Чистая и возобновляемая геотермальная энергетика. Виды источников геотермальной энергии


Д ля России энергия тепла Земли может стать постоянным, надежным источником обеспечения дешевыми и доступными электроэнергией и теплом при использовании новых высоких, экологически чистых технологий по ее извлечению и поставке потребителю. В настоящее время это особенно актуально

Ограниченность ресурсов ископаемого энергетического сырья

Потребности в органическом энергетическом сырье велики в индустриально развитых и развивающихся странах (США, Япония, государства объединенной Европы, Китай, Индия и др.). При этом собственные ресурсы углеводородов в этих странах либо недостаточны, либо зарезервированы, а страна, например США, покупает энергетическое сырье за рубежом или разрабатывает месторождения в других странах.

В России, одной из богатейших по энергетическим ресурсам стран, хозяйственные потребности в энергии пока удовлетворяются возможностями использования природных ископаемых. Однако извлечение ископаемого углеводородного сырья из недр происходит очень быстрыми темпами. Если в 1940–1960-е гг. основными нефтедобывающими районами были «Второе Баку» в Поволжье и Предуралье, то, начиная с 1970-х гг., и по настоящее время таким районом является Западная Сибирь. Но и здесь наблюдается значительное снижение добычи ископаемых углеводородов. Уходит в прошлое эпоха «сухого» сеноманского газа. Прежний этап экстенсивного развития добычи природного газа подошел к завершению. Извлечение его из таких месторождений-гигантов, как Медвежье, Уренгойское и Ямбургское, составило, соответственно, 84, 65 и 50 %. Удельный вес запасов нефти, благоприятных для разработки, во времени также снижается.


Вследствие активного потребления углеводородного топлива, запасы нефти и природного газа на суше значительно сократились. Теперь основные их запасы сосредоточены на континентальном шельфе. И хотя сырьевая база нефтяной и газовой промышленности еще достаточна для добычи нефти и газа в России в необходимых объемах, в ближайшем будущем она будет обеспечиваться все в большей степени за счет освоения месторождений со сложными горно-геологическими условиями. Себестоимость добычи углеводородного сырья при этом будет расти.


Большая часть добываемых из недр невозобновляемых ресурсов используется как топливо для энергетических установок. В первую очередь это , доля которого в структуре топлива составляет 64 %.


В России 70 % электроэнергии вырабатывается на ТЭС. Энергетические предприятия страны ежегодно сжигают около 500 млн т у. т. в целях получения электроэнергии и тепла, при этом на производство тепла расходуется углеводородного топлива в 3–4 раза больше, чем на генерацию электроэнергии.


Количество теплоты, получаемое от сгорания названных объемов углеводородного сырья, эквивалентно использованию сотен тонн ядерного топлива – разница огромна. Однако ядерная энергетика требует обеспечения экологической безопасности (для исключения повторения Чернобыля) и защиты ее от возможных террористических актов, а также осуществления безопасного и дорогостоящего вывода из эксплуатации устаревших и отработавших свой срок энергоблоков АЭС. Доказанные извлекаемые запасы урана в мире составляют порядка 3 млн 400 тыс. т. За весь предшествующий период (до 2007 г.) его добыто около 2 млн т.

ВИЭ как будущее мировой энергетики

Возросший в последние десятилетия в мире интерес к альтернативным возобновляемым источникам энергии (ВИЭ) вызван не только истощением запасов углеводородного топлива, но и необходимостью решения экологических проблем. Объективные факторы (резервы ископаемого топлива и урана, а также изменения окружающей среды, связанные с использованием традиционной огневой и атомной энергетики) и тенденции развития энергетики позволяют утверждать, что переход к новым способам и формам получения энергии является неизбежным. Уже в первой половине XXI в. произойдет полный или почти полный переход на нетрадиционные источники энергии.


Чем раньше будет сделан прорыв в этом направлении, тем менее болезненным он будет для всего общества и более выгодным для страны, где будут сделаны решительные шаги в указанном направлении.


Мировая экономика в настоящее время уже взяла курс на переход к рациональному сочетанию традиционных и новых источников энергии. Энергопотребление в мире к 2000 г. составило более 18 млрд т у. т., а энергопотребление к 2025 г. может возрасти до 30–38 млрд т у. т., по прогнозным данным, к 2050 г. возможно потребление на уровне 60 млрд т у. т. Характерной тенденций развития мировой экономики в рассматриваемый период являются систематическое снижение потребления органического топлива и соответствующий рост использования нетрадиционных энергетических ресурсов. Тепловая энергия Земли занимает среди них одно из первых мест.


В настоящее время Министерством энергетики РФ принята программа развития нетрадиционной энергетики, в том числе 30-ти крупных проектов использования теплонасосных установок (ТНУ), принцип работы которых основан на потреблении низкопотенциальной тепловой энергии Земли.

