Оборудование для лазерной обработки при производстве печатных плат. Лазерный луч в роли сверла


Промышленная обработка материалов стала одной из областей наиболее широкого использования лазеров. До появления лазеров основными тепловыми источниками для технологической обработки являлись газовая горелка, электродуговой разряд, плазменная дуга и электронный поток. С появлением лазеров, излучающих большую энергию, оказалось возможным создавать на обрабатываемой поверхности высокие плотности светового потока. Роль лазеров как световых источников, работающих в непрерывном, импульсном режимах или в режиме гигантских импульсов, состоит в обеспечении на поверхности обрабатываемого материала плотности мощности, достаточной для его нагревания, плавления или испарения, которые лежат в основе лазерной технологии.
В настоящее время лазер успешно выполняет целый ряд технологических операций и, прежде всего таких, как резка, сварка, сверление отверстий, термическая обработка поверхности, скрайбирование, маркировка, гравировка и т. п., а в ряде случаев обеспечивает преимущества по сравнению с другими видами обработки. Так, сверление отверстий в материале может быть выполнено быстрее, а скрайбирование разнородных материалов является более совершенным. Кроме того, некоторые виды операций, которые раньше выполнить было невозможно из-за трудной доступности, выполняются с большим успехом. Например, сварка материалов и сверление отверстий могут выполняться через стекло в вакууме или атмосфере различных газов.
Слово «лазер» составлено из начальных букв в английском словосочетании Light Amplification by Stimulated Emi ion of Radiation, что в переводе на русский язык означает: усиление света посредством вынужденного испускания. Классически так сложилось, что при описании лазерных технологий обработки материалов основное внимание уделяется только непосредственно лазерам, принципам их работы и техническим параметрам. Однако, для того чтобы реализовать любой процесс лазерной размерной обработки материалов, кроме лазера необходимы ещё система фокусировки луча, устройство управления движением луча по поверхности обрабатываемого изделия или устройство перемещения изделия относительно луча, система поддува газов, оптические системы наведения и позиционирования, программное обеспечение управления процессами лазерной резки, гравировки и т.д. В большинстве случаев выбор параметров устройств и систем, обслуживающих непосредственно лазер является не менее важным, чем параметры самого лазера. Например, для маркировки подшипников диаметром менее 10 мм, или прецизионной точечной лазерной сварки время, затрачиваемое на позиционирование изделия и фокусировку, превышает время гравировки или сварки на один-два порядка (время нанесения маркировочной надписи на подшипник приблизительно 0,5 с). Поэтому без использования автоматических систем позиционирования и фокусировки использование лазерных комплексов во многих случаях становятся экономически нецелесообразными. Аналогия лазерных систем с автомобилями показывает, что лазер выполняет функции двигателя. Каким бы хорошим двигатель не был, но без колёс и всего остального автомобиль не поедет.
Ещё одним немаловажным фактором в выборе лазерных технологических систем является простота их обслуживания. Как показала практика, операторы имеют невысокую квалификацию обслуживания подобного оборудования. Одной из причин этого является то, что лазерные комплексы устанавливают в большинстве случаев на замену устаревшим технологическим процессам (ударная и химическая маркировки изделий, механическая гравировка, ручная сварка, ручная разметка и т.п.). Руководители предприятий, которые проводят модернизацию своего производства, как правило, из этических соображений, заменяя старое оборудование новым, оставляют старый (в прямом и переносном смыслах) обслуживающий персонал. Поэтому, для внедрения лазерных технологических систем в производство при данных начальных условиях его развития (в постсоветских республиках) необходимо предусматривать максимально возможный уровень автоматизации и простоты обучения. Не следует отбрасывать и тот факт, что зарплата неквалифицированного персонала ниже, чем подготовленного специалиста. Поэтому экономически выгодней покупать сложное оборудование с возможностью простоты в его обслуживании, чем приглашать высококвалифицированный персонал.
Таким образом, задачу использования лазерных технологий в современном производстве следует рассматривать не только с точки зрения технических параметров непосредственно лазера, но и с учётом характеристик оборудования, программного обеспечения которые позволяют использовать специфические свойства лазера для решения отдельно взятой технологической задачи.
Любая лазерная система, предназначенная для размерной обработки материалов,
характеризуется следующими параметрами:
— скоростью обработки (реза, гравировки и т.п.);
— разрешающей способностью;
— точностью обработки;
— размером рабочего поля;
— диапазоном материалов обработки (чёрные металлы, цветные металлы, дерево, пластмасса и т.д.);
— диапазоном размеров и массы изделий, предназначенных для обработки;
— конфигурацией изделий (например, гравировка на плоской, цилиндрической, волнообразной поверхностях);
— необходимым временем изменения выполняемых задач (смена рисунка гравировки, конфигурации — линии реза, изменение материала обработки и т.п.);
— временем установки и позиционирования изделия;
— параметрами условий окружающей среды (диапазон температур, влажность, запылённость) в ——которых может эксплуатироваться система;
— требованиями к квалификации обслуживающего персонала.
Исходя из этих параметров, выбирается тип лазера, устройство развертки луча, разрабатывается конструкция крепежа изделия, уровень автоматизации системы в целом, решается вопрос о необходимости написания специализированных программ для подготовки файлов рисунков, линий реза и т.д.
Основными техническими характеристиками, определяющей характер обработки, играют энергетические параметры лазера — энергия, мощность, плотность энергии, длительность импульса, пространственная и временная структура излучения, пространственное распределение плотности мощности излучения в пятне фокусировки, условия фокусировки, физические свойства материала (отражательная способность, теплофизические свойства, температура плавления и т. д.). Рассмотрим основные типы лазеров и характеристики их излучения. В качестве активных сред лазеров используются твердые тела, жидкости и газы. В лазерах на твердых телах активными средами являются кристаллические или аморфные вещества с примесями некоторых элементов. Известно большое количество твердых веществ, пригодных для использования в лазерах, однако в практике обработки материалов широко используются только некоторые: Аl2O3 с примесью окиси хрома (рубин); стекло, иттрийалюминиевый гранат Y3Al5O12 и вольфрамат кальция CaWO4, активированные неодимом. Указанные активные среды позволяют, по сравнению с другими материалами, создавать лазеры с большой выходной энергией и высоким к.п.д. По принципу действия к твердотельным лазерам близки жидкостные лазеры, у которых в качестве активной среды используются жидкие диэлектрики с растворенными примесями.
Энергия импульса излучения твердотельных и жидкостных лазеров (в режиме свободной генерации) изменяется от десятых долей Джоуля до 103 Дж и выше, а в режиме модулированной добротности до нескольких десятков и сотен Джоулей. Мощность излучения импульсных лазеров в зависимости от режима работы может изменяться от сотен киловатт (свободная генерация) до Гиговатт (модулированная добротность). При пичковом режиме работы (неупорядоченная генерация) различие между среднеинтегральной за импульс мощностью и мощностью отдельного пичка может достигать двух порядков. Указанная разница несколько меньше для импульса с упорядоченной структурой (регулярный импульс). Среднеинтегральная мощность незначительно отличается от мощности в любой момент времени для квазистационарного импульса излучения. Поэтому квазистационарный режим генерации представляет практический интерес для процессов сварки и обработки материалов как режим, с помощью которого можно осуществить «мягкий» нагрев. Использование этого режима уменьшает вынос материала из зоны воздействия.
Предельное значение к.п.д. лазеров обусловливается преимущественно внутренними потерями в кристалле активной среды и эффективностью использования энергии накачки. Так, для лазеров на рубине величина реального к.п.д. не превышает 1%, а для лазеров на стекле с неодимом — 2%.
Другой разновидностью являются газовые лазеры , активной средой которых служит газ, смесь нескольких газов или смесь газа с парами металла. К газовым относятся и химические лазеры , так как для них применяются газообразные активные среды. В химическом лазере возбуждение активной среды обеспечивается быстропротекающими химическими реакциями. В качестве активных частиц в газовых лазерах используются нейтральные атомы, ионы и молекулы газов. Лазеры на нейтральных атомах позволяют генерировать излучение с длиной волны преимущественно в инфракрасной части спектра и некоторые — в красной области видимого спектра.
Ионные газовые лазеры дают излучение в основном видимое и ультрафиолетовое. Молекулярные газовые лазеры генерируют излучение с длиной волны 10-100 мкм (инфракрасный и субмиллиметровый диапазоны). Мощность лазеров на нейтральных атомах, например гелийнеонового в непрерывном режиме, не превышает 50 мВт, ионных (аргоновый) — достигает 500 Вт, а молекулярные являются наиболее мощными. Так, лазеры на углекислом газе дают в непрерывном режиме выходную мощность в несколько десятков киловатт. К.п.д. лазеров на нейтральных атомах и ионах практически не превышает 0,1%, молекулярные имеют значительно больший к.п.д., достигающий 20%.
Наиболее перспективными для использования во многих технологических процессах являются волоконные лазеры . В настоящее время на рынке представлены одномодовые волоконные лазеры со средней выходной мощностью до 2 кВт, маломодовые до 10 кВт и многомодовые системы с выходной мощностью до 50 кВт. Наибольшие уровни мощности достигнуты в лазерах на YЬ-активированном волокне, генерирующих излучение с длиной волны 1,07 мкм, которое поглощается в металлах лучше, чем излучение с длиной волны 10,6 мкм. Кроме того, в 10 раз меньшая длина волны позволяет получить меньшую расходимость излучения, а значит, лучше его сфокусировать. Этим объясняется тот факт, что даже относительно маломощные 100-ваттные одномодовые лазеры обеспечивают резку стали толщиной 1,5 мм со скоростью до 4 м/мин. Технические характеристики волоконных лазеров позволяют реализовать режим дистанционной сварки, существенно упрощающий встраивание лазерного оборудования в современные роботизированные производственные линии, и резко увеличивает скорость сварки.
Но не только в мощности и расходимости пучков дело. Еще один параметр, который резко выделяет волоконные лазеры , — высокая энергетическая эффективность. Накачка активированного волокна осуществляется лазерными диодами, к.п.д. которых превышает 60%, благодаря чему полный (или «от розетки») к.п.д. волоконных лазеров составляет 28-30% (во много раз выше, чем у лучших промышленных лазеров на С02, а также твердотельных лазеров с полупроводниковой и ламповой накачкой). Благодаря этому их эксплуатационные расходы на энергопотребление и охлаждение оказываются в 5-8 раз меньше, чем у лазеров на СО2, и примерно в 20-50 раз меньше, чем у твердотельных лазеров с ламповой накачкой. Последний факт, а также отсутствие в волоконных лазерах юстируемых узлов, выполнение их в виде интегральных волоконных устройств, обеспечивают высокую надежность систем в целом. Конструктивно и с точки зрения эксплуатации волоконные лазеры ближе к чисто электронному оборудованию, чем к промышленным лазерам других типов. К этому следует добавить, что они практически не требуют регламентного обслуживания.
Хорошей интегрируемости волоконных лазеров в современное технологическое оборудование способствует и то, что их выходное излучение прекрасно транспортируется без потери мощности и пространственных характеристик по тонким кварцевым волокнам, защищенным от механических воздействий гибкими металлорукавами диаметром 8…15 мм. Длина подобных волоконных кабелей достигает 200 м и при необходимости может быть увеличена.
Ниже рассмотрены специализированные задачи, решаемые лазерными технологическими системами. Акцент смещён на характеристиках лазеров, предназначенных для решения этих задач.
Лазерная резка металлов
Применение лазеров для резки металлов, так же как и неметаллов, обусловлено следующими преимуществами по сравнению с традиционными методами: обширным классом разрезаемых материалов; возможностью получения тонких разрезов благодаря острой фокусировке лазерного луча; малой зоной термического влияния излучения; минимальным механическим воздействием, оказываемым на материал; возможностью быстрого включения и выключения устройства с высокой точностью; химической чистотой процесса резки; возможностью автоматизации процесса и получения высокой производительности метода; возможностью резки по сложному профилю в двух и даже трех измерениях.
Лазерная резка, как и другие виды лазерной обработки, основана на тепловом действии излучения и происходит при движущемся источнике тепла, который может перемещаться в двух взаимно перпендикулярных направлениях с помощью специальной оптической системы, позволяющей сформировать пятно с большой плотностью и подвести его в необходимую точку обрабатываемого образца.
Резка относительно толстых металлических листов производится, как правило, с поддувом активного газа (кислорода) в зону резания. Сущность этого процесса, получившего название газолазерной резки (ГЛР), состоит в том, что излучение лазера фокусируется оптической системой на поверхности обрабатываемого материала и с помощью специального устройства соосно с лучом подаётся кислород. При лазерной резке металлов кислород выполняет следующие функции:
поддерживает горение металла;
удаляет продукты разрушения и очищает зону резания путём выдувания газообразных продуктов и капельной фракции;
интенсивно охлаждает прилегающие к зоне резания участки материала.
Наличие струи кислорода при резке металлов позволяет существенно увеличить глубину, скорость резания и получить качественные кромки. Небольшая доля падающего излучения поглощается поверхностным слоем металла и приводит к его нагреванию. Образующаяся пленка окислов увеличивает долю поглощаемой энергии, и температура металлов возрастает до точки плавления. Жидкий металл и окислы выдуваются струей кислорода из зоны резки, облегчая тем самым окисление расположенных ниже слоев. Это продолжается до тех пор, пока лист металла не будет прорезан на полную глубину. Малое энерговложение и высокая концентрация энергии позволяют получить параллельные кромки при малой ширине реза (0,1—0,5 мм) и незначительной зоне термического влияния.
Скорость резания толстых листов растет с увеличением мощности лазера и зависит от толщины листа и теплопроводности металла. При мощности лазера около 400-600 Вт можно резать черные металлы и титан со скоростью порядка нескольких метров в минуту, в то время как резка металлов с высокой теплопроводностью (медь, алюминий) представляет определенную трудность. В литературе имеется достаточное количество информации о существенном влиянии энергии химической реакции на скорость резки и чистоту кромок, однако сложность процесса не позволяет произвести какие-либо количественные оценки, тем более что неизвестны состав конечных продуктов окисления, доля капельной фракции металла, выдуваемого струей газа, и скрытая теплота фазовых переходов (плавление, испарение). В таблице 1 показаны средние значения скорости реза различных металлов.
Таблица 1.

