Что такое активная, реактивная и полная мощность. Активная и реактивная мощность


Реактивная мощность

Электри́ческая мо́щность - физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Если элемент цепи - резистор c электрическим сопротивлением R , то

Мощность переменного тока

Активная мощность

Среднее за период Т значение мгновенной мощности называется активной мощностью: . В цепях однофазного синусоидального тока , где U и I - действующие значения напряжения и тока , φ - угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением . Единица активной мощности - ватт (W , Вт ). Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом активной мощности является мощность, поглощаемая нагрузкой.

Реактивная мощность

Реактивная мощность - величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока, равна произведению действующих значений напряжения U и тока I , умноженному на синус угла сдвига фаз φ между ними: Q = UI sin φ . Единица реактивной мощности - вольт-ампер реактивный (var , вар ). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: . Реактивная мощность в электрических сетях вызывает дополнительные активные потери (на покрытие которых расходуется энергия на электростанциях) и потери напряжения (ухудшающие условия регулирования напряжения). В некоторых электрических установках реактивная мощность может быть значительно больше активной. Это приводит к появлению больших реактивных токов и вызывает перегрузку источников тока. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности. Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом реактивной мощности является мощность, отраженная от нагрузки.

Необходимо отметить, что величина sinφ для значений φ от 0 до плюс 90 ° является положительной величиной. Величина sinφ для значений φ от 0 до минус 90 ° является отрицательной величиной. В соответствии с формулой Q = UI sinφ реактивная мощность может быть отрицательной величиной. Но отрицательное значение мощности нагрузки характеризует нагрузку как генератор энергии. Активное, индуктивное, емкостное сопротивление не могут быть источниками постоянной энергии. Модуль величины Q = UI sinφ приблизительно описывает реальные процессы преобразования энергии в магнитных полях индуктивностей и в электрических полях емкостей. Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения. Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sinφ , более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

Полная мощность

Полная мощность - величина, равная произведению действующих значений периодического электрического тока в цепи I и напряжения U на её зажимах: S = U×I ; связана с активной и реактивной мощностями соотношением: , где Р - активная мощность, Q - реактивная мощность (при индуктивной нагрузке Q > 0 , а при ёмкостной Q < 0 ). Единица полной электрической мощности - вольт-ампер (VA , ВА ).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Измерения

  • Для измерения электрической мощности применяются ваттметры и варметры , можно также использовать косвенный метод, с помощью вольтметра и амперметра .
  • Для измерения коэффициента реактивной мощности применяют фазометры

Литература

Ссылки

См. также

  • Список параметров напряжения и силы электрического тока

Wikimedia Foundation . 2010 .

Смотреть что такое "Реактивная мощность" в других словарях:

    реактивная мощность - Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника. [ГОСТ Р 52002 2003]… … Справочник технического переводчика

    Электр. мощность в цепи переменного тока, расходуемая на поддержание вызываемых переменным током периодических изменений: 1) магнитного поля при наличии в цепи индуктивности; 2) заряда конденсаторов при наличии конденсаторов и проводов (напр.… … Технический железнодорожный словарь

    Величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока I и напряжения U на синус угла сдвига фаз между ними: Q =… … Большой Энциклопедический словарь

    РЕАКТИВНАЯ МОЩНОСТЬ - величина, характеризующая скорость обмена энергией между генератором переменного тока и магнитным (млн. электрическим) полем цепи, создаваемым электротехническими устройствами (индуктивностью и ёмкостью). Р. м. возникает в цепи при наличии сдвига … Большая политехническая энциклопедия

    реактивная мощность - 3.1.5 реактивная мощность (вар): Реактивная мощность сигналов синусоидальной формы какой либо отдельной частоты в однофазной цепи, определяемая как произведение среднеквадратических значений тока и напряжения и синуса фазового угла между ними.… … Словарь-справочник терминов нормативно-технической документации

    реактивная мощность - reaktyvioji galia statusas T sritis Standartizacija ir metrologija apibrėžtis Menamoji kompleksinės galios dalis, skaičiuojama pagal formulę Q² = S² – P²; čia Q – reaktyvioji galia, S – pilnutinė galia, P – aktyvioji galia. Matavimo vienetas –… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    реактивная мощность - reaktyvioji galia statusas T sritis fizika atitikmenys: angl. reactive power; wattless power vok. Blindleistung, f; wattlose Leistung, f rus. безваттная мощность, f; реактивная мощность, f pranc. puissance déwatée, f; puissance réactive, f … Fizikos terminų žodynas

    Величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока I и напряжения U на синус угла сдвига фаз между ними:… … Энциклопедический словарь

    реактивная мощность - reaktyvioji galia statusas T sritis automatika atitikmenys: angl. reactive power vok. Blindleistung, f; wattlose Leistung, f rus. реактивная мощность, f pranc. puissance réactive, f … Automatikos terminų žodynas

    Величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока (См. Переменный ток). Р. м. Q равна произведению действующих значений напряжения U и тока… … Большая советская энциклопедия

Книги

  • Электротехника и электроника на судах рыбопромыслового флота , Белов О.А., Парфенкин А.И.. Рассмотрены общие вопросы электротехники и электроники, физические явления, лежащие в основе производства и использования электричества, работы электронных устройств. Приведены примеры…

Как и в общей теории колебательных движений, в теории переменных токов большую пользу приносят векторные диаграммы. Очевидно, что синусоидально изменяющуюся электродвижущую силу

можно изобразить как проекцию на ось ординат вращающегося против часовой стрелки с угловой скоростью вектора, длина которого равна и начальное положение которого в момент совпадало с осью абсцисс.

Спросим себя, как изобразится в векторной диаграмме ток, протекающий под влиянием синусоидальной электродвижущей силы через катушку, обладающую индуктивностью

Рис. 341. Векторная диаграмма для случая Индуктивного сопротивления.

Рис. 342. Векторная диаграмма для случая емкостного сопротивления.

Мы видели, что ток в этом случае отстает на четверть периода от напряжения. Отставание на четверть периода представится в векторной диаграмме отставанием вектора тока на таким образом, вектор «индуктивного» тока будет перпендикулярен к вектору напряжения (рис. 341), отставая от него на 90. Величина этого вектора

Если мы имеем дело с прохождением переменного тока через конденсатор, то ток опережает электродвижущую силу на четверть периода. Это значит, что вектор, изображающий «емкостный» ток, должен опережать вектор напряжения на (рис. 342). Величина этого вектора, как мы видели выше, определяется соотношением

Для случая активного омического сопротивления ток совпадает по фазе с напряжением. Это значит, что вектор тока совпадает по направлению с вектором напряжения, Величина его, конечно, определяется законом Ома.

Ток, вектор которого совпадает с вектором напряжения, называют активным током. Токи же, векторы которых отстают от вектора напряжения или опережают его на называют реактивными токами. Выбор такого названия объясняется тем, что именно активные токи определяют потребление мощности цепью переменного тока, тогда как на возбуждение реактивного тока (т. е. тока, который отстает от напряжения или опережает его на четверть периода) генератор расходует в течение каждой четверти периода столько же энергии, сколько в следующую четверть периода этот реактивный ток отдает генератору обратно (см. рис. 337); в итоге получается, что реактивный ток не производит работы.

В более общем случае, когда сдвиг фазы между током и напряжением определяется углом (в радианах), работа, производимая переменным током за целое (или полуцелое) число периодов, пропорциональна

Действительно, пусть ток отстает от напряжения на угол

Тогда работа тока за период определяется интегралом

а средняя мощность, потребляемая током, определяется отношением этой работы к продолжительности периода:

Если ввести эффективные значения тока и напряжения, то

При т. е. при чисто реактивных токах, мощность, передаваемая по электрической цепи от генератора к нагрузке, в среднем равна нулю.

При каких-либо заданных величинах напряжения и тока, чем меньше разность фаз между ними и соответственно чем ближе к единице, тем большая мощность передается током от генератора к нагрузке; поэтому называют коэффициентом мощности цепи.

Во многих случаях реактивные токи необходимы. Так, если переменным током мы питаем электромагнит, предназначенный, скажем, для подъема железных предметов, то катушка электромагнита, представляя собой в идеальном случае чисто индуктивное сопротивление, будет потреблять от сети реактивный ток, отстающий от напряжения сети на

Однако в большинстве случаев, в частности при питании трансформаторов, которые служат для преобразования переменных напряжений, важен активный ток, который создается при нагрузке вторичной обмотки трансформатора (§ 84). Реактивный же ток, который необходим для создания магнитного поля в сердечнике трансформатора, носит, в сущности, вспомогательный характер; он непосредственно не производит никакой полезной работы.

