На какой глубине температура 100 градусов. Десять мифов о системах геотермального обогрева и охлаждения


Кирилл Дегтярев, научный сотрудник, Московский государственный университет им. М. В. Ломоносова.

В нашей стране, богатой углеводородами, геотермальная энергия - некий экзотический ресурс, который при сегодняшнем положении дел вряд ли составит конкуренцию нефти и газу. Тем не менее этот альтернативный вид энергии может использоваться практически всюду и довольно эффективно.

Фото Игоря Константинова.

Изменение температуры грунта с глубиной.

Рост температуры термальных вод и вмещающих их сухих пород с глубиной.

Изменение температуры с глубиной в разных регионах.

Извержение исландского вулкана Эйяфьятлайокудль -иллюстрация бурных вулканических процессов, протекающих в активных тектонических и вулканических зонах с мощным тепловым потоком из земных недр.

Установленные мощности геотермальных электростанций по странам мира, МВт.

Распределение геотермальных ресурсов по территории России. Запасы геотермальной энергии, по оценкам экспертов, в несколько раз превышают запасы энергии органического ископаемого топлива. По данным ассоциации «Геотермальное энергетическое общество».

Геотермальная энергия - это тепло земных недр. Вырабатывается оно в глубинах и поступает к поверхности Земли в разных формах и с различной интенсивностью.

Температура верхних слоёв грунта зависит в основном от внешних (экзогенных) факторов - солнечного освещения и температуры воздуха. Летом и днём грунт до определённых глубин прогревается, а зимой и ночью охлаждается вслед за изменением температуры воздуха и с некоторым запаздыванием, нарастающим с глубиной. Влияние суточных колебаний температуры воздуха заканчивается на глубинах от единиц до нескольких десятков сантиметров. Сезонные колебания захватывают более глубокие пласты грунта - до десятков метров.

На некоторой глубине - от десятков до сотен метров - температура грунта держится постоянной, равной среднегодовой температуре воздуха у поверхности Земли. В этом легко убедиться, спустившись в достаточно глубокую пещеру.

Когда среднегодовая температура воздуха в данной местности ниже нуля, это проявляется как вечная (точнее, многолетняя) мерзлота. В Восточной Сибири мощность, то есть толщина, круглогодично мёрзлых грунтов достигает местами 200-300 м.

С некоторой глубины (своей для каждой точки на карте) действие Солнца и атмосферы ослабевает настолько, что на первое место выходят эндогенные (внутренние) факторы и происходит разогрев земных недр изнутри, так что температура с глубиной начинает расти.

Разогрев глубинных слоёв Земли связывают, главным образом, с распадом находящихся там радиоактивных элементов, хотя называют и другие источники тепла, например физико-химические, тектонические процессы в глубоких слоях земной коры и мантии. Но чем бы это ни было обусловлено, температура горных пород и связанных с ними жидких и газообразных субстанций с глубиной растёт. С этим явлением сталкиваются горняки - в глубоких шахтах всегда жарко. На глубине 1 км тридцатиградусная жара - нормальное явление, а глубже температура ещё выше.

Тепловой поток земных недр, достигающий поверхности Земли, невелик - в среднем его мощность составляет 0,03-0,05 Вт/м 2 ,
или примерно 350 Вт·ч/м 2 в год. На фоне теплового потока от Солнца и нагретого им воздуха это незаметная величина: Солнце даёт каждому квадратному метру земной поверхности около 4000 кВт·ч ежегодно, то есть в 10 000 раз больше (разумеется, это в среднем, при огромном разбросе между полярными и экваториальными широтами и в зависимости от других климатических и погодных факторов).

Незначительность теплового потока из недр к поверхности на большей части планеты связана с низкой теплопроводностью горных пород и особенностями геологического строения. Но есть исключения - места, где тепловой поток велик. Это, прежде всего, зоны тектонических разломов, повышенной сейсмической активности и вулканизма, где энергия земных недр находит выход. Для таких зон характерны термические аномалии литосферы, здесь тепловой поток, достигающий поверхности Земли, может быть в разы и даже на порядки мощнее «обычного». Огромное количество тепла на поверхность в этих зонах выносят извержения вулканов и горячие источники воды.

