию почв на тест-объект. В городских почвогрунтах определялась активность трех ферментов - инвертазы, каталазы и уреазы (Хазиев, 1990), из которых наиболее вариабильной оказалась активность уреазы. По этой причине для интегральной оценки выбраны показатели именно этого фермента, активность которого в значительной степени зависела от концентрации в почве широкого круга поллютантов.[ ...]

Гистохимические анализы позволили установить общность окислительного режима пыльцы и пыльцевых трубок у различных представителей покрытосеменных растений. При этом установлено, что наиболее интенсивно биохимические процессы протекают в кончике пыльцевой трубки.[ ...]

Другая группа эвокациопыых изменений связана с активацией энергетических процессов, необходимых для реализаций морфогенетической программы репродуктивного развития.[ ...]

При внесении больших норм ГХБД и в жидкой, и в гранулированной форме угнетение развития отдельных групп микроорганизмов не проходит и к полутора годам, прошедшим после фумигации. Активность почвенных ферментов (каталазы и инвертазы) к этому времени составляет по этим (вариантам опыта 70-80% от активности ферментов в контрольном варианте. Через 5 месяцев после внесения больших норм ГХБД (жидкого и гранулированного) снижается содержание в почве нитратов, что свидетельствует об угнетении процесса нитрификации.[ ...]

Агрохимические свойства почв определяли общепринятыми методами , pH водной и солевой вытяжек - потенциометрическим, содержание углерода - методом Тюрина, подвижного азота - по Башкину и Кудеярову, подвижного фосфора - по Чирикову, ферментативную активность почв (инвертазу, уреазу и каталазу) - по Хазиеву .[ ...]

У многих представителей лучистых грибков выявлен фермент амилаза, при помощи которого организмы расщепляют крахмал с различной интенсивностью, в зависимости от вида культуры. Одни культуры разлагают крахмал до декстринов, другие - до сахаров. У некоторых актиномицетов обнаружен фермент инвертаза, который расщепляет сахарозу на легкоусвояемые сахара - глюкозу и фруктозу. Отмечено, что проактиномицеты могут усваивать сахарозу без ее разложения.[ ...]

Такие уровни загрязнения отразились и на содержании подвижных, доступных растениям форм соединений тяжелых металлов. Их количество также увеличилось в 1,5-2 и даже в 5 раз. Эти изменения отразились на почвенной биоте, общих свойствах почв и почвенном плодородии. В частности, резко снизилась активность почвенных ферментов: инвертазы, фосфатазы, уреазы, каталазы; примерно в 2 раза снизилось продуцирование С02. Ферментативная активность - хороший интегральный показатель экологической обстановки в системе «почва - растение». На загрязненных почвах резко снизилась и урожайность различных культур. Так, урожай томатов (ц/га) в среднем снизился от 118,4 до 67,2; огурцов - от 68,3 до 34,2; капусты - от 445,7 до 209,0; картофеля - от 151,8 до 101,3; яблок - от 72,4 до 32,6 и персиков - от 123,6 до 60,6.[ ...]

Среди тундровых почв поймы потенциал биохимической активности возрастает от почв прирусловой поймы к центральной и притеррасной. В свою очередь, ферментативная активность в органогенных пойменных почвах выше, чем в минеральных. В гумусовых горизонтах (0-13 см) изученных почв отмечается довольно высокая активность уреазы, инвертазы, фосфатазы и дегидрогеназы - ферментов, участвующих в обменных процессах азота, углеводов, фосфора и окислительно-восстановительных.[ ...]

Активность фосфатазы низкая, а в большинстве случаев фосфатазная активность отсутствует, что связано с очень низким содержанием подвижного фосфора на фоне относительно высокого содержания в перегнойно-торфянистых горизонтах его валовых форм. В отличие от ферментов, участвующих в обменных процессах азота и фосфора, ферменты углеводородного обмена (инвертаза) проявляют свою активность до надмерзлотных горизонтов, что определяется гуму-сированностью профиля.[ ...]

Изменение ферментативной активности почв за четыре года проведения опыта показано в табл. 6.8. Как видно из полученных результатов, активность уреазы и фосфатазы снизилась, но основные закономерности - более высокая активность в вариантах без применения ППС при внесении торфа и минеральных удобрений и отсутствие ферментативной активности в контрольных вариантах - сохраняются. В то же время активность инвертазы, играющей важную роль в круговороте углерода в биогеоценозе, возрастает на четвертый год почти по всем вариантам опыта, в том числе и при внесении ППС, что подтверждает также интенсивность мине-рализационных процессов торфа и универсинов.[ ...]