Для газолазерной резки, как правило, используются мощные СО2 и твердотельные лазеры. Современные СО2-лазеры с медленной прокачкой газа вдоль газоразрядной трубы имеют сравнительно большие длины, так как их удельная мощность не превышает 50-100 Вт/м. Широко распространены СО2-лазеры, выполненные в виде «свернутой» конструкции из двух, четырех или шести труб с габаритной длиной примерно 3-6 м и к.п.д. около 10%. Относительно недавно разработаны СО2-лазеры с быстрой поперечной прокачкой газа, циркулирующего в замкнутом объеме. При сравнительно небольших габаритах на них удается получить уровни мощности 6-10 кВт в непрерывном режиме генерации.
Газолазерную резку часто сравнивают с микроплазменной, которая позволяет производить разрез более толстых листов металла и с большей скоростью. Однако следует отметить, что ГЛР обеспечивает лучшую локальность и большую плотность подводимой энергии, вследствие чего уменьшается зона термического влияния.
Механическая резка титана вследствие высокой его вязкости является затруднительной, а плазменная дает большую зону термического влияния и газонасыщение кромок. Применение ГЛР приводит к сокращению затрат на обработку на 75%. При ГЛР важным моментом в определении скорости резания является правильно выбранная скорость истечения из сопла газовой струи, которая определяется давлением газа в резаке.
Эффективность процесса ГЛР алюминия сильно зависит от состояния поверхности. Резка листов с гладкой необработанной поверхностью существенно усложняется, в то время как пескоструйная обработка поверхности позволяет осуществлять ГЛР, но качество реза при этом невысокое (он представляет собой регулярную последовательность отверстий). Оксидирование, пассивирование, анодирование и азотирование поверхности гладкого листа не обеспечивали достаточных условий для ГЛР. Имеются трудности при резке и таких материалов, как медь, латунь. Дело в том, что данные металлы имеют высокий коэффициент отражения лазерного излучения, как в холодном, так и в нагретом состоянии и высокую теплопроводность. Образующиеся на них окисные пленки имеют малую толщину и неэффективно поглощают лазерное излучение.
Лазерное сверление отверстий в металлах
Использование лазера в качестве сверлящего инструмента дает преимущества.
Отсутствует механический контакт между сверлящим инструментом и материалом, а также поломка и износ сверл.
Увеличивается точность размещения отверстия, так как оптика, используемая для фокусировки лазерного луча, используется также и для наводки его в необходимую точку. Отверстия могут быть ориентированы в любом направлении.
Достигается большее отношение глубины к диаметру сверления, чем это имеет место при других способах сверления.
При сверлении, так же как и при резании, свойства обрабатываемого материала существенно влияют на параметры лазера, необходимые для выполнения операции. Сверление осуществляют импульсными лазерами, работающими как в режиме свободной генерации с длительностью импульсов порядка 1 мкс, так и в режиме с модулированной добротностью с длительностью в несколько десятков наносекунд. В обоих случаях происходит тепловое воздействие на материал, его плавление и испарение. В глубину отверстие растет в основном за счёт испарения, а по диаметру за счет плавления стенок и вытекания жидкости при создаваемом избыточном давлении паров.
Как правило, глубокие отверстия желаемого диаметра получаются при использовании повторяющихся лазерных импульсов малой энергии. В этом случае образуются отверстия с меньшей конусностью и лучшего качества, нежели отверстия, полученные с более высокой энергией одиночного импульса. Исключение составляют материалы, содержащие элементы, способные создавать высокое давление паров. Так, латунь сваривать очень трудно лазерным импульсным излучением из-за высокого содержания цинка, однако при сверлении латунь имеет некоторые преимущества, так как атомы цинка значительно улучшают механизм испарения.
Поскольку многоимпульсный режим позволяет получать отверстия лучшего качества нужной геометрии и с небольшим отклонением от заданных размеров, то на практике этот режим получил распространение при сверлении отверстий тонких металлов и неметаллических материалов. Однако при сверлении отверстий в толстых материалах предпочтительными являются одиночные импульсы большой энергии. Диафрагмирование лазерного потока позволяет получить фигурные отверстия, однако этот способ чаще используется при обработке тонких пленок и неметаллических материалов. В том случае, когда лазерное сверление производится в тонких листах толщиной меньше 0,5 мм, имеет место некоторая унификация процесса, состоящая в том, что отверстия диаметром от 0,001 до 0,2 мм могут быть изготовлены во всех металлах при относительно низких мощностях.
Высверливание отверстий в металлах может быть использовано в ряде случаев. Так, с помощью импульсных лазеров может быть произведена динамическая балансировка деталей, вращающихся с высокой скоростью. Дисбаланс выбирается путем локального выплавления определенного объема материала. Лазер может быть использован также для подгонки электронных элементов либо локальным испарением материала, либо за счет общего разогрева. Высокая плотность мощности, малый размер пятна и малая длительность импульса делают лазер идеальным инструментом для этих целей.
Лазеры, применяемые для сверления отверстий в металле, должны обеспечить в фокусированном луче плотность мощности порядка 107 - 108 Вт/см2. Сверление отверстий металлическими сверлами диаметром меньше 0,25 мм является трудной практической задачей, в то время как лазерное сверление позволяет получать отверстия диаметром, соизмеримым с длиной волны излучения, с достаточно высокой точностью размещения. Специалистами фирмы «Дженерал Электрик» (США) подсчитано, что лазерное сверление отверстий по сравнению с электроннолучевой обработкой имеет высокую экономическую конкурентоспособность. В настоящее время для сверления отверстий используются в основном твердотельные лазеры. Они обеспечивают частоту следования импульсов до 1000 Гц и мощность в непрерывном режиме от 1 до 103 Вт, в импульсном — до сотен киловатт, а в режиме с модуляцией добротности — до нескольких мегаватт. Некоторые результаты обработки такими лазерами приведены в табл. 3.
Таблица 3.
Металл Толщина, мм Диаметр отверстия, мм Продолжительность
сверления
Энергия лазера,
Дж
входного выходного
Нержавеющая сталь 0,65
0,9
1,78
0,25
0,5
0,3
0,15
0,25
0,22
10 импульсов
2,35
0,8
0,15
0,25
16,0
Никелевая сталь 0,5 0,2 0,15 2,0 3,3
Вольфрам 0,5
1,6
0,2
0,35
0,2
0,2
2,1
1,8
4,0
2,1
Магний 1,6
0,5
0,4
0,25
0,3
0,2
2,0
2,0
3,3
3,3
Молибден 0,5
0,8
0,25
0,2
0,25
0,2
2,35
2,25
5,9
4,9
Медь 1,6 0,3 0,15 2,35 5,9
Тантал 1,6 0,3 0,1 2,42 8,0
Лазерная сварка металлов
Лазерная сварка в своем развитии имела два этапа. Первоначально получила развитие точечная сварка. Это объяснялось наличием в то время мощных импульсных твердотельных лазеров. В настоящее время при наличии мощных газовых СО2-и твердотельных Nd: YAG-лазеров, обеспечивающих непрерывное и импульсно-непрерывное излучение, возможна шовная сварка с глубиной проплавления до нескольких миллиметров. Лазерная сварка имеет ряд преимуществ по сравнению с другими видами сварки. При наличии высокой плотности светового потока и оптической системы возможно локальное проплавление в заданной точке с большой точностью. Это обстоятельство позволяет производить сваривание материалов в труднодоступных участках, в вакуумной или газонаполненной камере при наличии в ней окон, прозрачных для лазерного излучения. Сваривание, например, элементов микроэлектроники в камере с атмосферой инертного газа представляет особый практический интерес, поскольку в этом случае отсутствуют реакции окисления.
Сваривание деталей происходит при значительно меньших плотностях мощности, чем резка. Это объясняется тем, что при сварке необходимы только разогрев и плавление материала, т. е. необходимы плотности мощности, еще недостаточные для интенсивного испарения (105—106 Вт/см2), при длительности импульса около 10-3-10-4 с. Поскольку излучение лазера, сфокусированное на обрабатываемом материале, является поверхностным тепловым источником, то передача тепла в глубину свариваемых деталей осуществляется за счет теплопроводности и зона проплавления с течением времени при правильно подобранном режиме сварки изменяется. В случае недостаточных плотностей мощности имеет место непроплавление свариваемой зоны, а при наличии больших плотностей мощности наблюдаются испарение металла и образование лунок.