Низкопотенциальная энергия тепла Земли и тепловые насосы

Источниками низкопотенциальной энергии тепла Земли являются солнечная радиация и тепловое излучение разогретых недр нашей планеты. В настоящее время использование такой энергии – одно из наиболее динамично развивающихся направлений энергетики на основе ВИЭ.


Тепло Земли может использоваться в различных типах зданий и сооружений для отопления, горячего водоснабжения, кондиционирования (охлаждения) воздуха, а также для обогрева дорожек в зимнее время года, предотвращения обледенения, подогрева полей на открытых стадионах и т. п. В англоязычной технической литературе системы, утилизирующие тепло Земли в системах теплоснабжения и кондиционирования, обозначаются как GHP – «geothermal heat pumps» (геотермальные тепловые насосы). Климатические характеристики стран Центральной и Северной Европы, которые вместе с США и Канадой являются главными районами использования низкопотенциального тепла Земли, определяют это главным образом в целях отопления; охлаждение воздуха даже в летний период требуется относительно редко. Поэтому, в отличие от США, тепловые насосы в европейских странах работают в основном в режиме отопления. В США они чаще используются в системах воздушного отопления, совмещенного с вентиляцией, что позволяет как подогревать, так и охлаждать наружный воздух. В европейских странах тепловые насосы обычно применяются в системах водяного отопления. Поскольку их эффективность увеличивается при уменьшении разности температур испарителя и конденсатора, часто для отопления зданий используются системы напольного отопления, в которых циркулирует теплоноситель относительно низкой температуры (35–40 о C).

Виды систем использования низкопотенциальной энергии тепла Земли

В общем случае можно выделить два вида систем использования низкопотенциальной энергии тепла Земли:


– открытые системы: в качестве источника низкопотенциальной тепловой энергии применяются грунтовые воды, подводимые непосредственно к тепловым насосам;

– замкнутые системы: теплообменники расположены в грунтовом массиве; при циркуляции по ним теплоносителя с пониженной относительно грунта температурой происходит «отбор» тепловой энергии от грунта и перенос ее к испарителю теплового насоса (или при использовании теплоносителя с повышенной относительно грунта температурой – его охлаждение).

Минусы открытых систем состоят в том, что скважины требуют обслуживания. Кроме этого, использование таких систем возможно не во всех местностях. Главные требования к грунту и грунтовым водам таковы:

– достаточная водопроницаемость грунта, позволяющая пополняться запасам воды;

– хороший химический состав грунтовых вод (например, низкое железосодержание), позволяющий избежать проблем, связанных с образованием отложений на стенках труб и коррозией.


Замкнутые системы использования низкопотенциальной энергии тепла Земли


Замкнутые системы бывают горизонтальными и вертикальными (рис 1).


Рис. 1. Схема геотермально теплонасосной установки с: а – горизонтальными

и б – вертикальными грунтовыми теплообменниками.

Горизонтальный грунтовой теплообменник

В странах Западной и Центральной Европы горизонтальные грунтовые теплообменники обычно представляют собой отдельные трубы, положенные относительно плотно и соединенные между собой последовательно или параллельно (рис. 2).


Рис. 2. Горизонтальные грунтовые теплообменники с: а – последовательным и

б – параллельным соединением.


Для экономии площади участка, на котором производится теплосъем, были разработаны усовершенствованные типы теплообменников, например, теплообменники в форме спирали (рис. 3), расположенной горизонтально или вертикально. Такая форма теплообменников распространена в США.

Данная энергия относится к альтернативным источникам. В наши дни всё чаще упоминают о возможностях получения ресурсов, которые дарит нам планета. Можно сказать, что мы живем в эпоху моды на возобновляемую энергетику. Создается множество технических решений, планов, теорий в данной области.

Он находится глубоко в земляных недрах и имеет свойства возобновления, другими словами он бесконечный. Классические ресурсы, по данным учёных начинают заканчиваться, иссякнет нефть, уголь, газ.

Несьявеллир ГеоТЭС, Исландия

Поэтому можно постепенно готовиться принимать на вооружение новые альтернативные методы добычи энергии. Под земной корой находится мощное ядро. Его температура составляет от 3000 до 6000 градусов. Перемещение литосферных плит демонстрирует его огромнейшую силу. Она проявляется в виде вулканического выплескивания магмы. В недрах происходит радиоактивный распад, побуждающий иногда к таким природным катаклизмам.

Обычно магма нагревает поверхность не выходя за её пределы. Так получаются гейзеры или теплые бассейны воды. Таким образом, можно использовать физические процессы в нужных целях для человечества.