Очень перспективным методом очистки воды от всевозможных загрязняющих ее веществ, особенно синтетических, является использование иммобилизованных (закрепленных, нерастворимых) ферментов - «ферментов второго поколения». Идея закрепления ферментов на нерастворимом в воде носителе и применения таких мощных катализаторов в технологических процессах и медицине возникла давно. Еще в 1916 г. осуществлена адсорбция инвертазы на активированном угле в свежевыделенной гидроокиси алюминия. С 1951 г. для фракционирования антител и выделения антигенов используют конъюгацию белков с целлюлозой. До недавнего времени существовал единственный метод закрепления ферментов - обыкновенная физическая адсорбция. Однако адсорбционная емкость известных материалов относительно белков явно недостаточна, а силы адгезии невелики, и разрыв связи между ферментом и поверхностью адсорбента может наступать от малейших изменений условий процесса. Поэтому такой метод иммобилизации не нашел широкого применения, но, поскольку он прост и может, по-видимому, способствовать выяснению механизма действия ферментов в живых системах, илах и почве, а в некоторых случаях применяться на практике, некоторые исследователи занимаются изучением адсорбции ферментов, поиском новых, эффективных носителей и т. д. .[ ...]

Если учесть выраженные и длительные физиологические изменения процессов роста и развития, вызываемые этиленом, не покажется удивительным, что происходят также изменения в синтезе РНК и белка и в активности ферментов. Неоднократно проверялась возможность прямого воздействия этилена на активность различных ферментов, например глюкозидазы, а-амилазы, инвертазы и перок-сидазы, но были получены отрицательные результаты-Вместе с тем синтез целого ряда ферментов четко возрастает. К числу ферментов, относительно быстро синтезируемых после воздействия этилена, относится перокси-даза. В плодах цитрусовых усиливается синтез фенил-аланин-аммиак-лиазы, причем С02 и ингибиторы транскрипции блокируют этот процесс. В отделительной ткани этилен вызывает образование целлюлазы. Очевидна связь этого эффекта со стимуляцией процесса отделения. Правда, ускоренное отделение наступает еще до подъема синтеза целлюлазы, но это, вероятно, объясняется тем, что этилен вызывает также высвобождение целлюлазы из связанной формы и ее секрецию в межклетники. Выделение амилазы из алейроновых клеток ячменя тоже ускоряется под действием этилена. Быстрые» эффекты этилена, например подавление клеточного растяжения, проявляющееся уже через 5 мин, связаны скорее с влиянием на мембраны, чем с изменениями белкового синтеза.[ ...]

Как известно, одной из причин токсичности почвогрунтов является их засоление. Отработанные буровые растворы и буровой шлам содержат в своем составе в ряде случаев значительное количество опасных для почв минеральных солей. Поэтому представляет интерес выявление влияния указанного фактора на биологическую продуктивность почв. Результаты исследований свидетельствуют о том, что минеральные сопи н количестве боттее 0 8-4,0 кт/м2 почвы резко снижают активность инвертазы, а в количестве более 1,5-1,6 кг/м2 почвы начинают существенно сказываться и на урожайности возделываемых на них сельхозкультур .[ ...]

Мед - высококалорийный продукт. Натуральным медом называется сладкое, вязкое и ароматическое вещество, вырабатываемое пчелами из нектара растений, а также из медвяной росы или пади. Мед может иметь вид закристаллизованной массы. Ценность меда заключается и в том, что он обладает бактерицидными свойствами. Поэтому мед не только ценный продукт питания, но и лечебное средство. Главными составными частями цветочного меда являются плодовый и виноградный сахара, которых в нем содержится около 75 %. Калорийность меда свыше 3 тыс. кал. В нем имеются ферменты: диастаза (или амилаза), инвертаза, каталаза, липаза.[ ...]