Предположим, что к сети подключено, как это часто бывает, большое количество трансформаторов. Каждый из них потребляет известный реактивный ток для создания магнитного поля сердечника. Это значительно ухудшает коэффициент мощности установки.

Однако есть возможность добиться совпадения вектора тока с вектором напряжения, воспользовавшись явлением резонанса (§ 83). Для этого включают в сеть, кроме трансформаторов, также и емкость С, подобрав ее так, чтобы ее реактивный ток был равен суммарному реактивному току трансформаторов.

Тогда во внешней цепи будет течь только активный ток, реактивные же токи трансформаторов и емкости взаимно компенсируют друг друга. Они будут циркулировать лишь в цепи: емкость - обмотки трансформаторов, не заходя в питающую сеть и в генератор электроцентрали. Для питающей линии и для генератора электроцентрали и условия их работы будут наивыгоднейшими.

Это мероприятие имеет существенное экономическое значение. Совершенно ясно, что электроцентраль и линии электропередачи, не загруженные бесполезным реактивным током, могут быть в большей мере загружены токами активными.

Следует отметить, что представление о реактивном токе как о токе, фаза которого сдвинута на относительно напряжения и который поэтому в среднем не производит никакой работы и не сопровождается рассеянием энергии (на нагревание проводов), конечно, является идеализацией (схематическим упрощением) процессов, происходящих в действительности при прохождении переменного тока через катушки или конденсаторы. Заключение, что фазы токов, проходящих через катушку или конденсатор, отличаются от фазы напряжения на 90°, являлось бы точным только в том случае, если бы прохождение этих токов не было связано с нагреванием проводов и другими потерями (как это было предположено в предыдущем параграфе). Но ток, проходящий через катушку, в отношении нагревания проводов, происходящего по закону Джоуля-Ленца, ничем не отличается от активного тока той же частоты (а при большой частоте сопротивление обмотки катушки вследствие скин-эффекта может оказаться значительным).

Кроме того, часть энергии тока рассеивается вследствие гистерезисных потерь в сердечнике катушки (если он имеется) и токов Фуко в окружающих проводниках, например в металлических «экранах», в которые помещают катушки радиоаппаратов. Может иметь место также утечка тока вследствие несовершенства изоляции и т. п. Потери энергии тока, но обычно меньшие, чем в катушках, наблюдаются и при прохождении тока через конденсаторы. В этом случае они вызываются главным образом некоторым отставанием во времени от напряженности поля поляризации диэлектрика (в той ее части, на которую оказывает

влияние молекулярно-тепловое движение), а также иногда наличием небольших ионных токов проводимости в диэлектрике конденсатора.

Вследствие потерь ток через катушку или конденсатор никогда не является чисто реактивным, т. е. сдвиг его фазы относительно напряжения никогда не бывает точно равным а всегда оказывается меньше, чем на угол который называют иглом потерь. Под действием напряжения в идеальной катушке должен был бы проходить чисто реактивный ток с амплитудой - в действительности же, как показано в конце следующего параграфа (в виде пояснения выведенного там обобщенного закона Ома), возбуждается ток с амплитудой, уменьшившейся вследствие потерь до значения этот фактический ток через катушку представляет собой сумму возникшего в связи с потерями активного тока и реактивного тока

с амплитудой, уменьшившейся до величины что из рис. 343. Согласно рис. 343

Рис. 343. Вследствие потерь амплитуда тока через катушку уменьшается до величины а амплитуда реактивного тока - до величины где угол потерь.

Аналогичные соотношения и такая же диаграмма справедливы и для тока через конденсатор. Так как активный ток - это ток, фаза которого совпадает с напряжением, то очевидно, что мощность, рассеиваемая вследствие потерь, равна Та же мощность будет рассеиваться в цепи, составленной из идеальной катушки с той же индуктивностью и некоторого сопротивления включенного последовательно с ней (называемого сопротивлением потерь), если это сопротивление определено как раз из условия равенства рассеиваемых мощностей:

Как упоминалось выше,

Поэтому получается, что

Подставляя это значение амплитуды активного тока в приведенное выше выражение для тангенса угла потерь, приходим к формуле, которую считают основной при анализе влияния потерь на режим переменного тока в электрических цепях:

По смыслу вывода этой формулы понятно, что аналогичное соотношение справедливо и для тангенса угла потерь в цепи с конденсатором

В радиотехнических расчетах часто применяют величину, обратную тангенсу угла потерь, которую называют добротностью электрической цепи (см. стр. 460 и 485):

Потери в катушках большой индуктивности в высокой мере зависят от конструкции и магнитных свойств сердечника и выполнения обмотки. При правильной конструкции потери в сердечнике и в обмотке (не одинаково зависящие от частоты) должны быть по возможности уравнены.