Виды источников геотермальной энергии

Её принято разделять на два вида: гидротермальную и петротермальную энергию. Первый образуется за счет теплых источников, а второй тип – это разница температур на поверхности и в глубине земли. Объясняя своими словами, гидротермальный источник состоит из пара и горячей воды, а петротермальный спрятан глубоко под грунтом.

Карта потенциала развития геотермальной энергетики в мире

Для петротермальной энергии необходимо пробурить две скважины, одну наполнить водой, после чего произойдет процесс парения, который выйдет на поверхность. Существует три класса геотермальных районов:

  • Геотермальный – расположен вблизи континентальных плит. Градиент температуры более 80С/км. В качестве примера, итальянская коммуна Лардерелло. Там размещена электростанция
  • Полутермальный – температура 40 – 80 С/км. Это естественные водоносные пласты, состоящие из раздробленных пород. В некоторых местах Франции обогреваются таким способом здания
  • Нормальный – градиент менее 40 С/км. Представительство таких районов наиболее распространено

Они являются отличным источником для потребления. Они находятся в горной породе, на определенной глубине. Более подробно рассмотрим классификацию:

  • Эпитермальные – температура от 50 до 90 с
  • Мезотермальные – 100 – 120 с
  • Гипотермальные – более 200 с

Данные виды состоят из разного химического состава. В зависимости от него, можно использовать воды для различных целей. Например, в производстве электроэнергии, теплообеспечении (тепловые трассы), сырьевой базе.

Видео: Геотермальная энергия

Процесс теплоснабжения

Температура воды 50 -60 градусов, является оптимальной для отопления и горячего снабжения жилого массива. Нужда в отопительных системах зависит от географического расположения и климатических условий. А в потребностях ГВС люди нуждаются постоянно. Для этого процесса сооружаются ГТС (геотермальные тепловые станции).

Если для классического производства тепловой энергии используется котельная, потребляющая твёрдое или газовое топливо, то при данном производстве используется гейзерный источник. Технический процесс очень простой, те же коммуникации, тепловые трассы и оборудование. Достаточно пробурить скважину, очистить её от газов, далее насосами направить в котельную, где будет поддерживаться температурный график, а после она попадёт в теплотрассу.

Главное отличие в том, что нет необходимости использовать топливный котлоагрегат. Это существенно снижает себестоимость тепловой энергии. Зимой абоненты получают тепло и горячее водоснабжение, а летом только ГВС.

Производство электроэнергии

Горячие источники, гейзеры служат основным компонентами в производстве электричества. Для этого применяется несколько схем, сооружаются специальные электростанции. Устройство ГТС:

  • Бак ГВС
  • Насос
  • Газоотделитель
  • Паросепаратор
  • Генерирующая турбина
  • Конденсатор
  • Повысительный насос
  • Бак – охладитель


Как видим основным элементом схемы, является паровой преобразователь. Это позволяет получать очищенный пар, так как в нем содержатся кислоты, разрушающие оборудование турбин. Существует возможность применение смешанной схемы в технологическом цикле, то есть вода и пар участвуют в процессе. Жидкость проходит всю стадию очистки от газов, так же как и пар.

Схема с бинарным источником

Рабочим компонентом является жидкость с низкой температурой кипения. Термальная вода также участвует в производстве электроэнергии и служит второстепенным сырьем.

С её помощью образуется пар низкокипящего источника. ГТС с таким циклом работы могут быть полностью автоматизированы и не требовать наличия обслуживающего персонала. Более мощные станции используют двухконтурную схему. Такой вид электростанций позволяет выходить на мощность 10 МВт. Двухконтурная структура:

  • Паровой генератор
  • Турбина
  • Конденсатор
  • Эжектор
  • Питательный насос
  • Экономайзер
  • Испаритель

Практическое применение

Огромные запасы источников во много раз превосходят ежегодное потребление энергии. Но лишь малая доля используется человечеством. Строительство станций датировано 1916 годом. В Италии была создана первая ГеоТЭС мощностью 7,5 МВт. Отрасль активно развивается в таких странах как: США, Исландия, Япония, Филиппины, Италия.

Ведутся активные изучение потенциальных мест и более удобные методы добывания. Из года в год растёт производственная мощность. Если брать в расчёт экономический показатель, то себестоимость такой отрасли равна угольным ТЭС. Исландия практически полностью покрывает коммунально-жилой фонд ГТ-источником. 80 % домов для отопления используют горячую воду из скважин. Эксперты из США утверждают, что при должном развитии ГеоТЭС могут произвести в 30 раз больше ежегодного потребления. Если говорить о потенциале, то 39 стран мира смогут полностью себя обеспечить электроэнергией, если на 100 процентов используют недра земли.