Исследования проводили в долине нижнего течения р.Сысола (Республика Коми, подзона средней тайги). Биохимические параметры почв характеризовали по уровню активности оксидоредуктаз (каталаза), гидролаз (инвертаза) и выделению С02 с поверхности почвы. Во все сроки отбора максимальные значения каталитической активности отмечены в лесных подстилках почвы Адл (4.2-8.6 мл 02/г почвы), наиболее «сухой» в исследованном ряду почв. Однако по уровню инвертазы во все сроки отбора лидировала почва Ал (11.9-37.8 мг глюкозы/г почвы в горизонте АО). В этой же почве отмечен в июле максимум в выделении С02 (0.60±0.19) кг/га-час. При использовании интегрального показателя БАП, учитывающего все параметры биологической активности, показано, что наиболее активно биологические процессы во все сроки отбора протекают в почве Ал, занимающей промежуточное положение по гидротермическому режиму между почвами Адл и Алб.[ ...]

Дестабилизация процесса нитрификации нарушает поступление в биологический круговорот нитратов, количество которых предопределяет ответную реакцию на изменение среды обитания у комплекса денитрификаторов. Ферментные системы денитрификаторов уменьшают скорость полного восстановления, слабее вовлекая закись азота в конечный этап, осуществление которого требует значительных энергетических затрат. В результате этого содержание закиси азота в надпочвенной атмосфере эродированных экосистем достигало 79 - 83% (Косинова и др., 1993). Отчуждение части органических веществ из черноземов под воздействием эрозии отражается на пополнении азотного фонда в ходе фото- и гетеротрофной фиксации азота: аэробной и анаэробной. На первых этапах эрозии быстрыми темпами идет подавление именно анаэробной азотфиксации в силу параметров лабильной части органического вещества (Хазиев, Багаутдинов, 1987). Активность ферментов инвертазы и каталазы в сильносмытых черноземах по сравнению с несмытыми уменьшилась более чем на 50%. В серых лесных почвах по мере увеличения их смытости наиболее резко снижается инвертазная активность. Если в слабосмытых почвах отмечается постепенное затухание активности с глубиной, то в сильносмытых уже в подпахотном слое инвертазная активность очень мала или не обнаруживается. Последнее связано с выходом на дневную поверхность иллювиальных горизонтов с крайне низкой активностью фермента. По активности фосфатазы и, особенно, каталазы четко выраженной зависимости от степени смытости почв не наблюдалось (Личко, 1998).[ ...]

Первичные вещества в лишайниках в общем те же, что и в других растениях. Оболочки гиф в лишайниковом слоевище составлены в основном углеводами, Часто обнаруживается в гифах хитин (С30 Н60 К4 019). Характерной составной частью гиф является полисахарид лихенин (С6Н10О6)п, называемый лишайниковым крахмалом. Реже встречающийся изомер лихенина - изолихенин - найден, кроме оболочек гиф, в протопласте. Из высокомолекулярных полисахаридов в лишайниках, в частности в оболочках гиф, встречаются гемицеллюлозы, являющиеся, очевидно, резервными углеводами. В межклеточных пространствах у некоторых лишайников обнаружены пектиновые вещества, которые, впитывая в большом количестве воду, набухают и ослизняют слоевище. В лишайниках встречаются также многие ферменты - инвертаза, амилаза, каталаза, уре-аза, зимаза, лихеназа, в том числе и внеклеточные. Из азотсодержащих веществ в гифах лишайников обнаружены многие аминокислоты - аланин, аспарагиновая кислота, глютаминовая кислота, лизин, валин, тирозин, триптофан и др. Фикобионт продуцирует в лишайниках витамины, но почти всегда в малых количествах.[ ...]

В ходе экспериментов установлено, что полужидкие и твердые отходы бурения крайне отрицательно влияют на биологическую продуктивность почв. Известно, что наибольшее негативное влияние оказывают нефть и нефтепродукты, содержащиеся в отходах . Указанные загрязнители значительно снижают активность окислительновосстановительных и гидролитических ферментов, что приводит к подавлению микробиологической активности почвы. Такой эффект ярко выражен для отходов, содержащих более 4-5 % нефти и нефтепродуктов. При меньшем содержании данного загрязнителя эффект снижения биологической продуктивности рассматриваемых типов почв характерен для периода от 3 до 6 мес., а затем отмечается усиленное размножение азотфиксирующих, денитрифицирующих и сульфатвосста-наачивающих бактерий, которые используют нефть и ее производные в качестве источника углерода и энергии, в результате чего происходят постепенное окисление и минерализация нефти. При этом закономерно падает урожайность сельхозкультур и активность инвертазы. При содержании в составе отходов более 5% нефти и нефтепродуктов видимой активности углеводородокисляющей бактериальной микрофлоры не отмечается даже по истечении 1 года. Указанный уровень загрязненности отходов является критическим, а потому требуется применение специальных агротехнических и агрохимических приемов, стимулирующих биологическую продуктивность почв (внесение удобрений, содержащих азот, фосфор и калий; интенсивная аэрация зоны нефтяного загрязнения; посев специальных трав, усиливающих деятельность углеводородусваивающей бактериальной микрофлоры) .[ ...]