Сварку можно производить на установке для газолазерной резки при меньших мощностях и использовании слабого поддува инертного газа в зону сварки. При мощности СО2-лазера около 200 Вт удается сваривать сталь толщиной до 0,8 мм со скоростью 0,12 м/мин; качество шва получается не хуже, чем при электроннолучевой обработке. Электроннолучевая сварка имеет несколько большие скорости сваривания, но зато проводится в вакуумной камере, что создает большие неудобства и требует значительных общих временных затрат.
В табл. 4 приведены данные по стыковой сварке СО2-лазером, мощностью 250 Вт различных материалов.
Таблица 4. При других мощностях излучения СО2-лазера получены данные шовной сварки, приведенные в табл. 5. При сварке внахлест, торцовой и угловой были получены скорости, близкие к указанным в таблице, при полном проплавлении свариваемого материала в зоне воздействия луча.
Таблица 5. Лазерные сварочные системы способны сваривать разнородные металлы, производить минимальное тепловое воздействие за счет малого размера лазерного пятна, а также сваривать тонкие проволочки диаметром менее 20 мкм по схеме провод-провод или провод-лист.
Резка неметаллических материалов
Лазерный луч с большим успехом применяется для резки неметаллических материалов, таких, как пластмасса, стеклопластики, композиционные материалы на основе бора и углерода, керамика, резина, дерево, асбест, текстильные материалы и т. д. Данный ассортимент материалов, как правило, обладает меньшей температуропроводностью, чем металлы, и поэтому удельное энерговложение для процесса резки значительно меньше. Поэтому пороговая плотность потока, необходимая для начала резки неметаллов, слабо зависит от толщины листа.
Для резки неметаллических материалов, так же как и металлов, используют преимущественно ИАГ- и СО2-лазеры непрерывного излучения. Чтобы повысить эффективность резки, применяют поддув в зону резания активного или нейтрального газа, который выдувает испаренные капельные фракции и производит охлаждение обрабатываемого локального участка, позволяя резать материалы с малым их обугливанием и оплавлением.
В процессе ГЛР диэлектриков решающую роль в их разрушении играет выдувание из зоны резания мелкодисперсной и капельной фракции, образующихся при тепловом воздействии лазерного излучения. Исключение составляют материалы на основе фенолформальдегидных смол: текстолит, стеклотекстолит и др. Данный вид материалов под действием лазерного излучения превращается в вязкую спекшуюся массу, которую трудно удалить из реза с помощью газовой струи: требуются большие энергозатраты на испарение продуктов разрушения.
Газолазерная резка позволяет получать чистый разрез диэлектриков с хорошими качествами кромки реза. При этом со стороны входа луча кромка имеет лучшее качество, а со стороны выхода наблюдается некоторое оплавление. Резка материала органического происхождения большой толщины отличается интересной особенностью; ширина реза на выходе значительно меньше, чем можно было бы ожидать исходя из геометрической расходимости луча, формируемого фокусирующей оптикой.
При наличии достаточной мощности излучения лазера можно выполнить процесс ГЛР стекла и кварца. При этом качество резки высокое, но со стороны выхода и входа луча кромки слегка оплавлены.
Большие перспективы открываются при использовании ГЛР для раскроя текстиля. Имеющиеся результаты экспериментального исследования резки как отдельных слоев, так и многослойных настилов показывают, что в каждом конкретном случае существуют режимы работы лазеров и скорости перемещения обрабатываемого материала, при которых разрез получается высокого качества без обгорания.
В табл. 6 приведены результаты резания некоторых диэлектрических материалов СО2-лазером.
Таблица 6. Сверление неметаллических материалов
Сверление отверстий является одним из первых направлений лазерной технологии. Вначале, прожигая отверстия в различных материалах, экспериментаторы с их помощью оценивали энергию излучения лазерных импульсов. В настоящее время процесс лазерного сверления становится самостоятельным направлением лазерной технологии. К материалам, подлежащим сверлению при помощи луча лазера, относятся такие неметаллы, как алмазы, рубиновые камни, ферриты, керамика и др., сверление отверстий в которых обычными методами представляет определенную трудность или является малоэффективным. При помощи лазерного луча можно сверлить отверстия разного диаметра. Для этой операции используют следующие два метода. При первом методе лазерный луч перемещается по заданному контуру, и форма отверстия определяется траекторией его относительного перемещения. Здесь имеет место процесс резки, при котором тепловой источник перемещается с определенной скоростью в заданном направлении: при этом, как правило, применяются лазеры непрерывного излучения, а также импульсные, работающие с повышенной частотой следования импульсов.
При втором методе, получившем название проекционного, обрабатываемое отверстие повторяет форму лазерного луча, которому с помощью оптической системы можно придать любое сечение. Проекционный метод сверления отверстий имеет некоторые преимущества по сравнению с первым. Так, если на пути луча поставить диафрагму (маску), то таким образом можно срезать периферийную его часть и получить относительно равномерное распределение интенсивности по сечению луча. Благодаря этому граница облучаемой зоны оказывается более резкой, конусность отверстия при этом уменьшается, а качество улучшается.
Существует ряд приемов позволяющих дополнительно выбрать из обрабатываемого отверстия часть расплавленного материала. Один из них — создание избыточного давления сжатым воздухом или другими газами, которые подаются в зону сверления с помощью сопла, соосного с лазерным излучением. Этот способ использовался для сверления отверстий диаметром 0,05—0,5 мм в керамических пластинках толщиной до 2,5 мм при использовании СО2-лазера, работающего в непрерывном режиме.
Сверление отверстий в твердой керамике является непростой задачей: при обычном способе требуется наличие алмазного инструмента, а при других существующих методах трудности связаны с размером отверстия в диаметре, равным десятым долям миллиметра. Эти трудности особенно ощутимы, когда толщина обрабатываемой пластины больше, чем диаметр отверстия. Отношение глубины отверстия (толщины материала) к его диаметру является мерой качества получения тонких отверстий; оно составляет 2:1 при обычном сверлении и около 4:1 при ультразвуковом методе, используемом при сверлении керамики и других тугоплавких материалов.
Лазерный метод сверления данного класса материалов позволяет получить лучшее отношение при очень высокой точности размещения отверстий и относительно меньших временных затратах. Так, при лазерном сверлении высокоплотной поликристаллической глиноземной керамике использовался рубиновый лазер с энергией в импульсе 1,4 Дж, сфокусированной линзой с фокусным расстоянием 25 мм на поверхности диска и обеспечивающей плотность мощности около 4-106 Вт/см2. В среднем 40 импульсов при частоте следования 1 Гц понадобилось, чтобы просверлить керамический диск толщиной в 3,2 мм. Длительность лазерного импульса была 0,5 мс. Полученные отверстия имели конусность с диаметром на входе около 0,5 мм, а на выходе 0,1 мм. Видно, что отношение глубины к среднему диаметру отверстия составляет около 11:1, что значительно больше аналогичного отношения при других способах сверления отверстий. Для простых материалов это отношение при лазерном сверлении может составлять 50:1.
Для удаления продуктов сгорания и жидкой фазы из зоны сверления используется поддув воздухом или другими газами. Более эффективное выдувание продуктов происходит при сочетании поддува с передней стороны и разряжения с обратной стороны образца. Аналогичная схема использовалась для сверления отверстий в керамике толщиной до 5 мм. Однако эффективное удаление жидкой фазы в этом случае происходит только лишь после образования сквозного отверстия.
В табл. 7 приведены параметры отверстий в некоторых неметаллических материалах и режимы их обработки.
Таблица 7.
Материал Параметры отверстия Режим обработки
Диаметр, мм Глубина, мм Отношение глубины к диаметру Энергия, Дж Длительность импульса
x10-4, с
Плотность потока, Вт/см2 Количество импульсов на