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится: нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Маленькая европейская страна Исландия («страна льда» в дословном переводе) полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли, других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами - фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в использовании тепла подземных источников (еще древние римляне к знаменитым баням - термам Каракаллы - подвели воду из-под земли), жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно . Столица город Рейкьявик, в которой проживает половина населения страны, отапливается только за счет подземных источников. Рейкьявик - это идеальная отправная точка для знакомства с Исландией: отсюда Вы можете отправиться на самые интересные и разнообразные экскурсии в любой уголок этой уникальной страны: гейзеры, вулканы, водопады, риолитовые горы, фьорды… Везде в Рейкьявике Вы ощутите ЧИСТУЮ ЭНЕРГИЮ - термальную энергию гейзеров, бьющих из-под земли, энергию чистоты и пространства идеально зеленого города, энергию веселой и зажигательной ночной жизни Рейкьявика круглый год.

Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло, названном так в честь французского инженера Лардерелли, который еще в 1827 году составил проект использования многочисленных в этом районе горячих источников. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величины - 360 тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, ее мощность 160 тысяч киловатт. В 120 км от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч киловатт.

Геотермальная энергия

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это - проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Гейзер – это горячий источник, который извергает свою воду на регулярную или нерегулярную высоту, как фонтан. Название происходит от исландского слова «льется». Появление гейзеров требует определенной благоприятной обстановки, которая создана только в нескольких местах на земле, что обуславливает их достаточно редкое наличие. Практически 50% гейзеров находятся в Национальном парке Йеллоустоуна (США). Деятельность гейзера может прекратиться из-за изменений в недрах, землетрясений и др. факторов. Действие гейзера вызывается соприкосновением воды с магмой, после чего вода быстро нагревается и под действием геотермальной энергии с силой выбрасывается вверх. После извержения, вода в гейзере постепенно охлаждается, вновь просачивается к магме, и вновь фонтанирует. Частота извержений различных гейзеров отличается от нескольких минут до нескольких часов. Необходимость наличия большой энергии для действия гейзера – главная причина их редкости. Вулканические области могут иметь горячие источники, грязевые вулканы, фумаролы, но есть очень немного мест, где находятся гейзеры. Дело в том, что даже если гейзер образовался в месте активности вулкана, последующие извержения разрушат поверхность земли и изменят ее состояние, что приведет к исчезновению гейзера.

Энергетика земли (геотермальная энергетика) базируется на использовании природной теплоты Земли. Недра Земли таят в себе колоссальный, практически неисчерпаемый источник энергии. Ежегодное излучение внутреннего тепла на нашей планете составляет 2,8 * 1014 млрд. кВт * час. Оно постоянно компенсируется радиоактивным распадом некоторых изотопов в земной коре.

Источники геотермальной энергии могут быть двух типов. Первый тип – это подземные бассейны естественных теплоносителей – горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Второй тип – это тепло горячих горных пород. Закачивая в такие горизонты воду, можно также получить пар или перегретую воду для дальнейшего использования в энергетических целях.

Но в обоих вариантах использования главный недостаток заключается, пожалуй, в очень слабой концентрации геотермальной энергии. Впрочем, в местах образования своеобразных геотермических аномалий, где горячие источники или породы подходят сравнительно близко к поверхности и где при погружении вглубь на каждые 100 м температура повышается на 30-40°С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования. В зависимости от температуры воды, пара или пароводяной смеси геотермальные источники подразделяются на низкои среднетемпературные (с температурой до 130 – 150° С) и высокотемпературные (свыше 150°). От температуры во многом зависит характер их использования.

Можно утверждать, что геотермальная энергия имеет четыре выгодных отличительных черты.

Во-первых, её запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива.

Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. В пределах этих поясов можно выделить отдельные наиболее перспективные «геотермальные районы», примерами которых могут служить Калифорния в США, Новая Зеландия, Япония, Исландия, Камчатка, Северный Кавказ в России. Только в бывшем СССР к началу 90-х годов было открыто около 50 подземных бассейнов горячей воды и пара.

В-третьих, использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии.

Наконец, в-четвертых, геотермальная энергия в экологическом отношении совершенно безвредна и не загрязняет окружающую среду.

Человек издавна использует энергию внутреннего тепла Земли (вспомним хотя бы знаменитые Римские бани), но её коммерческое использование началось только в 20-х годах нашего века со строительством первых геоЭС в Италии, а затем и в других странах. К началу 80-х годов в мире действовало около 20 таких станций общей мощностью 1,5 млн. кВт. Самая крупная из них – станция Гейзерс в США (500 тыс. кВт).

Геотермальную энергию используют для выработки электроэнергии, обогрева жилья, теплиц и т.п. В качестве теплоносителя используют сухой пар, перегретую воду или какой-либо теплоноситель с низкой температурой кипения (аммиак, фреон и т.п.).