Для изучения механизма и характера влияния полужидких (отработанные буровые растворы) и твердых (буровой шлам) отходов бурения, т.е. тех видов отходов, которые подвергаются засыпке минеральным грунтом в шламовых амбарах при их ликвидации, на биологическую продуктивность почв и разработки на этой основе комплекса агротехнических мер по восстановлению загрязненных земель были проведены вегетационно-полевые и полевые исследования. Эксперименты проводили по стандартным методикам . Экспериментировали с отходами бурения различной степени загрязненности по нефти и нефтепродуктам (НП), органическому углероду (показатель химического потребления кислорода - ХПК) и минеральным солям (показатель прокаленного остатка - ПО), которые добавляли в почвы в соотношении 1:1. Диапазон и уровень загрязненных отходов следующие: по НГ1 - 1,0-12,0%; по ХПК - 20,0 - 60,0 кг/м3; по ПО (в пересчете на единицу площади почвы) - 0,4-1,6 кг/м2 почвы. В исследованиях использовали три типа почвы, т.е. наиболее распространенные типы почв, на которых ведется бурение в зонах активного сельхозпользования земель. Интегральными показателями биологической продуктивности почв являлись урожайность стандартного ячменя сорта "Курьер" и активность инвертазы, которую определяли по известной методике .[ ...]

Однако, несмотря на тесную зависимость, существующую между лишайниками и субстратом, на котором они поселяются, до сих пор с достоверностью еще неизвестно, используют лишайники субстрат только как место прикрепления или они извлекают из него некоторые питательные вещества, необходимые для их жизнедеятельности. С одной стороны, способность лишайников расти на субстратах, бедных питательными веществами, дает основание считать, что они используют субстрат лишь как место прикрепления. Однако, с другой стороны, избирательная снособность, проявляемая лишайниками при расселении, строгая приуроченность большинства из них к определенному субстрату, зависимость видового состава лишайниковой растительности не только от физических, но и от химических свойств субстрата невольно наводят на мысль, что лишайники используют субстрат и как дополнительный источник питания. Это подтверждается и биохимическими исследованиями, проведенными в последние годы. Например, выяснилось, что у одного и того же вида лишайника, растущего на разных древесных породах, состав лишайниковых веществ может быть неодинаковым. Еще более очевидным доказательством служит открытие у лишайников внеклеточных ферментов, которые выделяются во внешнюю среду. Внеклеточные ферменты, такие, например, как инвертаза, амилаза, цел-люлаза и многие другие, представлены в лишайниках довольно широко и обладают достаточно высокой активностью. Причем, как оказалось, они наиболее активны в нижней части слоевища, которой лишайник прикреплен к субстрату. Это указывает на возможность активного воздействия слоевища лишайников на субстрат с целью извлечения из него дополнительных питательных веществ.

Из многочисленных показателей биологической активности почвы большое значение имеют почвенные ферменты. Их разнообразие и богатство делают возможным осуществление последовательных био­химических превращений, поступающих в почву органических остат­ков.

Название «фермент» происходит от латинского «ферментум» - брожу, закваска. Явление катализа и в настоящее время полнос­тью не разгадано. Сущность действия катализатора заключается в снижении энергии активации, необходимой для химической ре­акции, направляя ее обходным путем через промежуточные ре­акции, которые требуют меньшей энергии, идущие без катализа­тора. Благодаря этому повышается и скорость основной реакции.

Под действием фермента ослабляются внутримолекулярные связи в субстрате вследствие некоторой деформации его молекулы, про­исходящей при образовании промежуточного комплекса фермент-субстрата.