Для уменьшения потерь на токи Фуко сердечники набирают из тонких листов трансформаторного железа (толщиной 0,5-0,35 мм), покрытых для изоляций их друг от друга тонким (0,05 мм) слоем лака. Потери в таких сердечниках составляют около на килограмм массы сердечника. Сечение проводов выбирают с учетом возрастания их сопротивления вследствие скин-эффекта так, чтобы при эксплуатации потери в обмотке были приблизительно равны потерям в сердечнике. Суммарно потери в сердечнике и обмотке трансформаторов большой мощности (порядка составляют 3-4%, а в трансформаторах очень большой мощности (порядка несколько десятых долей процента

Потери в небольших трансформаторах лабораторного типа и в «силовых» трансформаторах, применяемых в радиоаппаратуре, обычно бывают не меньше 10-12% (чаще около Еще большую часть мощности (как правило, 30%) составляют потери в дросселях и трансформаторах усилителей звуковой частоты. Первичная обмотка трансформаторов для токов звуковой частоты состоит из 2000-5000 витков и имеет индуктивность

Катушки резонансных контуров радиочастот имеют индуктивность порядка тысячных (а для коротких волн-миллионных) долей генри. Такая индуктивность создается сравнительно небольшим числом витков провода без ферромагнитного сердечника. В связя с этим потери в радиочастотных катушках невелики - порядка 1% (тангенс угла потерь - от 0,02 до 0,005).

Потери в конденсаторах (за исключением электролитических конденсаторов) обычно не превышают что соответствует тангенсу угла потерь В электролитических конденсаторах тангенс угла потерь может достигать 0,2.

Среди лучших изоляторов (имеющих удельное сопротивление порядка ом-см) выделяются наименьшим значением тангенса угла потерь: кварц плавленый, слюда-мусковит, парафин и полистирол; для них

Для энергетиков предприятий и крупных торговых центров сомнений в существовании реактивной энергии нет. Ежемесячные счета и вполне реальные деньги, которые уходят на оплату реактивной электроэнергии , убеждают в реальности ее существования. Но некоторые электротехники всерьез, с математическими выкладками, доказывают, что данный тип электроэнергии фикция, что разделение электрической энергии на активную и реактивную составляющие искусственно.

Давайте попробуем и мы разобраться в этом вопросе, тем более, что на незнании отличий разных видов электроэнергии спекулируют создатели . Обещая огромные проценты , они сознательно или по незнанию подменяют один вид электрической энергии другим.

Начнем с понятий активной и реактивной электроэнергии. Не вдаваясь в дебри формул электротехники, можно определить активную энергию как ту, которая совершает работу: нагревает пищу на электроплитах, освещает ваше помещение, охлаждает воздух с помощью кондиционера. А реактивная электроэнергия создает необходимые условия для совершения подобной работы. Не будет реактивной энергии, и двигатели не смогут вращаться, холодильник не будет работать. В ваше помещение не поступит напряжение величиной 220 Вольт, так как ни один силовой трансформатор не работает без потребления реактивной электроэнергии.

Если на осциллографе одновременно наблюдать сигналы тока и напряжения, то две эти синусоиды всегда имеют сдвиг относительно друг друга на величину, называемую фазовым углом . Вот этот сдвиг и характеризует вклад реактивной энергии в полную энергию, потребляемую нагрузкой. Измеряя только ток в нагрузке, выделить реактивную часть энергии невозможно.

Учитывая, что реактивная энергия не совершает работы, ее можно вырабатывать на месте потребления. Для этого служат конденсаторы. Дело в том, что катушки и конденсаторы потребляют различные виды реактивной энергии: индуктивную и емкостную соответственно. Они сдвигают кривую тока по отношению к напряжению в противоположные стороны.

В силу этих обстоятельств конденсатор можно считать потребителем емкостной энергии или генератором индуктивной. Для двигателя, потребляющего индуктивную энергию, конденсатор, расположенный рядом, может стать ее источником. Такая обратимость возможна только для реактивных элементов схемы, не совершающих работу. Для активной энергии подобная обратимость не существует: ее генерация связана с затратами топлива. Ведь прежде чем совершить работу, нужно затратить энергию.