Именно такие районы наиболее благоприятны для развития геотермальной энергетики. На территории России это, прежде всего, Камчатка, Курильские острова и Кавказ.

В то же время развитие геотермальной энергетики возможно практически везде, поскольку рост температуры с глубиной - явление повсеместное, и задача заключается в «добыче» тепла из недр, подобно тому, как оттуда добывается минеральное сырьё.

В среднем температура с глубиной растёт на 2,5-3 о С на каждые 100 м. Отношение разности температур между двумя точками, лежащими на разной глубине, к разности глубин между ними называют геотермическим градиентом.

Обратная величина - геотермическая ступень, или интервал глубин, на котором температура повышается на 1 о С.

Чем выше градиент и соответственно ниже ступень, тем ближе тепло глубин Земли подходит к поверхности и тем более перспективен данный район для развития геотермальной энергетики.

В разных районах, в зависимости от геологического строения и других региональных и местных условий, скорость роста температуры с глубиной может резко различаться. В масштабах Земли колебания величин геотермических градиентов и ступеней достигают 25 крат. Например, в штате Орегон (США) градиент составляет 150 о С на 1 км, а в Южной Африке - 6 о С на 1 км.

Вопрос, какова температура на больших глубинах - 5, 10 км и более? При сохранении тенденции температура на глубине 10 км должна составлять в среднем примерно 250-300 о С. Это более или менее подтверждается прямыми наблюдениями в сверхглубоких скважинах, хотя картина существенно сложнее линейного повышения температуры.

Например, в Кольской сверхглубокой скважине, пробурённой в Балтийском кристаллическом щите, температура до глубины 3 км меняется со скоростью 10 о С/1 км, а далее геотермический градиент становится в 2-2,5 раза больше. На глубине 7 км зафиксирована уже температура 120 о С, на 10 км - 180 o С, а на 12 км - 220 o С.

Другой пример - скважина, заложенная в Северном Прикаспии, где на глубине 500 м зарегистрирована температура 42 o С, на 1,5 км - 70 o С, на 2 км - 80 o С, на 3 км - 108 o С.

Предполагается, что геотермический градиент уменьшается начиная с глубины 20-30 км: на глубине 100 км предположительные температуры около 1300-1500 o С, на глубине 400 км - 1600 o С, в ядре Земли (глубины более 6000 км) - 4000-5000 o С.

На глубинах до 10-12 км температуру измеряют через пробурённые скважины; там же, где их нет, её определяют по косвенным признакам так же, как и на бóльших глубинах. Такими косвенными признаками могут быть характер прохождения сей-смических волн или температура изливающейся лавы.

Впрочем, для целей геотермальной энергетики данные о температурах на глубинах более 10 км пока не представляют практического интереса.

На глубинах в несколько километров много тепла, но как его поднять? Иногда эту задачу решает за нас сама природа с помощью естественного теплоносителя - нагретых термальных вод, выходящих на поверхность или же залегающих на доступной для нас глубине. В ряде случаев вода в глубинах разогрета до состояния пара.

Строгого определения понятия «термальные воды» нет. Как правило, под ними подразумевают горячие подземные воды в жидком состоянии или в виде пара, в том числе выходящие на поверхность Земли с температурой выше 20 о С, то есть, как правило, более высокой, чем температура воздуха.

Тепло подземных вод, пара, пароводяных смесей - это гидротермальная энергия. Соответственно энергетика, основанная на её использовании, называется гидротермальной.

Сложнее обстоит дело с добычей тепла непосредственно сухих горных пород - петротермальной энергии, тем более что достаточно высокие температуры, как правило, начинаются с глубин в несколько километров.

На территории России потенциал петротермальной энергии в сто раз выше, чем у гидротермальной, - соответственно 3500 и 35 трлн тонн условного топлива. Это вполне естественно - тепло глубин Земли имеется везде, а термальные воды обнаруживаются локально. Однако из-за очевидных технических трудностей для получения тепла и электроэнергии в настоящее время используются большей частью термальные воды.

Воды температурой от 20-30 до 100 о С пригодны для отопления, температурой от 150 о С и выше - и для выработки электроэнергии на геотермальных электростанциях.

В целом же геотермальные ресурсы на территории России в пересчёте на тонны условного топлива или любую другую единицу измерения энергии примерно в 10 раз выше запасов органического топлива.