Ферментативную реакцию можно выразить общим уравнением:

E+S -> ES -> Е+Р,

т. е. субстрат (S) обратимо реагирует с ферментом (Е) с образованием фермент-субстратного комплекса (ES). Общее ускорение реакции под действием фермента обычно составляет 10 10 -10 15 .

Таким образом, роль ферментов заключается в том, что они зна­чительно ускоряют биохимические реакции и делают их возможными при обычной нормальной температуре.

Ферменты, в отличие от неорганических катализаторов, облада­ют избирательностью действия. Специфичность действия ферментов выражается в том, что каждый фермент действует лишь на опреде­ленное вещество, или же на определенный тип химической связи в молекуле. По своей биохимической природе все ферменты - высо­комолекулярные белковые вещества. На специфичность ферментных Силков влияет порядок чередования в них аминокислот. Некоторые ферменты помимо белка содержат более простые соединения. На­пример, в составе различных окислительных ферментов содержат­ся органические соединения железа. В состав других входят медь, цинк, марганец, ванадий, хром, витамины и другие органические соединения.

В основу единой классификации ферментов положена специфич­ность к типу реакции, и в настоящее время ферменты подразделяют на 6 классов. В почвах наиболее изучены оксидоредуктазы (катали­зируют процессы биологического окисления) и гидролазы (катали­зируют расщепление с присоединением воды). Из оксидоредуктаз в почве наиболее распространены каталаза, дегидрогеназы, фенолоксидазы и др. Они участвуют в окислительно-восстановительных про­цессах синтеза гумусовых компонентов. Из гидролаз наиболее широ­ко в почвах распространены инвертаза, уреаза, протеаза, фосфата-Mi. Эти ферменты участвуют в реакциях гидролитического распада высокомолекулярных органических соединений и тем самым играют важную роль в обогащении почвы подвижными и доступными рас­тениям и микроорганизмам питательными веществами.

Исследованием ферментативной активности почв занималось боль­шое количество исследователей. В результате исследований доказа­но, что ферментативная активность - это элементарная почвенная характеристика. Ферментативная активность почвы складывается в результате совокупности процессов поступления, иммобилизации и действия ферментов в почве. Источниками почвенных ферментов слу­жит все живое вещество почв: растения, микроорганизмы, животные, грибы, водоросли и т. д. Накапливаясь в почве, ферменты становятся неотъемлемым реактивным компонентом экосистемы. Почва является самой богатой системой по ферментному разнообразию и фермента­тивному пулу. Разнообразие и богатство ферментов в почве позволя­ет осуществляться последовательным биохимическим превращениям различных поступающих органических остатков.

Значительную роль почвенные ферменты играют в процессах гумусообразования. Превращение растительных и животных остат­ков в гумусовые вещества является сложным биохимическим про­цессом с участием различных групп микроорганизмов, а также им­мобилизованных почвой внеклеточных ферментов. Выявлена пря­мая связь между интенсивностью гумификации и ферментативной активностью.

Особо следует отметить значение ферментов в тех случаях, когда в почве складываются экстремальные для жизнедеятельности микро­организмов условия, в частности при химическом загрязнении. В этих случаях метаболизм в почве остается в известной мере неизменным благодаря действию иммобилизированных почвой, и поэтому устой­чивых, ферментов.

Максимальная каталитическая активность отдельных ферментов наблюдается в относительно небольшом интервале рН, который явля­ется для них оптимальным. Поскольку в природе встречаются почвы с широким диапазоном реакции среды (рН 3,5-11,0), то их уровень активности весьма различен.

Исследованиями различных авторов установлено, что активность почвенных ферментов может служить дополнительным диагностиче­ским показателем почвенного плодородия и его изменения в резуль­тате антропогенного воздействия. Применению ферментативной ак­тивности в качестве диагностического показателя способствуют низ­кая ошибка опытов и высокая устойчивость ферментов при хранении образцов.

1.8.4. Биологическая активность почвы

При проведении биомониторинга и биодиагностики почв ведущи­ми являются показатели биологической активности. Под биологиче­ ской активностью следует понимать напряженность (интенсивность) всех биологических процессов в почве. Ее следует отличать от биогенности почвы - заселенности почвы различными организмами. Биологическая активность и биогенность почвы часто не совпадают друг с другом.