В бытовых условиях за реактивную энергию электропередающие организации плату не изымают, и бытовой счетчик считает только активную составляющую электрической энергии. Совершенно другая ситуация на крупных предприятиях: большое количество электродвигателей, сварочных аппаратов и трансформаторов, для работы которых требуется реактивная энергия, создают дополнительную нагрузку на линии электропередач. При этом растет ток и тепловые потери уже активной энергии.

В этих случаях потребление реактивной энергии учитывается счетчиком и отдельно оплачивается. Стоимость реактивной электроэнергии меньше стоимости активной, но при больших объемах ее потребления платежи могут быть очень значительными. Кроме этого, за потребление реактивной энергии сверх оговоренных значений, накладываются штрафы. Поэтому экономически выгодно для подобных предприятий становится выработка подобной энергии на месте ее потребления.

Для этого применяются или отдельные конденсаторы, или автоматические установки компенсации, которые отслеживают объемы потребления и подключают или отключают конденсаторные батареи. Современные системы компенсации позволяют значительно уменьшить потребление реактивной энергии из внешней сети.

Возвращаясь к вопросу в заголовке статьи, можно ответить на него утвердительно. Реактивная энергия существует. Без нее невозможна работа электроустановок, в которых создается магнитное поле. Не совершая видимой работы, она, тем не менее, является необходимым условием для выполнения работ, совершаемой активной электрической энергией.

Активная и реактивная мощность — потребители электрической энергии на то и потребители, чтобы эту энергию потреблять. Потребителя интересует та энергия, потребление которой идет ему на пользу, эту энергию можно назвать полезной, но в электротехнике ее принято называть активной. Это энергия, которая идет на нагрев помещений, готовку пищи, выработку холода, и превращаемая в механическую энергию (работа электродрелей, перфораторов, электронасосов и пр.).

Кроме активной электроэнергии существует еще и реактивная. Это та часть полной энергии, которая не расходуется на полезную работу. Как понятно из вышесказанного, полная мощность – это активная и реактивная мощность в целом.

В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков. Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии. Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю. Рассмотрим, возможно ли подобное, и насколько можно приблизиться к идеалу.

Активная и реактивная мощность

Активная мощность

Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.

Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность. Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети. Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).

Реактивная мощность

Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности. В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток (тонкая полимерная пленка или пропитанная маслом бумага).

Реактивная емкостная мощность

Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор. Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет. Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку. Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке. Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.

Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения. Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному). Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т.е. на четверть периода.

Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности.

Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр). Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А. Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.

Реактивная индуктивная мощность

Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.

На практике хорошим приближением чисто индуктивной нагрузки является работающий без нагрузки трансформатор (или стабилизатор напряжения с автотрансформатором). Хорошо сконструированный трансформатор на холостом ходу потребляет очень мало активной мощности, потребляя мощность в основном реактивную.

Реальные потребители электрической энергии и полная электрическая мощность

Из рассмотрения особенностей емкостной и индуктивной нагрузки возникает интересный вопрос – что произойдет, если емкостную и индуктивную нагрузку включить одновременно и параллельно. Ввиду их противоположной реакции на приложенное напряжение, эти две реакции начнут компенсировать друг друга. Суммарная нагрузка окажется только емкостной или индуктивной, и в некотором идеальном случае удастся добиться полной компенсации. Выглядеть это будет парадоксально – подключенные амперметры зафиксируют значительные (и равные!) токи через конденсатор и катушку индуктивности, и полное отсутствие тока в объединяющих их общей цепи. Описанная картина несколько нарушается лишь тем, что не существует идеальных конденсаторов и катушек индуктивности, но подобная идеализация помогает понять суть происходящих процессов.

Вернемся к реальным потребителям электрической энергии. В быту мы пользуемся в основном потребителями чисто активной мощности (примеры приведены выше), и смешанной активно-индуктивной. Это электродрели, перфораторы, электродвигатели холодильников, стиральных машин и прочей бытовой техники. Также к ним относятся электрические трансформаторы источников питания бытовой радиоэлектронной аппаратуры и стабилизаторов напряжения. В случае подобной смешанной нагрузки, помимо активной (полезной) мощности, нагрузка потребляет еще и реактивную мощность, в итоге полная мощность отказывается больше активной мощности. Полная мощность измеряется в вольт-амперах (ВА), и всегда представляет собой произведение тока в нагрузке на напряжение на нагрузке.