Теоретически только за счёт геотермальной энергии можно было бы полностью удовлетворить энергетические потребности страны. Практически же на данный момент на большей части её территории это неосуществимо по технико-экономическим соображениям.

В мире использование геотермальной энергии ассоциируется чаще всего с Исландией - страной, расположенной на северном окончании Срединно-Атлантического хребта, в исключительно активной тектонической и вулканической зоне. Наверное, все помнят мощное извержение вулкана Эйяфьятлайокудль (Eyjafjallajökull) в 2010 году.

Именно благодаря такой геологической специфике Исландия обладает огромными запасами геотермальной энергии, в том числе горячих источников, выходящих на поверхность Земли и даже фонтанирующих в виде гейзеров.

В Исландии в настоящее время более 60% всей потребляемой энергии берут из Земли. В том числе за счёт геотермальных источников обеспечивается 90% отопления и 30% выработки электроэнергии. Добавим, что остальная часть электроэнергии в стране производится на ГЭС, то есть также с использованием возобновляемого источника энергии, благодаря чему Исландия выглядит неким мировым экологическим эталоном.

«Приручение» геотермальной энергии в XX веке заметно помогло Исландии в экономическом отношении. До середины прошлого столетия она была очень бедной страной, сейчас занимает первое место в мире по установленной мощности и производству геотермальной энергии на душу населения и находится в первой десятке по абсолютной величине установленной мощности геотермальных электростанций. Однако её население составляет всего 300 тысяч человек, что упрощает задачу перехода на экологически чистые источники энергии: потребности в ней в целом невелики.

Помимо Исландии высокая доля геотермальной энергетики в общем балансе производства электроэнергии обеспечивается в Новой Зеландии и островных государствах Юго-Восточной Азии (Филиппины и Индонезия), странах Центральной Америки и Восточной Африки, территория которых также характеризуется высокой сейсмической и вулканической активностью. Для этих стран при их нынешнем уровне развития и потребностях геотермальная энергетика вносит весомый вклад в социально-экономическое развитие.

(Окончание следует.)

В вертикальных коллекторах отбирается энергия из земли с помощью геотермальных земляных зондов. Это закрытые системы со скважинами диаметром 145-150мм и глубиной от 50 до 150м, по которым прокладываются трубы. На конце трубопровода инсталлируется возвратное U колено. Обычно установка осуществляется с помощью одноконтурного зонда с трубами 2x d40 («шведская система»), или двухконтурного зонда с трубами 4x d32. Двухконтурные зонды должны достигать на 10-15% больший отбор тепла. При скважинах глубже чем 150 м нужно использовать трубы 4xd40 (для понижения потери давления).

В настоящее время большая часть скважин для отбора тепла земли имеет глубину 150 м. На большей глубине можно получить больше тепла, но при этом затраты на такие скважины будут очень высоки. Поэтому важно заранее просчитать затраты на установку вертикального коллектора в сравнении с предполагаемой экономией в будущем. В случае инсталляции системы активно-пассивного охлаждения более глубокие скважины не делают из-за высшей температуры в почве и более низком потенциале в момент отдачи тепла из раствора окружающей среде. В системе циркулирует незамерзающая смесь (спирт, глицерин, гликоль), разбавленная водой до нужной консистенции незамерзания. В тепловом насосе отдает тепло, отобранное у земли, хладагенту. Температура земли на глубине 20 м примерно 10°C, и растет каждые 30м на 1°C. На нее не оказывают влияние климатические условия, и поэтому можно рассчитывать на качественный отбор энергии и зимой и летом. Нужно добавить, что температура в земле немного отличается в начале сезона (сентябрь-октябрь) от температуре в конце сезона (март-апрель). Поэтому необходимо учитывать при расчете глубины вертикальных коллекторов длину отопительного сезона в месте инсталляции.

При отборе тепла с помощью геотермальных вертикальных зондов очень важным являются правильные расчеты и конструкция коллекторов. Для проведения грамотных расчетов необходимо знать, возможно ли бурение в месте инсталляции до желаемой глубины.

Для теплового насоса мощностью 10kW необходимо примерно 120-180 m скважины. Скважины должна быть размещены минимум 8м друг от друга. Количество и глубина скважин зависит от геологических условий, наличие подземных вод, способности почвы удерживать тепло и технологии бурения. При бурении нескольких скважин общая желаемая длина скважины разделится на количество скважин.