Теплота Земли. Вероятные источники внутренней теплоты

Геотермия – наука, изучающая тепловое поле Земли. Средняя температура поверхности Земли имеет общую тенденцию к уменьшению. Три млрд. лет назад средняя температура на поверхности Земли составляла 71 о, сейчас – 17 о. Источниками теплового (термического) поля Земли являются внутренние и внешние процессы. Теплота Земли вызывается солнечной радиацией и зарождается в недрах планеты. Величины притока тепла от обоих источников количественно крайне неодинаковы и различны их роли в жизни планеты. Солнечный нагрев Земли составляет 99,5% от всей суммы тепла, получаемого ее поверхностью, а на долю внутреннего нагревания приходится 0,5 %. К тому же приток внутреннего тепла очень неравномерно распределен на Земле и сосредоточен в основном в местах проявления вулканизма.

Внешний источник - это солнечная радиация. Половина солнечной энергии поглощается поверхностью, растительностью и приповерхностным слоем земной коры. Другая половина отражается в мировое пространство. Солнечная радиация поддерживает температуру поверхности Земли в среднем около 0 0 С. Солнце прогревает приповерхностный слой Земли на глубину в среднем 8 – 30 м, при средней глубине в 25 м, влияние солнечного тепла прекращается и температура становится постоянной (нейтральный слой). Глубина эта минимальна в зонах с морским климатом и максимальна в Приполярье. Ниже этой границы располагается пояс постоянной температуры, соответствующей средней годовой температуры данной местности. Так, например, в Москве на территории сельхоз. академии им. Тимирязева, на глубине 20 м температура с 1882 г неизменно сохраняется равной 4,2 о С. В Париже на глубине 28 м термометр уже более 100 лет неизменно показывает 11,83 о С. Слой с постоянной температурой самый глубокий там, где развита многолетняя (вечная) мерзлота. Ниже пояса постоянной температуры следует зона геотермии, для которой свойственно тепло, генерируемое самой Землей.

Внутренними источниками являются недра Земли. Земля излучает в мировое пространство больше тепла, чем она получает от Солнца. К внутренним источникам относят остаточное тепло с того времени, когда планета была расплавлена, тепло термоядерных реакций, протекающих в недрах Земли, тепло гравитационного сжатия Земли под действием силы тяжести, тепло химических реакций и процессов кристаллизации и др. (например приливное трение). Тепло из недр идет в основном из подвижных зон. Увеличение температуры с глубиной связано с существованием внутренних источников тепла – распадом радиоактивных изотопов – U, Th, K, гравитационной дифференциацией вещества, приливным трением, экзотермическими окислительно-восстановительными химическими реакциями, метаморфизмом и фазовыми переходами. Скорость возрастания температуры с глубиной определяется рядом факторов – теплопроводностью, проницаемостью горных пород, близостью вулканических очагов и т.п.

Ниже пояса постоянных температур идет повышение температуры, в среднем 1 о на 33 м (геотермическая ступень ) или на 3 о через каждые 100 м (геотермический градиент ). Эти величины являются показателями теплового поля Земли. Понятно, что эти величины средние и разные по величине в различных областях или зонах Земли. Геотермическая ступень в различных точках Земли различна. Например, в Москве – 38,4 м, в Ленинграде 19,6, в Архангельске – 10. Так, при бурении глубокой скважины на Кольском полуострове на глубине в 12 км предполагали температуру 150 о, в действительности она оказалась порядка 220 градусов. При бурении скважин в северном Прикаспии на глубине 3000 м предполагали температуру 150 о градусов, а она оказалась 108 о.

Следует отметить, что климатические особенности местности и среднегодовая температура не влияют на изменение величины геотермической ступени, причины кроются в следующем:

1) в различной теплопроводности горных пород, слагающих тот или иной район. Под мерой теплопроводности понимают количество тепла в калориях, передаваемое в 1 сек. Через сечение в 1 см 2 при градиенте температуры в 1 о С;

2) в радиоактивности горных пород, чем больше теплопроводность и радиоактивность, тем меньше геотермическая ступень;

3) в различных условиях залегания горных пород и возрасте нарушения их залегания; наблюдения показали, что температура нарастает быстрее в слоях собранных в складки, в них чаще бывают нарушения (трещины), по которым облегчается доступ тепла из глубин;

4) характером подземных вод: потоки горячих подземных вод прогревают горные породы, холодные – охлаждают;

5) удаленностью от океана: около океана за счет охлаждения горных пород массой воды, геотермическая ступень больше, а на контакте – меньше.

Знание конкретной величины геотермической ступени имеет большое практическое значение.