Таинственный «косинус фи»

Отношение активной мощности к полной называется в электротехнике «косинусом фи». Обозначается cos φ. Это отношение называется также и коэффициентом мощности. Нетрудно видеть, что для случая чисто активной нагрузки, где полная мощность совпадает с активной, cos φ = 1. Для случаев чисто емкостной или индуктивной нагрузок, где нулю равна активная мощность, cos φ = 0.

В случае смешанной нагрузки значение коэффициента мощности заключается в пределах от 0 до 1. Для бытовой техники обычно в диапазоне 0,5-0,9. В среднем можно считать его равным 0,7, более точное значение указывается в паспорте электроприбора.

За что платим?

И, наконец, самый интересный вопрос – за какой вид энергии платит потребитель. Исходя из того, что реактивная составляющая суммарной энергии не приносит потребителю никакой пользы, при этом долю периода реактивная энергия потребляется, а долю отдается, платить за реактивную мощность незачем. Но бес, как известно, кроется в деталях. Поскольку смешанная нагрузка увеличивает ток в сети, возникают проблемы на электростанциях, где электроэнергия вырабатывается синхронными генераторами, а именно: индуктивная нагрузка «развозбуждает» генератор, и приведение его в прежнее состояние обходится в затраты уже реальной активной мощности на его «довозбуждение».

Таким образом, заставить потребителя платить за потребляемую реактивную индуктивную мощность вполне справедливо. Это побуждает потребителя компенсировать реактивную составляющую своей нагрузки, а, поскольку эта составляющая в основном индуктивная, компенсация заключается в подключении конденсаторов наперед рассчитанной емкости.

Потребитель находит возможность платить меньше

Если потребителем оплачивается отдельно потребляемая активная и реактивная мощность. Он готов идти на дополнительные затраты и устанавливать на своем предприятии батареи конденсаторов, включаемые строго по графику в зависимости от средней статистики потребления электроэнергии по часам суток.

Существует также возможность установки на предприятии специальных устройств (компенсаторов реактивной мощности), подключающих конденсаторы автоматически в зависимости от величины и характера потребляемой в данный момент мощности. Эти компенсаторы позволяют поднять значение коэффициента мощности с 0,6 до 0,97, т.е. практически до единицы.

Принято также, что если соотношение потребленной реактивной энергии и общей не превышает 0,15, то корпоративный потребитель от оплаты за реактивную энергию освобождается.

Что же касается индивидуальных потребителей, то, ввиду сравнительно невысокой потребляемой ими мощности, разделять счета на оплату потребляемой электроэнергии на активную и реактивную не принято. Бытовые электрической энергии учитывают лишь активную мощность электрической нагрузки, за нее и выставляется счет на оплату. Т.е. в настоящее время даже не существует технической возможности выставить индивидуальному потребителю счет за потребленную реактивную мощность.

Особых стимулов компенсировать индуктивную составляющую нагрузки у потребителя нет, да это и сложно осуществить технически. Постоянно подключенные конденсаторы при отключении индуктивной нагрузки будут бесполезно нагружать подводящую электропроводку. За электросчетчиком (перед счетчиком тоже, но за то потребитель не платит), что вызовет потребление активной мощности с соответствующим увеличением счета на оплату, а автоматические компенсаторы дороги и вряд ли оправдают затраты на их приобретение.

Другое дело, что производитель иногда устанавливает компенсационные конденсаторы на входе потребителей с индуктивной составляющей нагрузки. Эти конденсаторы, при правильном их подборе, несколько снизят потери энергии в подводящих проводах, при этом несколько повысив напряжение на подключенном электроприборе за счет уменьшения падения напряжения на подводящих проводах.

Но, что самое главное, компенсация реактивной энергии у каждого потребителя, от квартиры до огромного предприятия, снизит токи во всех линиях электропитания, от электростанции до квартирного щитка. За счет реактивной составляющей полного тока, что уменьшит потери энергии в линиях и повысит коэффициент полезного действия электросистем.

Расчет электрической энергии, используемой бытовым или промышленным электротехническим прибором, производится обычно с учетом полной мощности электрического тока, проходящего через измеряемую электрическую цепь.

При этом выделяются два показателя, отражающие затраты полной мощности при обслуживании потребителя. Эти показатели называются активная и реактивная энергия. Полная мощность представляет собой сумму этих двух показателей.