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное Государственное бюджетное образовательное учреждение Высшего образования

Владимирский государственный университет имени А.Г и Н.Г Столетовых

Кафедра ФиПМ

Реферат

на тему “Лазерное сверление отверстий”

Выполнил cтудент группы ЛТ - 115

Гордеева Екатерина

Владимир 2016

Введение

1. Лазерный луч в роле сверла

2. Лазерное сверление отверстий в металлах

3. Сверление не металлических материалов

4. Лазерное сверление отверстий в твердых поверхностях

5. Лазерное сверление отличающихся повышенной хрупкостью

Заключение

Список литературы

Введение

лазерный луч сверление отверстие

В настоящее время лазер успешно выполняет целый ряд технологических операций и, прежде всего таких, как резка, сварка, сверление отверстий, термическая обработка поверхности, скрайбирование, маркировка, гравировка и т. п., а в ряде случаев обеспечивает преимущества по сравнению с другими видами обработки. Так, сверление отверстий в материале может быть выполнено быстрее, а скрайбирование разнородных материалов является более совершенным. Кроме того, некоторые виды операций, которые раньше выполнить было невозможно из-за трудной доступности, выполняются с большим успехом. Например, сварка материалов и сверление отверстий могут выполняться через стекло в вакууме или атмосфере различных газов.

Слово «лазер» составлено из начальных букв в английском словосочетании Light Amplification by Stimulated Emission of Radiation, что в переводе на русский язык означает: усиление света посредством вынужденного испускания. Классически так сложилось, что при описании лазерных технологий обработки материалов основное внимание уделяется только непосредственно лазерам, принципам их работы и техническим параметрам. Однако, для того чтобы реализовать любой процесс лазерной размерной обработки материалов, кроме лазера необходимы ещё система фокусировки луча, устройство управления движением луча по поверхности обрабатываемого изделия или устройство перемещения изделия относительно луча, система поддува газов, оптические системы наведения и позиционирования, программное обеспечение управления процессами лазерной резки, гравировки и т.д. В большинстве случаев выбор параметров устройств и систем, обслуживающих непосредственно лазер является не менее важным, чем параметры самого лазера. Например, для маркировки подшипников диаметром менее 10 мм, или прецизионной точечной лазерной сварки время, затрачиваемое на позиционирование изделия и фокусировку, превышает время гравировки или сварки на один-два порядка (время нанесения маркировочной надписи на подшипник приблизительно 0,5 с). Поэтому без использования автоматических систем позиционирования и фокусировки использование лазерных комплексов во многих случаях становятся экономически нецелесообразными. Аналогия лазерных систем с автомобилями показывает, что лазер выполняет функции двигателя. Каким бы хорошим двигатель не был, но без колёс и всего остального автомобиль не поедет.

Ещё одним немаловажным фактором в выборе лазерных технологических систем является простота их обслуживания. Как показала практика, операторы имеют невысокую квалификацию обслуживания подобного оборудования. Одной из причин этого является то, что лазерные комплексы устанавливают в большинстве случаев на замену устаревшим технологическим процессам (ударная и химическая маркировки изделий, механическая гравировка, ручная сварка, ручная разметка и т.п.). Руководители предприятий, которые проводят модернизацию своего производства, как правило, из этических соображений, заменяя старое оборудование новым, оставляют старый (в прямом и переносном смыслах) обслуживающий персонал. Поэтому, для внедрения лазерных технологических систем в производство при данных начальных условиях его развития (в постсоветских республиках) необходимо предусматривать максимально возможный уровень автоматизации и простоты обучения. Не следует отбрасывать и тот факт, что зарплата неквалифицированного персонала ниже, чем подготовленного специалиста. Поэтому экономически выгодней покупать сложное оборудование с возможностью простоты в его обслуживании, чем приглашать высококвалифицированный персонал.

Таким образом, задачу использования лазерных технологий в современном производстве следует рассматривать не только с точки зрения технических параметров непосредственно лазера, но и с учётом характеристик оборудования, программного обеспечения которые позволяют использовать специфические свойства лазера для решения отдельно взятой технологической задачи.

Любая лазерная система, предназначенная для размерной обработки материалов, характеризуется следующими параметрами:

Скоростью обработки (реза, гравировки и т.п.);

Разрешающей способностью;

Точностью обработки;

Размером рабочего поля;

Диапазоном материалов обработки (чёрные металлы, цветные металлы, дерево, пластмасса и т.д.);

Диапазоном размеров и массы изделий, предназначенных для обработки;

Конфигурацией изделий (например, гравировка на плоской, цилиндрической, волнообразной поверхностях);

Необходимым временем изменения выполняемых задач (смена рисунка гравировки, конфигурации -- линии реза, изменение материала обработки и т.п.);

Временем установки и позиционирования изделия;

Параметрами условий окружающей среды (диапазон температур, влажность, запылённость) в ----которых может эксплуатироваться система;

Требованиями к квалификации обслуживающего персонала.

Исходя из этих параметров, выбирается тип лазера, устройство развертки луча, разрабатывается конструкция крепежа изделия, уровень автоматизации системы в целом, решается вопрос о необходимости написания специализированных программ для подготовки файлов рисунков, линий реза и т.д.

Основными техническими характеристиками, определяющей характер обработки, играют энергетические параметры лазера -- энергия, мощность, плотность энергии, длительность импульса, пространственная и временная структура излучения, пространственное распределение плотности мощности излучения в пятне фокусировки, условия фокусировки, физические свойства материала.

1. Лазерный луч в роли сверла

Сверление отверстий в часовых камнях-с этого начиналась трудовая деятельность лазера. Речь идет о рубиновых камнях, которые используются в часах в качестве подшипников скольжения. При изготовлении таких подшипников требуется высверлить в рубине - материале весьма твердом и в то же время хрупком-отверстия диаметром всего 1-0,05 мм. Многие годы эта ювелирная операция выполнялась обычным механическим способом с использованием сверл, изготовленных из тонкой рояльной проволоки диаметром 40-50 мкм. Такое сверло делало до 30 тысяч оборотов в минуту и одновременно совершало при этом около ста возвратно-поступатель- ных перемещений. Для сверления одного камня требовалось до 10-15 мин.

Начиная с 1964 г. малопроизводительное механическое сверление часовых камней стало повсеместно заменяться лазерным сверлением. Конечно, термин «лазерное сверление» не надо понимать буквально; лазерный луч не сверлит отверстие-он его пробивает, вызывая интенсивное испарение материала. В настоящее время лазерное сверление часовых камней является обычным делом. Для этой цели применяются, в частности, лазеры на стекле с неодимом. Отверстие в камне (при толщине заготовки 0,5-1 мм) пробивается серией из нескольких лазерных импульсов, имеющих энергию 0,5-1 Дж. Производительность работы лазерной установки в автоматическом режиме-камень в секунду. Это в тысячу раз выше производительности механического сверления!

Вскоре после своего появления на свет лазер получил следующее задание, с которым справился столь же успешно,-сверление (пробивание) отверстий в алмазных фильерах. Возможно, не все знают, что для получения очень тонкой проволоки из меди, бронзы, вольфрама используется технология протягивания металла сквозь отверстие соответствующего диаметра. Такие отверстия высверливают в материалах, обладающих особо высокой твердостью,-ведь в процессе протягивания проволоки диаметр отверстия должен сохраняться неизменным. Наиболее тверд, как известно, алмаз. Поэтому лучше всего протягивать тонкую проволоку сквозь отверстие в алмазе-сквозь так называемые алмазные фильеры. Лишь с помощью алмазных фильер удается получать сверхтонкую проволоку, имеющую диаметр всего 10 мкм. Но как просверлить тонкое отверстие в таком сверхтвердом материале, как алмаз? Механически это сделать очень трудно-для механического сверления одного отверстия в алмазной фильере требуется до десяти часов.

Так выглядит в разрезе отверстие в алмазной фильере. Лазерными импульсами пробивают черновой канал в алмазной заготовке. Затем, обрабатывая канал ультразвуком, шлифуя и полируя, придают ему необходимый профиль. Проволока, получаемая при протягивании через фильеру, имеет диаметр d

Эти аккуратные отверстия диаметром 0,3 мм пробиты в пластинке из глиноземной керамики толщиной 0,7 мм с помощью С02-лазера

С помощью лазеров пробивают в керамике очень тонкие отверстия-диаметром всего 10 мкм. Заметим, что механическим сверлением такие отверстия получить нельзя.

То, что сверление - призвание лазера, ни у кого не вызывало сомнений. Здесь у лазера фактически не оказалось достойных конкурентов, особенно когда речь шла о сверлении особо тонких и особо глубоких отверстий, когда отверстия надо сверлить в очень хрупких или очень твердых материалах. Прошло сравнительно немного времени и стало ясно, что лазерный луч может успешно применяться не только для сверления, но и для многих других операций по обработке материалов. Так что сегодня мы можем говорить о возникновении и развитии новой технологии - лазерной.

2. Лазерное сверление отверстий в металлах

Использование лазера в качестве сверлящего инструмента дает преимущества.