1. Это важно при проектировании шахт. В одних случаях нужно будет принимать меры для искусственного понижения температуры в глубоких выработках (температура – 50 о С является предельной для человека при сухом воздухе и 40 о С при влажном); в других – можно будет вести работы на больших глубинах.

2. Большое значение имеет оценка температурных условий при проходке туннелей в горных местностях.

3. Изучение геотермических условий недр Земли дает возможность использовать пар и горячие источники, выходящие на поверхность Земли. Подземное тепло используется, например, в Италии, Исландии; в России на природном тепле построена на Камчатке экспериментально-промышленная электростанция.

Используя данные о величине геотермической ступени, можно сделать некоторые предположения о температурных условиях глубоких зон Земли. Если принять среднюю величину геотермической ступени за 33 м и допустить, что увеличение температуры с глубиной происходит равномерно, то на глубине 100 км будет температура 3000 о С. Эта температура превышает точки плавления всех веществ известных на Земле, следовательно на этой глубине должны быть расплавленные массы. Но за счет огромного давления 31000 атм. Перегретые массы не имеют признаков, свойственных жидкостей, а наделены признаками твердого тела.

С глубиной геотермическая ступень видимо должна значительно увеличиваться. Если считать, что ступень не меняется с глубиной, то температура в центре Земли должна составлять порядка 200 000 о градусов, а по расчетам она не может превышать 5000 - 10 000 о.

И.М. Капитонов

Ядерное тепло Земли

Земное тепло

Земля – довольно сильно нагретое тело и является источником тепла. Она нагревается, прежде всего, за счёт поглощаемого ею солнечного излучения. Но Земля имеет и собственный тепловой ресурс сопоставимый с получаемым теплом от Солнца. Считается, что эта собственная энергия Земли имеет следующее происхождение. Земля возникла около 4.5 млрд лет назад вслед за образованием Солнца из вращающегося вокруг него и уплотняющегося протопланетного газо-пылевого диска. На раннем этапе своего формирования происходил разогрев земной субстанции за счёт сравнительно медленного гравитационного сжатия. Большую роль в тепловом балансе Земли играла также энергия, выделявшаяся при падении на неё мелких космических тел. Поэтому молодая Земля была расплавленной. Остывая, она постепенно пришла к своему нынешнему состоянию с твёрдой поверхностью, значительная часть которой покрыта океаническими и морскими водами. Этот твёрдый наружный слой называют земной корой и в среднем на участках суши его толщина около 40 км, а под океаническими водами – 5-10 км. Более глубокий слой Земли, называемый мантией , также состоит из твёрдого вещества. Он простирается на глубину почти до 3000 км и в нём содержится основная часть вещества Земли. Наконец самая внутренняя часть Земли – это её ядро . Оно состоит из двух слоёв – внешнего и внутреннего. Внешнее ядро это слой расплавленного железа и никеля при температуре 4500-6500 K толщиной 2000-2500 км. Внутреннее ядро радиусом 1000-1500 км представляет собой нагретый до температуры 4000-5000 K твёрдый железо-никелевый сплав плотностью около 14 г/см 3 , возникший при огромном (почти 4 млн бар) давлении.
Помимо внутреннего тепла Земли, доставшегося её в наследство от самого раннего горячего этапа её формирования, и количество которого должно уменьшаться со временем, существует и другой, – долговременный, связанный с радиоактивным распадом ядер с большим периодом полураспада – прежде всего, 232 Th, 235 U, 238 U и 40 K. Энергия, выделяющаяся в этих распадах – на их долю приходится почти 99% земной радиоактивной энергии – постоянно пополняет тепловые запасы Земли. Вышеперечисленные ядра содержатся в коре и мантии. Их распад приводит к нагреву как внешних, так и внутренних слоёв Земли.
Часть огромного тепла, содержащегося внутри Земли, постоянно выходит на её поверхность часто в весьма масштабных вулканических процессах. Тепловой поток, вытекающий из глубин Земли через её поверхность известен. Он составляет (47±2)·10 12 Ватт , что эквивалентно теплу, которое могут генерировать 50 тысяч атомных электростанций (средняя мощность одной АЭС около 10 9 Ватт). Возникает вопрос, играет ли какую-либо существенную роль радиоактивная энергия в полном тепловом бюджете Земли и если играет, то какую? Ответ на эти вопросы долгое время оставался неизвестным. В настоящее время появились возможности ответить на эти вопросы. Ключевая роль здесь принадлежит нейтрино (антинейтрино), которые рождаются в процессах радиоактивного распада ядер, входящих в состав вещества Земли и которые получили название гео-нейтрино .