Биологическая активность почвы обусловлена суммарным содер­жанием в почве определенного запаса ферментов, как выделенных в процессе жизнедеятельности растений и микроорганизмов, так и ак­кумулированных почвой после разрушения отмерших клеток. Биоло­гическая активность почв характеризует размеры и направление про­цессов превращения веществ и энергии в экосистемах суши, интенсив­ность переработки органических веществ и разрушения минералов.

В качестве показателей биологической активности почв использу­ются: численность и биомасса разных групп почвенной биоты, их про­дуктивность, ферментативная активность почв, активность основных процессов, связанных с круговоротом элементов, некоторые энерге­тические данные, количество и скорость накопления продуктов жиз­недеятельности почвенных организмов.

Из-за того, что важные и всеобщие процессы, осуществляемые в почве всеми или большинством организмов (например, термогенез, количество АТФ), практически невозможно исследовать, определяют интенсивность более частных процессов, таких как выделение СО 2 , накопление аминокислот и др.

Показатели биологической активности определяют, используя раз­личные методы: микробиологические, биохимические, физиологиче­ские и химические.

Биологическая активность почв (и соответственно методов ее определения) подразделяется на актуальную и потенциальную. По­тенциальная биологическая активность измеряется в искусственных условиях, оптимальных для протекания конкретного биологического процесса. Актуальная (действительная, естественная, полевая) био­логическая активность характеризует реальную активность почвы в естественных (полевых) условиях. Измерить ее можно только непосредственно в поле.

Методы определения потенциальной биологической активности почв могут служить хорошими диагностическими показателями потен­циального плодородия почв, степени удобреиности, окультуренности, эродированно, а также загрязненности какими-либо химически­ми веществами. Однако при характеристике интенсивности биологи­ческих процессов, протекающих в естественных условиях, следует пользоваться методами для определения актуальной биологической активности, так как в реальной обстановке лимитирующие факторы (рН среды, температура, влажность и т. д.) могут резко ограничи­вать интенсивность процесса и, несмотря на большие потенциальные возможности, процесс может идти очень медленно.

Важной особенностью показателей биологической активности почв является их значительное пространственное и временное ва­рьирование, что требует при их определении большого числа по­вторных наблюдений и тщательной вариационно-статистической об­работки.

С биологической активностью почвы тесно взаимосвязаны ее фи­зические и химические свойства, такие как гумусовое состояние, структура, щелочно-кислотные условия, окислительно-восстанови­тельный потенциал и другие. Следует отметить, что физические и химические свойства характеризуют относительно консервативные накопившиеся признаки и свойства почв, биология почв располагает показателями динамических свойств, являющихся индикаторами со­временного режима жизни почв.

Для выявления негативных последствий антропогенного воздей­ствия используют мониторинг почвенного покрова. Деградационные явления прежде всего затрагивают биологические объекты, снижая биологическую активность и, в конечном счете, плодородие. По­этому использование методов биологической диагностики, позволя­ет определить негативные последствия антропогенного воздействия на ранних стадиях. Особенно это касается диагностики разных за­грязнений.

Биологические индикаторы обладают рядом преимуществ по сравнению с другими. Во-первых, это высокая чувствительность и отзывчивость на внешние воздействия, во-вторых, они позволяют проследить за негативными процессами на ранних стадиях процес­са, в третьих, только по ним можно судить о воздействиях, не под­вергающих существенному изменению вещественный состав почв

(радиоактивное и биоцидное загрязнение). К существенным недо­статкам можно отнести большую пространственную и временную вариабельность.

В настоящее время разработан большой набор биологических по­казателей, определяющих способность почвы обеспечивать растения факторами жизни, т. е. определяющих потенциальное плодородие почв, и коррелирующих с урожайностью.

Ферменты - это катализаторы химических реакций белковой природы, отличающиеся специфичностью действия в отношении катализа определенных химических реакций. Они являются продуктами биосинтеза всех живых почвенных организмов: древесных и травянистых растений, мхов, лишайников, водорослей, микроорганизмов, простейших, насекомых, беспозвоночных и позвоночных животных, представленных в природной обстановке определенными совокупностями - биоценозами.

Биосинтез ферментов в живых организмах осуществляется благодаря генетическим факторам, ответственным за наследственную передачу типа обмена веществ и его приспособительную изменчивость. Ферменты являются тем рабочим аппаратом, при помощи которого реализуется действие генов. Они катализируют в организмах тысячи химических реакций, из которых в итоге слагается клеточный обмен. Благодаря им химические реакции в организме осуществляются с большой скоростью.