Преимуществом вертикального коллектора перед горизонтальным является меньший участок земли для использования, более стабильный источник тепла, и независимость источника тепла на погодных условиях. Минусом вертикальных коллекторов являются высокие затраты на земляные работы и постепенное охлаждение земли возле коллектора (необходимы грамотные расчеты необходимой мощности при проектировании).

Расчет необходимой глубины скважин

    Информация,необходимая для предварительного расчета глубины и количества скважин:

    Мощность теплового насоса

    Выбранный тип отопления - «теплые полы», радиаторы, комбинированное

    Предполагаемое количество часов эксплуатации теплового насоса за год, покрытие потребности в энергии

    Место инсталляции

    Использование геотермальной скважины - отопление, обогрев ГВС, сезонный подогрев бассейна, круглогодичный подогрев бассейна

    Использование функции пассивного (активного) охлаждения в объекте

    Общее годовое потребление тепла для отопления (MВ/час)

Фото: «NesjavellirPowerPlant edit2» участника Gretar Ívarsson / https://commons.wikimedia.org/wiki/ 25 мая 2015 / Теги:

В городе Эспоо через два года будет запущена первая в Финляндии геотермальная электростанция. Финские инженеры планируют использовать естественное тепло земных недр для обогрева зданий. И если эксперимент будет успешным, то подобные теплоцентрали можно возводить повсеместно, например, в Ленинградской области. Вопрос в том, насколько это выгодно.

Использование энергии Земли - идея не новая. Естественно, за ее реализацию прежде всего взялись жители тех регионов, где сама природа создала “паровые машины”. Так, например, еще в 1904 году итальянский князь Пьеро Джинори Конти зажег четыре электролампочки, поместив турбинку с электрогенератором вблизи природного выхода разогретого пара из земли, в регионе Лардерелло (Тоскана).

Спустя девять лет, в 1913 году, там же была запущена первая коммерческая геотермальная станция мощностью 250 киловатт. Станция использовала самый выгодный, но, к сожалению, редко встречающийся ресурс — сухой перегретый пар, который можно встретить лишь в недрах вулканических массивов. Но, на самом деле, жар Земли можно найти не только близ огнедышащих гор. Он есть повсеместно, под нашими ногами.

Недра планеты раскалены до нескольких тысяч градусов. Ученые до сих пор не выяснили, вследствие каких процессов наша планета в течение нескольких миллиардов лет хранит в себе гигантское количество тепла, и невозможно оценить, на сколько миллиардов лет его хватит. Достоверно известно, что при погружении на каждые 100 метров вглубь земли температура пород повышается в среднем на 3 градуса. В среднем — это значит, что есть места на планете, где температура повышается на полградуса, а где-то — и на 15 градусов. И это — не зоны активного вулканизма.

Температурный градиент, разумеется, увеличивается неравномерно. Финские специалисты рассчитывают достичь на глубине 7 км зоны, в которой температура пород составит 120 градусов Цельсия, притом что температурный градиент в Эспоо примерно 1,7 градуса на 100 метров, а это даже ниже среднего уровня. И, тем не менее, это уже достаточная температура для запуска геотермальной теплоцентрали.

Суть системы, в принципе, проста. Бурятся две скважины на расстоянии в несколько сот метров друг от друга. Между ними в нижней части нагнетают под давлением воду, чтобы разорвать пласты и создать меж ними систему проницаемых трещин. Технология отработана: подобным способом сейчас добывают сланцевую нефть и газ.

Затем в одну из скважин закачивают воду с поверхности, а из второй — наоборот, откачивают. Вода идет по трещинам среди раскаленных пород, и затем поступает по второй скважине на поверхность, где передает тепло обычной городской теплоцентрали. Такие системы уже были запущены в США, в настоящее время идут разработки в Австралии и странах Европейского союза.