Отсутствует механический контакт между сверлящим инструментом и материалом, а также поломка и износ сверл.

Увеличивается точность размещения отверстия, так как оптика, используемая для фокусировки лазерного луча, используется также и для наводки его в необходимую точку. Отверстия могут быть ориентированы в любом направлении.

Достигается большее отношение глубины к диаметру сверления, чем это имеет место при других способах сверления.

При сверлении, так же как и при резании, свойства обрабатываемого материала существенно влияют на параметры лазера, необходимые для выполнения операции. Сверление осуществляют импульсными лазерами, работающими как в режиме свободной генерации с длительностью импульсов порядка 1 мкс, так и в режиме с модулированной добротностью с длительностью в несколько десятков наносекунд. В обоих случаях происходит тепловое воздействие на материал, его плавление и испарение. В глубину отверстие растет в основном за счёт испарения, а по диаметру за счет плавления стенок и вытекания жидкости при создаваемом избыточном давлении паров.

Как правило, глубокие отверстия желаемого диаметра получаются при использовании повторяющихся лазерных импульсов малой энергии. В этом случае образуются отверстия с меньшей конусностью и лучшего качества, нежели отверстия, полученные с более высокой энергией одиночного импульса. Исключение составляют материалы, содержащие элементы, способные создавать высокое давление паров. Так, латунь сваривать очень трудно лазерным импульсным излучением из-за высокого содержания цинка, однако при сверлении латунь имеет некоторые преимущества, так как атомы цинка значительно улучшают механизм испарения.

Поскольку многоимпульсный режим позволяет получать отверстия лучшего качества нужной геометрии и с небольшим отклонением от заданных размеров, то на практике этот режим получил распространение при сверлении отверстий тонких металлов и неметаллических материалов. Однако при сверлении отверстий в толстых материалах предпочтительными являются одиночные импульсы большой энергии. Диафрагмирование лазерного потока позволяет получить фигурные отверстия, однако этот способ чаще используется при обработке тонких пленок и неметаллических материалов. В том случае, когда лазерное сверление производится в тонких листах толщиной меньше 0,5 мм, имеет место некоторая унификация процесса, состоящая в том, что отверстия диаметром от 0,001 до 0,2 мм могут быть изготовлены во всех металлах при относительно низких мощностях.

Высверливание отверстий в металлах может быть использовано в ряде случаев. Так, с помощью импульсных лазеров может быть произведена динамическая балансировка деталей, вращающихся с высокой скоростью. Дисбаланс выбирается путем локального выплавления определенного объема материала. Лазер может быть использован также для подгонки электронных элементов либо локальным испарением материала, либо за счет общего разогрева. Высокая плотность мощности, малый размер пятна и малая длительность импульса делают лазер идеальным инструментом для этих целей.

Лазеры, применяемые для сверления отверстий в металле, должны обеспечить в фокусированном луче плотность мощности порядка 107 - 108 Вт/см2. Сверление отверстий металлическими сверлами диаметром меньше 0,25 мм является трудной практической задачей, в то время как лазерное сверление позволяет получать отверстия диаметром, соизмеримым с длиной волны излучения, с достаточно высокой точностью размещения. Специалистами фирмы «Дженерал Электрик» (США) подсчитано, что лазерное сверление отверстий по сравнению с электроннолучевой обработкой имеет высокую экономическую конкурентоспособность. В настоящее время для сверления отверстий используются в основном твердотельные лазеры. Они обеспечивают частоту следования импульсов до 1000 Гц и мощность в непрерывном режиме от 1 до 103 Вт, в импульсном -- до сотен киловатт, а в режиме с модуляцией добротности -- до нескольких мегаватт. Некоторые результаты обработки такими лазерами приведены в таблице

Таблиця 1.

Толщина, мм

Диаметр отверстия, мм

Продолжительность

сверления

Энергия лазера,

входного

выходного

Нержавеющая сталь

10 импульсов

Никелевая сталь

Вольфрам

Молибден

3. Сверление не металлических материалов

Сверление отверстий является одним из первых направлений лазерной технологии. Вначале, прожигая отверстия в различных материалах, экспериментаторы с их помощью оценивали энергию излучения лазерных импульсов. В настоящее время процесс лазерного сверления становится самостоятельным направлением лазерной технологии. К материалам, подлежащим сверлению при помощи луча лазера, относятся такие неметаллы, как алмазы, рубиновые камни, ферриты, керамика и др., сверление отверстий в которых обычными методами представляет определенную трудность или является малоэффективным. При помощи лазерного луча можно сверлить отверстия разного диаметра. Для этой операции используют следующие два метода. При первом методе лазерный луч перемещается по заданному контуру, и форма отверстия определяется траекторией его относительного перемещения. Здесь имеет место процесс резки, при котором тепловой источник перемещается с определенной скоростью в заданном направлении: при этом, как правило, применяются лазеры непрерывного излучения, а также импульсные, работающие с повышенной частотой следования импульсов.

При втором методе, получившем название проекционного, обрабатываемое отверстие повторяет форму лазерного луча, которому с помощью оптической системы можно придать любое сечение. Проекционный метод сверления отверстий имеет некоторые преимущества по сравнению с первым. Так, если на пути луча поставить диафрагму (маску), то таким образом можно срезать периферийную его часть и получить относительно равномерное распределение интенсивности по сечению луча. Благодаря этому граница облучаемой зоны оказывается более резкой, конусность отверстия при этом уменьшается, а качество улучшается.

Существует ряд приемов позволяющих дополнительно выбрать из обрабатываемого отверстия часть расплавленного материала. Один из них -- создание избыточного давления сжатым воздухом или другими газами, которые подаются в зону сверления с помощью сопла, соосного с лазерным излучением. Этот способ использовался для сверления отверстий диаметром 0,05--0,5 мм в керамических пластинках толщиной до 2,5 мм при использовании СО2-лазера, работающего в непрерывном режиме.

Сверление отверстий в твердой керамике является непростой задачей: при обычном способе требуется наличие алмазного инструмента, а при других существующих методах трудности связаны с размером отверстия в диаметре, равным десятым долям миллиметра. Эти трудности особенно ощутимы, когда толщина обрабатываемой пластины больше, чем диаметр отверстия. Отношение глубины отверстия (толщины материала) к его диаметру является мерой качества получения тонких отверстий; оно составляет 2:1 при обычном сверлении и около 4:1 при ультразвуковом методе, используемом при сверлении керамики и других тугоплавких материалов.

Лазерный метод сверления данного класса материалов позволяет получить лучшее отношение при очень высокой точности размещения отверстий и относительно меньших временных затратах. Так, при лазерном сверлении высокоплотной поликристаллической глиноземной керамике использовался рубиновый лазер с энергией в импульсе 1,4 Дж, сфокусированной линзой с фокусным расстоянием 25 мм на поверхности диска и обеспечивающей плотность мощности около 4-106 Вт/см2. В среднем 40 импульсов при частоте следования 1 Гц понадобилось, чтобы просверлить керамический диск толщиной в 3,2 мм. Длительность лазерного импульса была 0,5 мс. Полученные отверстия имели конусность с диаметром на входе около 0,5 мм, а на выходе 0,1 мм. Видно, что отношение глубины к среднему диаметру отверстия составляет около 11:1, что значительно больше аналогичного отношения при других способах сверления отверстий. Для простых материалов это отношение при лазерном сверлении может составлять 50:1.

Для удаления продуктов сгорания и жидкой фазы из зоны сверления используется поддув воздухом или другими газами. Более эффективное выдувание продуктов происходит при сочетании поддува с передней стороны и разряжения с обратной стороны образца. Аналогичная схема использовалась для сверления отверстий в керамике толщиной до 5 мм. Однако эффективное удаление жидкой фазы в этом случае происходит только лишь после образования сквозного отверстия.

В табл. 7 приведены параметры отверстий в некоторых неметаллических материалах и режимы их обработки.

Таблиця 2.

Материал

Параметры отверстия

Режим обработки

Диаметр, мм

Глубина, мм

Отно-шение глуби-ны к диаме-тру

Энергия, Дж

Длительность импульса

Плотность потока, Вт/см2

Количество импульсов на отверстие

Керамика

4. Лазерное сверление отверстий в твердых поверхностях

Лазерное сверление отверстий характеризуется такими физическими процессами как нагрев, испарение и плавлением материала. При этом предполагается что отверстие увеличивается в глубину в следствии испарения, а по диаметру - в результате плавления стенок и вытеснения жидкости избыточным давлением паров.

Для получения прецизионных отверстий с допуском порядка 2 мкм, используются лазеры с очень короткими импульсами в диапазоне нс и пс. Позволяющие контролировать диаметр отверстия на заданном уровне т.е. не приводящим к нагреву и плавлению стенок, отвечающих за рост диаметра отверстия, а приводящее к испарению материала из твердой фазы. Также использование лазеров с нс и пс диапазоном импульсов позволяет существенно уменьшить наличия затвердевшей жидкой фазына боковых поверхности отверстия.

В данный момент существует несколько методов реализации лазерного сверления отверстий: сверление одиночным импульсом используется одиночный импульс в результате которого просверливается отверстие. Достоинства этого метода быстрота. Недостатки высокая энергия импульса, низкая толщина и каноническая форма отверстия за счет уменьшении передачи тепловой энергии с увеличением глубины отверстия.

Ударном сверлении отверстие возникает под воздействием нескольких лазерных импульсов незначительной продолжительности и энергии.

Достоинства: возможность создавать более глубина отверстия (около 100 мм), получения отверстий малого диаметра. Недостаток этого метода более длительный процесс сверления.