В настоящее время известно более 900 ферментов. Их подразделяют на шесть главных классов.

1. Оксиредуктазы, катализирующие окислительно-восстановительные реакции.

2. Трансферазы, катализирующие реакции межмолекулярного переноса различных химических групп и остатков.

3. Гидролазы, катализирующие реакции гидролитического расщепления внутримолекулярных связей.

4. Лиазы, катализирующие реакции присоединения групп по двойным связям и обратные реакции отрыва таких групп.

5. Изомеразы, катализирующие реакции изомеризации.

6. Лигазы, катализирующие химические реакции с образованием связей за счет АТФ (аденозинтрифосфорной кислоты).

При отмирании и перегнивании живых организмов часть их ферментов разрушается, а часть, попадая в почву, сохраняет свою активность и катализирует многие почвенные химические реакции, участвуя в процессах почвообразования и в формировании качественного признака почв - плодородия. В разных типах почв под определенными биоценозами сформировались свои ферментативные комплексы, отличающиеся активностью биокаталитических реакций.

В. Ф. Купревич и Т. А. Щербакова (1966) отмечают, что важной чертой ферментативных комплексов почв является упорядоченность действия имеющихся групп ферментов, которая проявляется в том, что обеспечивается одновременное действие ряда ферментов, представляющих различные группы; исключаются образование и накопление соединений, имеющихся в почве в избытке; излишки накопившихся подвижных простых соединений (например, NH 3) тем или иным путем временно связываются и направляются в циклы, завершающиеся образованием более или менее сложных соединений. Ферментативные комплексы являются уравновешенными саморегулирующимися системами. В этом основную роль играют микроорганизмы и растения, постоянно пополняющие почвенные ферменты, так как многие из них являются короткоживущими. О количестве ферментов косвенно судят по их активности во времени, которая зависит от химической природы реагирующих веществ (субстрата, фермента) и от условий взаимодействия (концентрации компонентов, рН, температуры, состава среды, действия активаторов, ингибиторов и т.д.).

В данной главе рассматривается участие в некоторых химических почвенных процессах ферментов из класса гидролаз - активность инвертазы, уреазы, фосфатазы, протеазы и из класса оксиредуктаз - активность каталазы, пероксидазы и полифенолоксидазы, имеющих большое значение в превращении азот- и фосфорсодержащих органических веществ, веществ углеводного характера и в процессах образования гумуса. Активность этих ферментов - существенный показатель плодородия почв. Кроме того, будет охарактеризована активность этих ферментов в лесных и пахотных почвах разной степени окультуренности на примере дерново-подзолистых, серых лесных и дерново-карбонатных почв.

ХАРАКТЕРИСТИКА ПОЧВЕННЫХ ФЕРМЕНТОВ

Инвертаза - катализирует реакции гидролитического расщепления сахарозы на эквимолярные количества глюкозы и фруктозы, воздействует также на другие углеводы с образованием молекул фруктозы - энергетического продукта для жизнедеятельности микроорганизмов, катализирует фруктозотрансферазные реакции. Исследования многих авторов показали, что активность инвертазы лучше других ферментов отражает уровень плодородия и биологической активности почв.

Уреаза- катализирует реакции гидролитического расщепления мочевины на аммиак и диоксид углерода. В связи с использованием мочевины в агрономической практике необходимо иметь в виду, что активность уреазы выше у более плодородных почв. Она повышается во всех почвах в периоды их наибольшей биологической активности - в июле - августе.

Фосфатаза (щелочная и кислая) - катализирует гидролиз ряда фосфорорганических соединений с образованием ортофосфата. Активность фосфатазы находится в обратной зависимости от обеспеченности растений подвижным фосфором, поэтому она может быть использована как дополнительный показатель при установлении потребности внесения в почвы фосфорных удобрений. Наиболее высокая фосфатазная активность в ризосфере растений.

Протеазы - это группа ферментов, при участии которых белки расщепляются до полипептидов и аминокислот, далее они подвергаются гидролизу до аммиака, диоксида углерода и воды. В связи с этим протеазы имеют важнейшее значение в жизни почвы, так как с ними связаны изменение состава органических компонентов и динамика усвояемых для растений форм азота.