Фото: www.facepla.net (скриншот)

Мало того — тепла хватит, чтобы запустить выработку электроэнергии. Приоритет в разработке низкотемпературной геотермальной энергетики принадлежит советским ученым — именно они более полувека назад решили вопрос использования такой энергии на Камчатке. Ученые предложили использовать в качестве кипящего теплоносителя органическую жидкость — фреон12, у которой точка кипения при нормальном атмосферном давлении — минус 30 градусов. Вода из скважины температурой в 80 градусов Цельсия передавала свое тепло фреону, который вращал турбины. Первой в мире электростанцией, работающей с водой такой температуры, стала Паужетская геотермальная электростанция на Камчатке, построенная в 1967 году.

Достоинства такой схемы очевидны — в любой точке Земли человечество сможет обеспечить себя теплом и электроэнергией, даже если погаснет Солнце. В толще земной коры запасена огромная энергия, более чем в 10 тысяч раз превышающая все топливопотребление современной цивилизации в год. И эта энергия постоянно возобновляется за счет притока тепла из недр планеты. Современные технологии позволяют добывать этот вид энергии.

Интересные места для строительства подобных геотермальных электростанций есть и в Ленинградской области. Выражение "Питер стоит на болоте" применимо лишь с позиции строительства малоэтажных объектов, а с точки зрения "большой геологии" — осадочный чехол в окрестностях Петербурга достаточно тонок, всего десятки метров, а затем берут свое начало, как и в Финляндии, коренные магматические породы. Этот скальный щит неоднороден: он испещрен разломами, по некоторым из которых поднимается наверх тепловой поток.

Первыми на это явление обратили внимание ботаники, которые нашли на Карельском перешейке и на Ижорском плато островки тепла, где произрастают растения либо с высокой скоростью воспроизводства, либо относящиеся к более южным ботаническим подзонам. А под Гатчиной и вовсе обнаружена ботаническая аномалия — растения альпийско-карпатской флоры. Растения существуют благодаря тепловым потокам, идущим из-под земли.

По результатам бурения в районе Пулково на глубине 1000 метров температура кристаллических пород составила плюс 30 градусов, то есть в среднем она повышалась на 3 градуса каждые 100 метров. Это "средний" уровень температурного градиента, но он почти в два раза больше, чем в районе Эспоо, в Финляндии. Это означает, что в Пулково достаточно пробурить скважину на глубину всего лишь до 3500 метров, соответственно, такая теплоцентраль обойдется гораздо дешевле, чем в Эспоо.

Стоит учесть, что срок окупаемости подобных станций зависит также и от тарифов на теплоснабжение и электроэнергию для потребителей в этой стране или региона. В мае 2015 года тариф для многоквартирных домов без электрического отопления от компании Helsingin Energia составлял 6,19 евроцента за кВт*ч, с электрическим отоплением, соответственно, — 7,12 евроцентра за кВт*ч (в дневное время). По сравнению с тарифами Санкт-Петербурга, разница для тех, кто использует электричество и для отопления, составляет около 40%, при этом еще надо учитывать игры курсов. Столь невысокая цена на электричество в Финляндии связана, в том числе, с тем, что страна имеет собственные атомные генерирующие мощности.

А вот в Латвии, которая вынуждена постоянно закупать электроэнергию и топливо, отпускная цена электроэнергии практически вдвое выше , чем в Финляндии. Однако финны полны решимости построить станцию в Эспоо, в не самом удачном по геотермическому градиенту месте.

Дело в том, что геотермальная энергетика требует долгосрочных инвестиций. В этом смысле она ближе к крупной гидроэнергетике и атомной энергетике. ГеоТЭС гораздо сложнее возвести, чем солнечную или ветростанцию. И нужно быть уверенными, что политики не начнут играть с ценами и правила не будут меняться на ходу.

Поэтому финны и решаются на этот важный промышленный эксперимент. Если им удастся осуществить задуманное, и хотя бы для начала обогреть своих жителей теплом, которое никогда не кончится (даже в масштабах вообще жизни на нашей планете) — это позволит задуматься о будущем геотермальной энергетики и на обширных российских просторах. Сейчас в России греются теплом Земли на Камчатке и в Дагестане, но, возможно, настанет и время Пулково.

Константин Ранкс

Представьте себе дом, в котором всегда поддерживается комфортная температура, а систем обогрева и охлаждения не видно. Эта система работает эффективно, но не требует сложного обслуживания или специальных знаний от владельцев.