Кольцевое сверление возникает под действием нескольких лазерных импульсов. Сначала лазер методом ударного сверления выполняет начальное отверстие. Затем он увеличивает начальное отверстие, несколько раз перемещаясь по увеличивающейся круговой траектории на заготовке. Большинство расплавленного материала вытесняется из отверстия в направлении вниз. Спиральное сверление в отличие от кольцевого сверления не предусматривает выполнения начального отверстия. Лазер уже с первых импульсов перемещается по круговой траектории по материалу. При таком движении большое количество материала выходит вверх. Перемещаясь как по винтовой лестнице, лазер углубляет отверстие. После того, как лазер пройдет сквозь материал, могут быть выполнены еще несколько кругов. Они предназначены для расширения нижней стороны отверстия и сглаживания краев. Спиральное сверление позволяет получать очень большие и глубокие отверстия высокого качества. Достоинства: получения больших и глубоких отверстий высокого качества.

Преимущества лазерного сверления: возможность получение малых отверстий (меньше 100 мкм),необходимость сверления отверстия под углом, сверления отверстия в очень твердых материалах, возможность получать отверстия не круглой формы, высокая производительность процесса, малое тепловое воздействие на материал (с уменьшением длительности импульса уменьшается нагрев материала),бесконтактный метод позволяющий сверлить хрупкие материалы(алмаз, фарфор, феррит, хрусталь сапфир, стекло),высокая автоматизация процесса, большой срок службы и стабильность процесса.

Данная работа посвящена поиску оптимальных режимов лазерного сверления отверстий на различных твердых поверхностях.

Для проведения экспериментов использовался инфракрасный импульсный Nd:YAG лазер с длиной волны 1064 нм. С максимальной мощность лазерного излучения 110 Вт, частотой следования импульсов 10 кГц и длительность импульса 84 нс, отверстия в данной работе получены методом ударного сверления. В процессе лазерного сверления мощность лазерного излучения варьировалась в пределах от 3,7 Вт до 61,4 Вт, диаметр лазерного пятна на поверхности образца изменялся в пределах от2 мм до 4 мм.

Лазерное сверления отверстий проводилось на следующих твердых поверхностях: пластмассе (желтая), углепластике, алюминии, толщиной 1,22,3 мм соответственно.

На качество лазерного сверления поверхности существенно влияют следующие параметры: средняя мощность лазерного излучения, диаметр лазерного пятна на поверхности образца, физические свойства материала (коэффициент поглощения лазерного излучения поверхностью, температура плавления) длина волны лазерного излучения, длительность импульса и метод лазерного сверления (одиночный импульс, ударном сверлении и т.д.).

В таблице 1 отображены режимы лазерного сверления на различных твердых поверхностях.

Режимы лазерного сверления отверстий на различных поверхностях

Таблиця3.

5. Лазерное сверление отличающихся повышенной хрупкостью

Лазерное сверление широко применяют для получения отверстий не только в твердых и сверхтвердых материалах, но и в материалах, отличающихся повышенной хрупкостью.

Для лазерного сверления отверстий в настоящее время исполк-зуют установку Квант-11, Созданную на основе импульсного лазера на АИГ-Nd. Лазерная сварка также основана на тешговом действии сфокусированного излучения импульсного лазера. Причем применяют как шовную, так и точечную сварку

Основными процессами при лазерном сверлении неметаллических материалов, так же как и при резке, являются разогрев, плавление и испарение из зоны лазерного облучения. Для того чтобы обеспечить данные процессы, необходимо иметь плотности мощности 106 - 107 Вт / см2, создаваемые оптической системой в фокальном пятне. При этом отверстие растет в глубину за счет испарения материалов; имеет место также оплавление стенок и выбрасывание жидкой фракции создаваемым избыточным давлением паров

Отечественная промышленность в настоящее время широко использует лазерное сверление отверстий в алмазах, обеспечивая высокую точность и контроль за формированием отверстий в процессе сверления.

Сверление отверстий металлическими сверлами диаметром меньше 0 25 мм является трудной практической задачей, в то время как лазерное сверление позволяет получать отверстия диаметром, соизмеримым с длиной волны излучения, с достаточно высокой точностью размещения.

Из экспериментов известно, что технические характеристики и особенности прецизионной лазерной резки тонких металлических пластин определяются в целом теми же условиями и факторами, что и технические характеристики процессов многоимпульсного лазерного сверления. Средняя ширина сквозного реза в тонких металлических пластинах обычно составляет 30 - 50 мкм на всей длине образца, стенки их практически параллельны, поверхность не содержит крупных дефектов и инородных включений. Одной из особенностей резки импульсным излучением является возможность так называемого эффекта канализации. Этот эффект выражается в увлечении качественного (дифракционного) пучка в сформированный предыдущими импульсами канал посредством переотражения от его стенки. Формирование нового канала начинается после смещения всего дифракционного пучка за контуры предыдущего. Этот процесс определяет предельную шероховатость стенки реза и может стабилизировать точность реза за счет компенсации нестабильности диаграммы направленности при многопроходной обработке. При этом шероховатость кромок реза обычно не превышала 4 - 5 мкм, что можно считать вполне удовлетворительным.

Лазеры выполняют и такую операцию, как черновое доведение отработанных фильер до следующего по стандрату большего диаметра. Если при механическом сверлении данная операция занимала около 20 ч, то при лазерном сверлении она требует вего лишь несколько десятков импульсов. Полный временной интервал составляет около 15 мин на черновую обработку одной фильеры.

Сверление отверстий является, пожалуй, одним из первых направлений лазерной технологии. В настоящее время процесс лазерного сверления становится самостоятельным направлением лазерной технологии и занимает в отечественной и зарубежной промышленности значительный удельный вес. К материалам, подлежащим сверлению при помощи луча лазера, относятся такие неметаллы, как алмазы, рубиновые камни, ферриты, керамика и др., сверление отверстий в которых обычными методами представляет определенную трудность или является малоэффективным.

Однако при сверлении отверстий в толстых материалах предпочтительными являются одиночные импульсы большой энергии. Диафрагмирование лазерного потока позволяет получить фигурные отверстия, однако этот способ чаще используется при обработке тонких пленок и неметаллических материалов. В том случае, когда лазерное сверление производится в тонких листах толщиной меньше 0 5 мм, имеет место некоторая унификация процесса, состоящая в том, что дырки диаметром от 0 001 до 0 2 мм могут быть изготовлены во всех металлах при относительно низких мощностях. При больших толщинах, согласно рис. 83, появляется нелинейность, вызванная эффектом экранировки.

Еще ранее в отмечалось, что применение гибких ПП повышает их надежность, уменьшает время сборки устройств на сотни часов и дает выигрыш в объеме и массе в 2 - 4 раза по сравнению с применением в МЭА жестких ПП. Сейчас ранее существовавший тормоз в развитии гибких ПП, а именно известный консерватизм конструкторов, привыкших работать с обычными ПП, можно считать пройденным этапом. При этом облегчается задача снижения механических напряжений между ПП и установленными на ней БИС в кристало держателе, а также появляется возможность получать лазерным сверлением сверхминиатюрные отверстия диаметром 125 мкм (вместо 800 мкм в обычных ПП) для межслойной коммутации с помощью сплошного заполнения их медью. Наконец, гибкая ПП из полиимида прозрачна, а это позволяет визуально проверить все паяные соединения в каждом слое при тщательно подобранном освещении.

Заключение

В заключение хотелось бы остановиться на некоторых общих вопросах внедрения лазерных технологий в современное производство.

Первым этапом создания лазерной технологической установки является разработка технического задания. Во многих случаях заказчики стараются перестраховываться и закладывать в него характеристики, намного превышающие реальные потребности производства. В результате стоимость оборудования увеличивается на 30-50%. Как ни парадоксально, но причиной этого является, как правило, именно относительная дороговизна лазерных систем. Многие руководители предприятий рассуждают следующим образом:

«…если я покупаю новое дорогое оборудование, то по характеристикам оно должно превышать, необходимы на данный момент нормы, «авось», когда-то мне это пригодится…». В результате потенциальные возможности оборудования никогда не используются, а время окупаемости его увеличивается.

Примером такого подхода может служить вариант перехода от механической маркировки деталей к лазерной. Основными критериями маркировки являются контрастность надписи и устойчивость к стиранию. Контрастность определяется соотношением ширины и глубины линии гравировки. Минимальная ширина линии при механической гравировке приблизительно 0,3 мм. Для получения контрастной надписи её глубина должна быть порядка 0,5 мм. Поэтому, во многих случаях, при составлении технического задания на лазерную установку, исходят из этих параметров. Но ширина линии при лазерной гравировке 0,01-0,03 мм, соответственно глубину надписи можно сделать 0,05 мм, т.е. на порядок меньше чем при механической. Поэтому соотношение между мощностью лазера и временем нанесения маркировочной надписи может быть оптимизировано относительно стоимости системы. В результате снижается цена лазерной установки, и как следствие, время её окупаемости.

Внедрение лазерных технологий во многих случаях позволяет решать «старые» задачи принципиально новыми методами. Классическим примером этого является нанесение защитных надписей, клейм и т.п. на продукцию для обеспечения защиты от подделок. Возможности лазерной техники позволяют идентифицировать защитную надпись по отдельно взятой линии в надписи. Возможность применения криптографических методов позволяет реализовывать «динамическую» защиту от подделок, т.е. при сохранении общего рисунка через определённое время меняются некоторые элементы, узнаваемые только экспертами или специальным оборудованием. Недосягаемым для механических методов подделок является возможность создания лазером небольшого бортика (3-10 мкм) из выбросов металла на края линии гравировки. Комплексное использование подобных методик минимизирует вероятность подделки и делает её экономически невыгодной.