Каталаза - в результате ее активирующего действия происходит расщепление перекиси водорода, токсичной для живых организмов, на воду и свободный кислород. Большое влияние на каталазную активность минеральных почв оказывает растительность. Как правило, почвы, находящиеся под растениями с мощной глубоко проникающей корневой системой, характеризуются высокой каталазной активностью. Особенность активности каталазы заключается в том, что вниз по профилю она мало изменяется, имеет обратную зависимость от влажности почв и прямую - от температуры.

Полифенолоксидаза и пероксидаза - им в почвах принадлежит важная роль в процессах гумусообразования. Полифенолоксидаза катализирует окисление полифенолов в хиноны в присутствии свободного кислорода воздуха. Пероксидаза же катализирует окисление полифенолов в присутствии перекиси водорода или органических перекисей. При этом ее роль состоит в активировании перекисей, поскольку они обладают слабым окисляющим действием на фенолы. Далее может происходить конденсация хинонов с аминокислотами и пептидами с образованием первичной молекулы гуминовой кислоты, которая в дальнейшем способна усложняться за счет повторных конденсаций (Кононова, 1963).

Замечено (Чундерова, 1970), что отношение активности полифенолоксидазы (S) к активности пероксидазы (D), выраженное в процентах (), имеет связь с накоплением в почвах гумуса, поэтому эта величина получила название условный коэффициент накопления гумуса (К). У пахотных слабоокультуренных почв Удмуртии за период с мая по сентябрь он составил: у дерново-подзолистой - 24 %, у серой лесной оподзоленной - 26 и у дерново-карбонатной почвы - 29 %.

ФЕРМЕНТАТИВНЫЕ ПРОЦЕССЫ В ПОЧВАХ

Биокаталитическая активность почв находится в значительном соответствии со степенью обогащенности их микроорганизмами (табл. 11), зависит от типа почв и изменяется по генетическим горизонтам, что связано с особенностями изменения содержания гумуса, реакции, Red-Ox-потенциала и других показателей по профилю.

В целинных лесных почвах интенсивность ферментативных реакций в основном определяют горизонты лесной подстилки, а в пахотных - пахотные слои. Как в одних, так и в других почвах все биологически менее активные генетические горизонты, находящиеся под горизонтами А или А п, имеют низкую активность ферментов, незначительно изменяющуюся в положительную сторону при окультуривании почв. После освоения лесных почв под пашню ферментативная активность образованного пахотного горизонта по сравнению с лесной подстилкой оказывается резко сниженной, но по мере его окультуривания повышается и в сильно окультуренных видах приближается или превышает показатели лесной подстилки.

11. Сопоставление биогенносга и ферментативной активности почв Среднего Предуралья (Пухидская, Ковриго, 1974)

№ разреза, название почвы

Горизонт, глубина взятия образца, см

Общее количество микроорганизмов, тыс. на 1 г абс.

сух. почвы (в среднем за 1962,

1964-1965 гг.)

Показатели активности ферментов (в среднем за 1969-1971 гг.)

Инвертаза, мг глюкозы на 1 г почвы за I сут

Фосфатаза, мг фенолфталеина на 100 г почвы за 1 ч

Уреаза, мг NH, нa 1 г почвы за 1 сут

Каталаза, мл 0 2 на 1 г почвы за 1 мин

Полифенолоксидаза

Пероксидаза

мг пурпурогаллина на 100 г почвы

3. Дерново-среднеподзолистая среднесуглинистая (под лесом)

Не определяли

1.Дерново-средне-подзолистая средне-суглинистая слабоокультуренная

10.Сераялесная оподзоленная тяжел осуглинистая слабоокультуренная

2. Дерново-карбонатная слабовыщело-ченная л егкосуглинистая слабоокультуренная

Активность биокаталитических реакций почв изменяется. Наименьшая она весной и осенью, а наиболее высокая обычно в июле-августе, что соответствует динамике общего хода биологических процессов в почвах. Однако в зависимости от типа почв и их географического положения динамика ферментативных процессов весьма различна.

Контрольные вопросы и задания

1. Какие соединения называют ферментами? Каковы их продуцирование и значение для живых организмов? 2. Назовите источники почвенных ферментов. Какую роль играют отдельные ферменты в почвенных химических процессах? 3. Дайте понятие о ферментативном комплексе почв и его функционировании. 4. Дайте общую характеристику течения ферментативных процессов в целинных и пахотных почвах.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...