Свежий воздух, Вы можете слышать щебетание птиц и ветер, лениво играющий листьями на деревьях. Дом получает энергию с земли, подобно листьям, которые получают энергию от корней. Прекрасная картина, не так ли?

Системы геотермального нагревания и охлаждения делают эту картину реальностью. Геотермальная НВК система (нагревание, вентиляция и кондиционирование) использует температуру земли, чтобы обеспечить нагревание зимой и охлаждение летом.

Как работает геотермальное нагревание и охлаждение

Температура окружающей среды меняется вместе со сменой пор года, но подземная температура меняется не так существенно благодаря изолирующим свойствам земли. На глубине 1,5-2 метра температура остается относительно постоянной круглый год. Геотермальная система, как правило, состоит из внутреннего оборудования для обработки, подземной системы труб, называемой подземной петлей, и/или насоса для циркуляции воды. Система использует постоянную температуру земли, чтобы обеспечить «чистую и бесплатную» энергию.

(Не путайте понятие геотермальной НВК системы с «геотермальной энергией» - процессом, при котором электричество производится непосредственно из высокой температуры в земле. В последнем случае используется оборудование другого типа и другие процессы, целью которых обычно является нагревание воды до температуры кипения.)

Трубы, которые составляют подземную петлю, обычно делаются из полиэтилена и могут быть расположены под землей горизонтально или вертикально, в зависимости от особенностей местности. Если доступен водоносный слой, то инженеры могут спроектировать систему «разомкнутого контура», для этого необходимо пробурить скважину к грунтовым водам. Вода выкачивается, проходит через теплообменник, и затем закачивается в тот же водоносный слой посредством «повторного закачивания».

Зимой вода, проходя через подземную петлю, поглощает тепло земли. Внутреннее оборудование дополнительно повышает температуру и распределяет ее по всему зданию. Это похоже на кондиционер, работающий наоборот. Летом геотермальная НВК система забирает воду с высокой температурой из здания и несет ее через подземную петлю/насос к скважине повторного закачивания, откуда вода попадает в более прохладную землю/водоносный слой.

В отличие от обычных систем нагревания и охлаждения, геотермальные НВК системы не используют ископаемое топливо, чтобы выработать тепло. Они просто берут высокую температуру из земли. Как правило, электроэнергия используется только для работы вентилятора, компрессора и насоса.

В геотермальной системе охлаждения и отопления есть три главных компонента: тепловой насос, жидкая среда теплообмена (разомкнутая или замкнутая система) и система подачи воздуха (система труб).

Для геотермальных тепловых насосов, а также для всех остальных типов тепловых насосов, было измерено соотношение их полезного действия к затраченной для этого действия энергии (КПД). Большинство геотермальных систем тепловых насосов имеют КПД от 3.0 до 5.0. Это означает, что одну единицу энергии система преобразует в 3-5 единиц тепла.

Геотермальные системы не требуют сложного обслуживания. Правильно установленная, что очень важно, подземная петля может исправно служить в течение нескольких поколений. Вентилятор, компрессор и насос размещены в закрытом помещении и защищены от переменчивых погодных условий, таким образом, их срок эксплуатации может длиться много лет, часто десятилетий. Обычные периодические проверки, своевременная замена фильтра и ежегодная очистка катушки являются единственным необходимым обслуживанием.

Опыт использования геотермальных НВК систем

Геотермальные НВК системы используются уже больше 60 лет во всем мире. Они работают с природой, а не против нее, и они не выделяют парниковых газов (как отмечалось ранее, они используют меньше электричества, потому что используют постоянную температуру земли).

Геотермальные НВК системы все чаще становятся атрибутами экологичных домов, как часть набирающего популярность движения зеленого строительства. Зеленые проекты составили 20 процентов всех построенных домов в США за прошлый год. В одной из статей в Wall Street Journal говорится о том, что к 2016 году бюджет зеленого строительства вырастет от 36 миллиардов долларов в год до 114 миллиардов. Это составит 30-40 процентов всего рынка недвижимости.

Но большая часть информации о геотермальном нагревании и охлаждении основана на устаревших данных или необоснованных мифах.

Разрушение мифов о геотермальных НВК системах

1. Геотермальные НВК системы не являются возобновляемой технологией, потому что они используют электричество.