Гео-нейтрино

Гео-нейтрино – это объединённое название нейтрино или антинейтрино, которые испускаются в результате бета-распада ядер, расположенных под земной поверхностью. Очевидно, что благодаря беспрецедентной проникающей способности, регистрация именно их (и только их) наземными нейтринными детекторами может дать объективную информацию о процессах радиоактивного распада, происходящих глубоко внутри Земли. Примером такого распада является β − -распад ядра 228 Ra, которое является продуктом α-распада долгоживущего ядра 232 Th (см. таблицу):

Период полураспада (T 1/2) ядра 228 Ra равен 5.75 лет, выделяющаяся энергия составляет около 46 кэВ. Энергетический спектр антинейтрино непрерывен с верхней границей близкой к выделяющейся энергии.
Распады ядер 232 Th, 235 U, 238 U представляют собой цепочки последовательных распадов, образующих так называемые радиоактивные ряды . В таких цепочках α-распады перемежаются β − -распадами, так как при α-распадах конечные ядра оказываются смещёнными от линии β-стабильности в область ядер, перегруженных нейтронами. После цепочки последовательных распадов в конце каждого ряда образуются стабильные ядра с близким или равным магическим числам количеством протонов и нейтронов (Z = 82, N = 126). Такими конечными ядрами являются стабильные изотопы свинца или висмута. Так распад T 1/2 завершается образованием дважды магического ядра 208 Pb, причем на пути 232 Th → 208 Pb происходит шесть α-распадов, перемежающихся четырьмя β − -распадами (в цепочке 238 U → 206 Pb восемь α- и шесть β − -распадов; в цепочке 235 U → 207 Pb семь α- и четыре β − -распада). Таким образом, энергетический спектр антинейтрино от каждого радиоактивного ряда представляет собой наложение парциальных спектров от отдельных β − -распадов, входящих в состав этого ряда. Спектры антинейтрино, образующихся в распадах 232 Th, 235 U, 238 U, 40 K, показаны на рис. 1. Распад 40 K это однократный β − -распад (см. таблицу). Наибольшей энергии (до 3.26 МэВ) антинейтрино достигают в распаде
214 Bi → 214 Po, являющемся звеном радиоактивного ряда 238 U. Полная энергия, выделяющаяся при прохождении всех звеньев распада ряда 232 Th → 208 Pb, равна 42.65 МэВ. Для радиоактивных рядов 235 U и 238 U эти энергии соответственно 46.39 и 51.69 МэВ. Энергия, освобождающаяся в распаде
40 K → 40 Ca, составляет 1.31 МэВ.

Характеристики ядер 232 Th, 235 U, 238 U, 40 K

Ядро Доля в %
в смеси
изотопов
Число ядер
относит.
ядер Si
T 1/2 ,
млрд лет
Первые звенья
распада
232 Th 100 0.0335 14.0
235 U 0.7204 6.48·10 -5 0.704
238 U 99.2742 0.00893 4.47
40 K 0.0117 0.440 1.25

Оценка потока гео-нейтрино, сделанная на основе распада ядер 232 Th, 235 U, 238 U, 40 K, содержащихся в составе вещества Земли, приводит к величине порядка 10 6 см -2 сек -1 . Зарегистрировав эти гео-нейтрино, можно получить информацию о роли радиоактивного тепла в полном тепловом балансе Земли и проверить наши представления о содержании долгоживущих радиоизотопов в составе земного вещества.


Рис. 1. Энергетические спектры антинейтрино от распада ядер

232 Th, 235 U, 238 U, 40 K, нормализованные к одному распаду родительского ядра

Для регистрации электронных антинейтрино используется реакция

P → e + + n, (1)

в которой собственно и была открыта эта частица. Порог этой реакции 1.8 МэВ. Поэтому только гео-нейтрино, образующиеся в цепочках распада, стартующих с ядер 232 Th и 238 U, могут быть зарегистрированы в вышеуказанной реакции. Эффективное сечение обсуждаемой реакции крайне мало: σ ≈ 10 -43 см 2 . Отсюда следует, что нейтринный детектор с чувствительным объёмом 1 м 3 будет регистрировать не более нескольких событий в год. Очевидно, что для уверенной фиксации потоков гео-нейтрино необходимы нейтринные детекторы большого объёма, размещённые в подземных лабораториях для максимальной защиты от фона. Идея использовать для регистрации гео-нейтрино детекторы, предназначенные для изучения солнечных и реакторных нейтрино, возникла в 1998 г. . В настоящее время имеется два нейтринных детектора большого объёма, использующих жидкий сцинтиллятор и пригодные для решения поставленной задачи. Это нейтринные детекторы экспериментов KamLAND (Япония, ) и Borexino (Италия, ). Ниже рассматривается устройство детектора Borexino и полученные на этом детекторе результаты по регистрации гео-нейтрино.

Детектор Borexino и регистрация гео-нейтрино

Нейтринный детектор Борексино расположен в центральной Италии в подземной лаборатории под горным массивом Гран Сассо, высота горных пиков которого достигает 2.9 км (рис. 2).