Внедрение лазерных технологий на данном этапе технологического развития (переход от «дикого» капитализма к нормальному производству) это всего лишь один из вариантов начала становления того, что называют высокотехнологическим производством. Те небольшие предприятия, которые используют у себя несколько подобного рода лазерных систем, подтвердили закон диалектики перехода количества в качество. Новое оборудование требует принципиально новых методов его обслуживания, как правило, предполагающее повышенного внимания персонала и поддержания «чистоты» в помещении, где оно расположено. Т.е. происходит переход на качественно новый уровень культуры производства. При этом обычно, количество сотрудников уменьшается, и руководители предприятий начинают решать вопросы организации работы не «трудового коллектива», а оптимизации работы предприятия, в котором работники являются лишь неотъемлемой частью технологического процесса. Независимо от того будет ли в этом производстве в дальнейшем использоваться лазерная техника или нет, приобретенный опыт, и сформировавшаяся культура никуда не исчезнет. Это то, что сторонними наблюдателями принято называть технологической или научно-технической революцией, хотя на самом деле это нормальный эволюционный процесс. История развития многих крупных технологических фирм показывает, что в некоторый момент времени на начальных стадиях развития, у всех был подобный этап перехода. Может так получиться, что в настоящее время мы находимся на такой стадии технологического развития, когда относительно малые вложения в новые технологии сейчас приведут в дальнейшем к крупной отдаче. В синергетике, - науке о самоорганизующихся системах, подобная ситуация подчиняется закону «бабочки» (Р. Брэдбери «И грянул гром…»), описывающем процесс, когда малые изменения в прошлом или настоящем приводят к глобальным последствиям в будущем.

Список использованной литературы

1.Рыкалин Н.Н. Лазерная обработка материалов. М., Машиностроение, 1975, 296 с.

2. Григорьянц А.Г., Шиганов И.Н., Мисюров А.И. Технологические процессы лазерной обработки: Учеб. пособие для вузов / Под ред. А.Г. Григорьянца. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. -664 c.

3. Крылов К.И., Прокопенко В.Т., Митрофанов А.С. Применение лазеров в машиностроении и приборостроении. - Л., Машиностроение. Ленингр. отделение, 1978, 336 с.

Размещено на Allbest.ru

...

Подобные документы

    Сверление - процесс образования отверстий в сплошном материале режущим инструментом – сверлом. Общие сведения о кольцевом сверлении. Вырезание отверстий в листовом металле. Обработка хрупких материалов. Схема резания, обеспечивающая деление ширины.

    дипломная работа , добавлен 27.10.2017

    Сверление – метод получения отверстий резанием. Оборудование и инструменты. Обработка просверленных отверстий зенкером и разверткой. Технология формообразования поверхностей фрезерованием. Технологические требования к конструкциям обрабатываемых деталей.

    реферат , добавлен 18.01.2009

    Сверление сквозных и глухих отверстий. Брак при сверлении и мероприятия для его предупреждения. Точность обработки при сверлении. Выбор режущих элементов. Имитационное моделирование обработки детали. Расчет основных тепловых потоков и температур.

    дипломная работа , добавлен 27.10.2017

    История металлорежущих станков. Назначение сверления - операции для получения отверстий в различных материалах при их обработке, целью которой является изготовление отверстий под нарезание резьбы, зенкерование, развертывание. Основные виды протягивания.

    презентация , добавлен 05.10.2016

    Образование отверстий в сплошном металле сверлением, точность их обработки, набор инструмента; класс шероховатости поверхности. Режимы сверления, зенкерования, развертывания. Разработка схемы зажима детали; расчет погрешности базирования и усилия зажима.

    лабораторная работа , добавлен 29.10.2014

    Основные трудности обработки отверстий. Варианты наладок при операциях глубокого сверления. Функции смазочно-охлаждающей жидкости, способы ее подвода. Разновидности глубокого сверления. Формирование удовлетворительной стружки и ее вывод из отверстия.

    методичка , добавлен 08.12.2013

    Значение, задачи и структура ремонтной службы. Сущность и содержание системы планово-предупредительных ремонтов. Основные слесарные операции. Правка и гибка металлов. Сверление, зенкерование и развертывание отверстий. Чтение рабочих чертежей и эскизов.

    отчет по практике , добавлен 09.04.2015

    Разработка станка для сверления отверстий в корешковой части книжного блока печатной продукции. Анализ существующего оборудования для сверления отверстий, его недостатки. Разработка технологической схемы станка и конструкции сверлильной головки.

    дипломная работа , добавлен 29.07.2010

    Технологические основы процесса сверления отверстий. Типы станков и их основные узлы. Влияние материала и геометрических элементов сверла. Изменение геометрических параметров режущей части сверл. Основные режимы финишных операций изготовления сверл.

    дипломная работа , добавлен 30.09.2011

    Сверление как процесс образования отверстий в сплошном материале с помощью инструмента, называемого сверлом. Определение основных факторов, влияющих на точность технологического процесса, существующие движения: вращательное и поступательное направленное.

Сверление отверстий в ча­совых камнях - с этого начиналась трудовая деятель­ность лазера. Речь идет о рубиновых камнях, которые используются в часах в качестве подшипников сколь­жения. При изготовлении таких подшипников требует­ся высверлить в рубине - материале весьма твердом и в то же время хрупком - отверстия диаметром всего 0,1-0,05 мм. Многие годы эта ювелирная операция выполнялась обычным механическим способом с ис­пользованием сверл, изготовленных из тонкой рояль­ной проволоки диаметром 40-50 мкм. Такое сверло делало до 30 тысяч оборотов в минуту и одновременно совершало при этом около ста возвратно-поступатель­ных перемещений. Для сверления одного камня требо­валось до 10-15 мин. Как убрать пробки в ушах - серная пробка nmedik.org/sernaya-probka.html .

Начиная с 1964 г. малопроизводительное механи­ческое сверление часовых камней стало повсеместно заменяться лазерным сверлением. Конечно, термин «ла­зерное сверление» не надо понимать буквально; лазерный луч не сверлит отверстие - он его пробивает, вызы­вая интенсивное испарение материала. В настоящее время лазерное сверление часовых камней является обычным делом. Для этой цели применяются, в частности, лазеры на стекле с неодимом. Отверстие в камне (при толщине заготовки 0,5-1 мм) пробивается серией из нескольких лазерных импульсов, имеющих энергию 0,5-1 Дж. Производительность работы лазер­ной установки в автоматическом режиме -камень в секунду. Это в тысячу раз выше производительности механического сверления!

Вскоре после своего появления на свет лазер полу­чил следующее задание, с которым справился столь же успешно, - сверление (пробивание) отверстий в алмаз­ных фильерах. Для полу­чения очень тонкой проволоки из меди, бронзы, вольф­рама используется технология протягивания металла сквозь отверстие соответствующего диаметра. Такие отверстия высверливают в материалах, обладающих особо высокой твердостью, - ведь в процессе протяги­вания проволоки диаметр отверстия должен сохра­няться неизменным. Наиболее тверд, как известно, алмаз. Поэтому лучше всего протягивать тонкую про­волоку сквозь отверстие в алмазе - сквозь так называе­мые алмазные фильеры. Лишь с помощью алмазных фильер удается получать сверхтонкую проволоку, имеющую диаметр всего 10 мкм. Но как просверлить тонкое отверстие в таком сверхтвердом материале, как алмаз? Механически это сделать очень трудно - для механического сверления одного отверстия в алмазной фильере требуется до десяти часов. Зато, как оказа­лось, совсем нетрудно пробить это отверстие серией из нескольких мощных лазерных импульсов.

Сегодня лазерное сверление широко применяется не только для особо твердых материалов, но и для материалов, отличающихся повышенной хрупкостью. Лазерное сверло оказалось не только мощным, но и весьма деликатным «инструментом». Пример: применение лазера при сверлении отверстий в подложках микросхем, изготавливаемых из глинозем­ной керамики. Керамика необычайно хрупка. По этой причине механическое сверление отверстий в подложке микросхемы производили, как правило, на «сыром» материале. Обжигали керамику уже после сверления. При этом происходила некоторая деформация изде­лия, искажалось взаимное расположение высверлен­ных отверстий. Проблема была решена с появлением лазерных сверл. Используя их, можно работать с керамическими подложками, которые уже прошли обжиг. С помощью лазеров пробивают в керамике очень тонкие отверстия - диаметром всего 10 мкм. Механическим сверлением такие отверстия полу­чить нельзя.

То, что сверление - призвание лазера, ни у кого не вызывало сомнений. Здесь у лазера фактически не оказалось достойных конкурентов, особенно когда речь шла о сверлении особо тонких и особо глубоких отверстий, когда отверстия надо сверлить в очень хрупких или очень твердых материалах.

4. Лазерная резка и сварка.

Лазерным лучом можно резать решительно все: ткань, бумагу, дерево, фанеру, резину; пластмассу, керамику, листовой асбест, стекло, листы металла. При этом можно получать аккуратные разрезы по сложным профилям. При резке возгорающихся материалов место разреза обдувают струёй инертного газа; в результате получается гладкий, необожженный край среза. Для резки обычно используют непрерывно генерирующие лазеры. Нужная мощность излучения зависит от материала и толщины заготовки. Например, для резки досок толщиной 5 см применялся СО2-лазер мощностью 200 Вт. Ширина разреза составляла всего 0,7 мм; опилок, естественно, не было.

Для резки металлов нужны лазеры мощностью в несколько киловатт. Требуемую мощность можно сни­зить, применяя метод газолазерной резки - когда одно­временно с лазерным лучом на разрезаемую поверх­ность направляется сильная струя кислорода. При горении металла в кислородной струе (за счет происхо­дящих в этой струе реакций окисления металла) выде­ляется значительная энергия; в результате может использоваться лазерное излучение мощностью всего 100-500 Вт. Кроме того, струя кислорода сдувает и уносит из зоны разрезания расплав и продукты сгора­ния металла.