Факт: Геотермальные НВК системы используют только одну единицу электричества, чтобы произвести до пяти единиц охлаждения или нагревания.

2. Солнечная энергия и энергия ветра являются более благоприятными возобновляемыми технологиями по сравнению с геотермальными НВК системами.

Факт: Геотермальные НВК системы за один доллар перерабатывают в четыре раза больше киловатт/часов, чем энергия солнца или ветра вырабатывает за тот же доллар. Эти технологии могут, конечно, играть важную роль для экологии, но геотермальная НВК система зачастую является самым эффективным и экономным способом уменьшить воздействие на окружающую среду.

3. Для геотермальной НВК системы требуется много места, чтобы разместить полиэтиленовые трубы подземной петли.

Факт: В зависимости от особенностей местности, подземная петля может быть расположена вертикально, что означает необходимость в небольшой наземной поверхности. Если же есть доступный водоносный слой, то нужно всего несколько квадратных футов на поверхности. Заметьте, что вода возвращается в тот же водоносный слой, из которого она и была взята, после того, как прошла через теплообменник. Таким образом, вода не является стоковой и не загрязняет водоносный слой.

4. Геотермальные тепловые насосы НВК являются шумными.

Факт: Системы работают очень тихо, и снаружи нет никакого оборудования, чтобы не беспокоить соседей.

5. Геотермальные системы в конечном итоге «стираются».

Факт: Подземные петли могут служить в течение нескольких поколений. Оборудование теплообмена, как правило, служит десятилетиями, так как оно защищено в закрытом помещении. Когда наступает момент необходимой замены оборудования, стоимость такой замены намного меньше новой геотермальной системы, поскольку подземная петля и скважина являются ее самыми дорогими частями. Новые технические решения устраняют проблему задержки тепла в земле, таким образом, система может производить обмен температур в неограниченном количестве. В прошлом были случаи неправильно рассчитанных систем, которые действительно перегревали или переохлаждали землю до такой степени, что больше не было температурного различия, необходимого для работы системы.

6. Геотермальные НВК системы работают только для нагрева.

Факт: Они работают столь же эффективно и на охлаждение и могут быть спроектированы таким образом, чтобы не было необходимости в дополнительном резервном источнике тепла. Хотя некоторые клиенты решают, что экономически более выгодно иметь небольшую резервную систему для самых холодных времен. Это означает, что их подземная петля будет меньше и, соответственно, дешевле.

7. Геотермальные НВК системы не могут одновременно нагреть воду для бытовых целей, нагреть воду в бассейне и обогреть дом.

Факт: Системы могут быть спроектированы таким образом, чтобы выполнять много функций одновременно.

8. Геотермальные НВК системы загрязняют землю хладагентами.

Факт: Большинство систем использует в петлях только воду.

9. Геотермальные НВК системы используют много воды.

Факт: Геотермальные системы фактически не потребляют воду. Если для обмена температуры используется подземные воды, то вся вода возвращается в тот же водоносный слой. В прошлом действительно использовались некоторые системы, которые тратили впустую воду после того, как она проходила через теплообменник, но такие системы сегодня почти не используются. Если посмотреть на вопрос с коммерческой точки зрения, то геотермальные НВК системы фактически экономят миллионы литров воды, которые бы испарялись в традиционных системах.

10. Геотермальная НВК технология финансово не выполнима без государственных и региональных налоговых льгот.

Факт: Государственные и региональные льготы, как правило, составляют от 30 до 60 процентов совокупной стоимости геотермальной системы, что может зачастую снизить ее начальную цену практически до уровня цен на обычное оборудование. Стандартные воздушные системы НВК стоят приблизительно 3,000 долларов за тонну тепла или холода (дома обычно используют от одной до пяти тонн). Цена геотермальных НВК систем составляет приблизительно от 5,000 долларов за тонну до 8,000-9,000. Однако новые методы установки значительно уменьшают затраты, вплоть до цен на обычные системы.

Уменьшить стоимость также можно за счет скидок на оборудование для общественного или коммерческого использования, или даже при крупных заказах бытового характера (особенно от крупных брендов, таких как Bosch, Carrier и Trane). Разомкнутые контуры, при использовании насоса и скважины повторной закачки, являются более дешевыми в установке, чем замкнутые системы.