Рис. 2. Схема расположения нейтринной лаборатории под горным массивом Гран Сассо (центральная Италия)

Борексино это несегментированный массивный детектор, активной средой которого являются
280 тонн органического жидкого сцинтиллятора. Им заполнен нейлоновый сферический сосуд диаметром 8.5 м (рис. 3). Сцинтиллятором является псевдокумол (С 9 Н 12) со сдвигающей спектр добавкой РРО (1.5 г/л). Свет от сцинтиллятора собирается 2212 восьмидюймовыми фотоумножителями (ФЭУ), размещёнными на сфере из нержавеющей стали (СНС).


Рис. 3. Схема устройства детектора Борексино

Нейлоновый сосуд с псевдокумолом является внутренним детектором, в задачу которого и входит регистрация нейтрино (антинейтрино). Внутренний детектор окружён двумя концентрическими буферными зонами, защищающими его от внешних гамма-квантов и нейтронов. Внутренняя зона заполнена несцинтиллирующей средой, состоящей из 900 тонн псевдокумола с добавками диметилфталата, гасящими сцинтилляции. Внешняя зона располагается поверх СНС и является водным черенковским детектором, содержащим 2000 тонн сверхчистой воды и отсекающим сигналы от мюонов, попадающих в установку извне. Для каждого взаимодействия, происходящего во внутреннем детекторе, определяется энергия и время. Калибровка детектора с использованием различных радиоактивных источников позволила весьма точно определить его энергетическую шкалу и степень воспроизводимости светового сигнала.
Борексино является детектором очень высокой радиационной чистоты. Все материалы прошли строгий отбор, а сцинтиллятор был подвергнут очистке для максимального уменьшения внутреннего фона. Вследствие высокой радиационной чистоты Борексино является прекрасным детектором для регистрации антинейтрино.
В реакции (1) позитрон даёт мгновенный сигнал, за которым через некоторое время следует захват нейтрона ядром водорода, что приводит к появлению γ-кванта с энергией 2.22 МэВ, создающего сигнал, задержанный относительно первого. В Борексино время захвата нейтрона около 260 мкс. Мгновенный и задержанный сигналы коррелируют в пространстве и во времени, обеспечивая точное распознавание события, вызванного e .
Порог реакции (1) равен 1.806 МэВ и, как видно из рис. 1, все гео-нейтрино от распадов 40 K и 235 U оказываются ниже этого порога и лишь часть гео-нейтрино, возникших в распадах 232 Th и 238 U, может быть зарегистрирована.
Детектор Борексино впервые зарегистрировал сигналы от гео-нейтрино в 2010 г. и недавно опубликованы новые результаты, основанные на наблюдениях в течение 2056 дней в период с декабря 2007 г. по март 2015 г. Ниже мы приведём полученные данные и результаты их обсуждения, основываясь на статье .
В результате анализа экспериментальных данных были идентифицированы 77 кандидатов в электронные антинейтрино, прошедшие все критерии отбора. Фон от событий, имитирующих e , оценивался величиной . Таким образом, отношение сигнал/фон было ≈100.
Главным источником фона были реакторные антинейтрино. Для Борексино ситуация была достаточно благоприятной, так как вблизи лаборатории Гран Сассо нет ядерных реакторов. Кроме того, реакторные антинейтрино более энергичные по сравнению с гео-нейтрино, что позволяло отделить эти антинейтрино по величине сигнала от позитрона. Результаты анализа вкладов гео-нейтрино и реакторных антинейтрино в полное число зарегистрированных событий от e показаны на рис. 4. Количество зарегистрированных гео-нейтрино, даваемое этим анализом (на рис. 4 им соответствует затемнённая область), равно . В извлечённом в результате анализа спектре гео-нейтрино видны две группы – менее энергичная, более интенсивная и более энергичная, менее интенсивная. Эти группы авторы описываемого исследования связывают с распадами соответственно тория и урана.
В обсуждаемом анализе использовалось отношение масс тория и урана в веществе Земли
m(Th)/m(U) = 3.9 (в таблице эта величина ≈3.8). Указанная цифра отражает относительное содержание этих химических элементов в хондритах – наиболее распространённой группе метеоритов (более 90% метеоритов, упавших на Землю, относятся к этой группе). Считается, что состав хондритов за исключением лёгких газов (водород и гелий) повторяет состав Солнечной системы и протопланетного диска, из которого образовалась Земля.


Рис. 4. Спектр светового выхода от позитронов в единицах числа фотоэлектронов для событий-кандидатов в антинейтрино (экспериментальные точки). Затемнённая область – вклад гео-нейтрино. Сплошная линия – вклад реакторных антинейтрино.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...