Первый пример такого рода резки - ла­зерный раскрой тканей на ткацкой фабрике. Установка включает СО2-лазер мощностью 100 Вт, систему фоку­сировки и перемещения лазерного луча, ЭВМ, устрой­ство для натяжения и перемещения ткани. В процессе раскроя луч перемещается по поверхности ткани со скоростью 1 м/с. Диаметр сфокусированного светово­го пятна равен 0,2 мм. Перемещениями луча и самой ткани управляет ЭВМ. Установка позволяет, напри­мер, в течение часа раскроить материал для 50 костю­мов. Раскрой выполняется не только быстро, но и весьма точно; при этом края разреза оказываются гладкими и упрочненными. Второй пример - автомати­зированное разрезание листов алюминия, стали, тита­на в авиационной промышленности. Так, СО2-лазер мощностью 3 кВт разрезает лист титана толщиной 5 мм со скоростью 5 см/с. Применяя кислородную струю, получают примерно тот же результат при мощности излучения 100-300 Вт.

Специалисты разработали немало способов обработки бриллиантов для улучшения качеств этих камней. Самым проверенным способом повышения качества бриллиантов считается лазерное сверление.

Такой вид обработки алмазов впервые применили в коммерческой практике в 70-х годах прошлого века. Темные включения такие, как магнетиты, пирротины и углеродные включения не улучшают оптические характеристики камня и тем более не привлекают покупателей. В процессе лазерного сверления эти включения выжигают , растворяют с помощью азотной или серной кислот или же осветляют.

Лазерный луч специального аппарата, квантового генератора ИК-диапазона с длиной волн около 1060 нм, высверливает микроотверстие диаметром не более 20-60 мкм. 20 мкм равно 0,02 мм, такова толщина человеческого волоса. Сверление алмаза проводится на глубину не более 1,6 мм. Этот процесс занимает в среднем от 30 минут и более.

Существует способ осветления темных включений. Через отверстие, высверленное лазерным лучом, поступает воздух, под воздействием которого окраска включения может стать значительно светлее. Еще один способ осветления заключается в том, что в канал лазерного отверстия в вакуумной среде вводят реактив, который осветляет или полностью растворяет включение. Конечный результат зависит от химического состава данного включения.

При десятикратном увеличении под микроскопом или под лупой рассмотреть каналы лазерных отверстий нетрудно, даже если их запломбировали. Они имеют вид воронкообразных выемок на поверхности и прямых линий беловатого цвета внутри. Для заполнения каналов с недавнего времени используются такие вещества, как синтетическая смола или воск из-за высокого коэффициента преломления. После заполнения канала соответствующим веществом канал пломбируют. Хотя запломбированные отверстия менее заметны на поверхности и в меньшей степени подвержены загрязнению, в отраженном свете можно увидеть «кратер» в месте сверления. Выемки круглой формы на поверхности можно нащупать и острием иглы. Следует учитывать, что если в процессе сверления отверстия лазерный луч попал в зону сильного внутреннего напряжения, то вокруг канала образуются легко различимые трещинки напряжения и спайности.

При оценке подобных камней возникают трудности. Конечно, визуальные геммологические характеристики заметно улучшаются, но сверление создает искусственные дефекты в виде мелких трещинок.

Бриллианты относят к определенной группе чистоты с учетом их внешнего вида и наличия просверленных отверстий. Следует отметить, что целью лазерного сверления является не повышение степени чистоты бриллианта, а осветление темных включений. Это приводит к улучшению внешнего вида камня и больше привлекает покупателей.

В соответствующих сертификатах качества, накладных и других документах в обязательном порядке должна содержаться информация о результатах вмешательства со стороны человека и наличии отверстий лазерного сверления.

Недавно был разработан новый метод лазерной обработки алмазов, при котором канал не выводится на поверхность. Этот вид обработки подходит для алмазов с темными включениями, расположенными недалеко от поверхности. Но применение этого метода все же не гарантирует отсутствия новых трещин спайности и напряжения, «перьев» и микротрещин вокруг включений. Дефекты подобного рода, существовавшие до обработки, после применения данного метода могут усилиться. С другой стороны, новые трещинки, достигая поверхности, могут сыграть роль каналов. При введении кислот в эти каналы включения осветляются. Данный метод подходит не для всех камней, но бриллианты с темными включениями , находящимися около поверхности, с мелкими трещинками - идеальный материал для этого способа облагораживания.

Суть данного метода лазерной обработки заключается в том, что лазеры в пульсирующем режиме фокусируют точно на место включения. В результате процесса выделяется значительное количество тепла, которое способствует распространению трещинок до поверхности камня. Таким образом, отпадает необходимость сверлить канал с образованием воронки на поверхности. Растворитель, легко проникающий по новым трещинкам к включению, либо осветляет его, либо растворяет. Но и этот способ может привести к образованию ямок и каверн на поверхности камня с тем отличием, что их форма будет не такой идеально круглой, а размеры будут незначительно меньше.

Еще один метод лазерной обработки разработали израильские специалисты в начале 2000-х годов. Его назвали КМ(сокращение от слов«КидуахМеухад» ), что в переводе с иврита означает «специальное сверление». Способ, ставший популярным в Антверпене, применяется для осветления темных включений с микротрещинами с помощью кислоты при соблюдении особых условий. На ближайший к поверхности дефект направляют лазерный луч, в результате чего дефект распространяется до поверхности.

После лазерноговоздействия алмаз опускают в концентрированную кислоту и нагревают до высокой температуры под давлением. Благодаря созданным условиям, кислота проникает внутрь до включения и растворяет его.

Алмазы после обработки методом КМ можно идентифицировать по наличию голубовато-коричневатых оттенков в отраженном свете в местах искусственно созданных трещин , особенно при перекатывании камня. Чего нельзя сказать об алмазах, которые обрабатываются по традиционной технологии лазерного сверления с образованием заметных отверстий на поверхности. Более того, в алмазах, обработанных методом КМ, иногда можно заметить незначительные остатки веществачерноватого цвета в виде неправильных линий на поверхности трещин напряжения, которые образовались в процессе лазерного воздействия.


Сверление отверстий в часовых камнях-с этого начиналась трудовая деятельность лазера. Речь идет о рубиновых камнях, которые используются в часах в качестве подшипников скольжения. При изготовлении таких подшипников требуется высверлить в рубине - материале весьма твердом и в то же время хрупком-отверстия диаметром всего 1-0,05 мм. Многие годы эта ювелирная операция выполнялась обычным механическим способом с использованием сверл, изготовленных из тонкой рояльной проволоки диаметром 40-50 мкм. Такое сверло делало до 30 тысяч оборотов в минуту и одновременно совершало при этом около ста возвратно-поступатель- ных перемещений. Для сверления одного камня требовалось до 10-15 мин.
Начиная с 1964 г. малопроизводительное механическое сверление часовых камней стало повсеместно заменяться лазерным сверлением. Конечно, термин «лазерное сверление» не надо понимать буквально; лазерный луч не сверлит отверстие-он его пробивает, вызывая интенсивное испарение материала. В настоящее время лазерное сверление часовых камней является обычным делом. Для этой цели применяются, в част-
29

ности, лазеры на стекле с неодимом. Отверстие в камне (при толщине заготовки 0,5-1 мм) пробивается серией из нескольких лазерных импульсов, имеющих энергию 0,5-1 Дж. Производительность работы лазерной установки в автоматическом режиме-камень в секунду. Это в тысячу раз выше производительности механического сверления!
Вскоре после своего появления на свет лазер получил следующее задание, с которым справился столь же успешно,-сверление (пробивание) отверстий в алмазных фильерах. Возможно, не все знают, что для получения очень тонкой проволоки из меди, бронзы, вольфрама используется технология протягивания металла сквозь отверстие соответствующего диаметра. Такие отверстия высверливают в материалах, обладающих особо высокой твердостью,-ведь в процессе протягивания проволоки диаметр отверстия должен сохраняться неизменным. Наиболее тверд, как известно, алмаз. Поэтому лучше всего протягивать тонкую проволоку сквозь отверстие в алмазе-сквозь так называемые алмазные фильеры. Лишь с помощью алмазных фильер удается получать сверхтонкую проволоку, имеющую диаметр всего 10 мкм. Но как просверлить тонкое отверстие в таком сверхтвердом материале, как алмаз? Механически это сделать очень трудно-для механического сверления одного отверстия в алмазной фильере требуется до десяти часов. Зато, как оказалось, совсем нетрудно пробить это отверстие серией из нескольких мощных лазерных импульсов. />Сегодня лазерное сверление широко применяется не только для особо твердых материалов, но и для материалов, отличающихся повышенной хрупкостью. Лазерное сверло оказалось не только мощным, но и весьма деликатным «инструментом». В качестве примера расскажем о проблеме сверления отверстий в подложках микросхем, изготавливаемых из глиноземной керамики. Керамика необычайно хрупка. По этой причине механическое сверление отверстий в подложке микросхемы производили, как правило, на «сыром» материале. Обжигали керамику уже после сверления. При этом происходила некоторая деформация изделия, искажалось взаимное расположение высверленных отверстий. Проблема была решена с появлением лазерных сверл. Используя их, можно работать с керамическими подложками, которые уже прошли об-
30

Так выглядит в разрезе отверстие в алмазной фильере. Лазерными импульсами пробивают черновой канал в алмазной заготовке. Затем, обрабатывая канал ультразвуком, шлифуя и полируя, придают ему необходимый профиль. Проволока, получаемая при протягивании через фильеру, имеет диаметр d
Эти аккуратные отверстия диаметром 0,3 мм пробиты в пластинке из глиноземной керамики толщиной 0,7 мм с помощью С02-лазера

жиг. С помощью лазеров пробивают в керамике очень тонкие отверстия-диаметром всего 10 мкм. Заметим, что механическим сверлением такие отверстия получить нельзя.
То, что сверление - призвание лазера, ни у кого не вызывало сомнений. Здесь у лазера фактически не оказалось достойных конкурентов, особенно когда речь шла о сверлении особо тонких и особо глубоких отверстий, когда отверстия надо сверлить в очень хрупких или очень твердых материалах. Прошло сравнительно немного времени и стало ясно, что лазерный

луч может успешно применяться не только для сверления, но и для многих других операций по обработке материалов. Так что сегодня мы можем говорить о возникновении и развитии новой технологии - лазерной.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...