По материалам: energyblog.nationalgeographic.com

Температура грунта непрерывно изменяется по глубине и во времени. Она зависит от целого ряда факторов, из которых многие трудно поддаются учету. К последним, например, относится: характер растительности, экспозиция склона по сторонам света, затененность, снеговой покров, характер самих грунтов, наличие надмерзлотных вод и др. Однако температура грунта, как по величине, так и по характеру распределения сохраняется из года в год достаточно устойчиво, и решающее влияние здесь остается за температурой воздуха.

Температура грунта на разных глубинах и в различные периоды года может быть получена непосредственными измерениями в термоскважинах, которые закладываются в процессе изысканий. Но такой способ требует длительных наблюдений и значительных расходов, что не всегда оправдано. Полученные по одной-двум скважинам данные распространяются на большие площади и протяжения, значительно искажая действительность так, что расчетные данные о температуре грунта во многих случаях оказываются более надежными.

Температура грунта вечномерзлой толщи на любой глубине (до 10 м от поверхности) и на любой период года может быть определена по формуле:

tr = mt°, (3.7)

где z – глубина, отсчитываемая от ВГМ, м;

tr – температура грунта на глубине z, в град.

τr– время равное году (8760 ч);

τ - время, отсчитываемое вперед (через 1 января) от момента начала осеннего замерзания грунта до момента, для которого ведется отсчет температуры, в ч;

еxp х – экспонента (показательная функция exp берется по таблицам);

m – коэффициент, зависящий от периода года (для периода октябрь – май m = 1,5-0,05z, а для периода июнь- сентябрь m = 1)

Самая низкая температура на заданной глубине будет тогда, когда косинус в формуле (3.7) станет равным -1, т. е. минимальная температура грунта за год на данной глубине составит

tr мин = (1,5-0,05z) t°, (3.8)

Максимальная температура грунта на глубине z ,будет тогда, когда косинус примет значение, равное единице т.е.

tr макс = t°, (3.9)

Во всех трех формулах значение объемной теплоемкости С м следует рассчитывать для температуры грунта t° по формуле (3.10).

С 1 м = 1/W, (3.10)

Температуру грунта в слое сезонного оттаивания можно также определить расчетом, приняв во внимание, что изменение температуры в этом слое достаточно точно апроксимируется линейной зависимостью при следующих температурных градиентах (табл.3.1).

Рассчитав по одной из формул (3.8) – (3.9) температуру грунта на уровне ВГМ, т.е. положив в формулах Z=0, затем с помощью таблицы 3.1 определяем температуру грунта на заданной глубине в слое сезонного оттаивания. В самых верхних слоях грунта, примерно до 1 м от поверхности, характер температурных колебаний очень сложен.


Таблица 3.1

Температурный градиент в слое сезонного оттаивания на глубине ниже 1 м от поверхности земли

Примечание. Знак градиента показан в направлении к дневной поверхности.

Чтобы получить расчетную температуру грунта в метровом слое от поверхности, можно поступить следующим образом. Вычислить температуру на глубине 1 м и температуру дневной поверхности грунта, а затем путем интерполяции по этим двум значениям определить температуру на заданной глубине.

Температуру на поверхности грунта t п в холодный период года можно принимать равной температуре воздуха. В летний период:

t п = 2+1,15 t в, (3.11)

где t п - температура на поверхности в град.

t в – температура воздуха в град.

Температура грунта при несливающейся криолитозоне рассчитывается иначе, чем при сливающейся. Практически можно считать, что температура на уровне ВГМ будет равна 0°С в течении всего года. Расчетную температуру грунта вечномерзлой толщи на заданной глубине можно определить интерполяцией, считая, что она меняется на глубине по линейному закону от t° на глубине 10 м до 0°С на глубине залегания ВГМ. Температуру в талом слое h т можно принимать от 0,5 до 1,5°С.

В слое сезонного промерзания h п температуру грунта можно вычислить так же, как для слоя сезонного оттаивания сливающейся криолитозоны, т.е. в слое h п – 1 м по температурному градиенту (табл. 3.1), считая температуру на глубине h п равной 0°С в холодный период года и 1°С в летнее время. В верхнем метровом слое грунта температура определяется по интерполяции между температурой на глубине 1 м и температурой на поверхности.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...