Полная мощность.
По сложившейся практике потребители оплачивают не полезную мощность, которая непосредственно используется в хозяйстве, а полную, которую отпускает предприятие-поставщик. Различают эти показатели по единицам измерения – полная мощность измеряется в вольт-амперах (ВА), а полезная – в киловаттах. Активная и реактивная электроэнергия используется всеми запитанными от сети электроприборами.

Активная электроэнергия.
Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств – электроплиты, лампы накаливания, электропечи, обогреватели, утюги и гладильные прессы и прочее. Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.

Понятие реактивной электроэнергии.
Этот вид электроэнергии присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия - это часть полной поступаемой мощности, которая не расходуется на полезную работу. В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях переменного тока реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ». При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной – ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации. Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе потребляемой мощности которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.

Расчет реактивной электроэнергии.
Коэффициент мощности лежит в пределах от 0,5 до 0,9; точное значение этого параметра можно узнать из паспорта электроприбора. Полная мощность должна быть определена как частное от деления активной мощности на коэффициент. Например, если в паспорте электрической дрели указана мощность в 600 Вт и значение 0,6, тогда потребляемая устройством полная мощность будет равна 600/06, то есть 1000 ВА. При отсутствии паспортов для вычисления полной мощности прибора коэффициент можно брать равным 0,7. Поскольку одной из основных задач действующих систем электроснабжения является доставка полезной мощности конечному потребителю, реактивные потери электроэнергии считаются негативным фактором, и возрастание этого показателя ставит под сомнение эффективность электроцепи в целом.

Значение коэффициента при учете потерь.
Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии – а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.

Расчет стоимости электроэнергии для частных клиентов.
Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется – в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются. Учет реактивной электроэнергии для предприятий Другое дело – предприятия и организации. В производственных помещениях и промышленных цехах установлено огромное число электрооборудования, и в общей поступаемой электроэнергии имеется значительная часть энергии реактивной, которая необходима для работы блоков питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, нуждается в четком разделении и ином способе оплаты за нее. Основанием для регуляции отношений предприятия-поставщика электроэнергии и конечных потребителей в этом случае выступает типовой договор. Согласно правилам, установленным в этом документе, организации, потребляющие электроэнергию свыше 63 А, нуждаются в особом устройстве, предоставляющем показания реактивной энергии для учета и оплаты. Сетевое предприятие устанавливает счетчик реактивной электроэнергии и начисляет оплату согласно его показаниям.

Коэффициент реактивной энергии.
Как говорилось ранее, активная и реактивная электроэнергия в счетах на оплату выделяются отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленной нормы, то плата за реактивную энергию не начисляется. Коэффициент соотношения бывает прописан по-разному, его среднее значение составляет 0,15. При превышении данного порогового значения предприятию-потребителю рекомендуют установить компенсаторные устройства.

Реактивная энергия в многоквартирных домах.
Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, потребляющий электроэнергию свыше 63 А. Если в таком доме имеются исключительно жилые помещения, плата за реактивную электроэнергию не взимается. Таким образом, жильцы многоквартирного дома видят в начислениях оплату только за полную электроэнергию, поставленную в дом предприятием-поставщиком. Та же норма касается жилищных кооперативов.

Частные случаи учета реактивной мощности.
Бывают случаи, когда в многоэтажном здании имеются и коммерческие организации, и квартиры. Поставка электроэнергии в такие дома регулируется отдельными Актами. Например, разделением могут служить размеры полезной площади. Если в многоквартирном доме коммерческие организации занимают менее половины полезной площади, то оплата за реактивную энергию не начисляется. Если пороговый процент был превышен, то возникают обязательства оплаты за реактивную электроэнергию. В ряде случаев жилые дома не освобождаются от оплаты за реактивную энергию. Например, если в доме установлены пункты подключения лифтов для квартир, начисление за использование реактивной электроэнергии происходит отдельно, лишь для этого оборудования. Владельцы квартир по-прежнему оплачивают лишь активную электроэнергию.

Выбор редакции
Знак Зодиака составляет всего 50% Вашей личности. Остальные 50% нельзя узнать, читая общие гороскопы. Нужно составить индивидуальный...

Описание растения шелковица белая. Состав и калорийность ягод, полезные свойства и предполагаемый вред. Рецепты вкусных блюд и применение...

Как и большинство его коллег, советских детских писателей и поэтов, Самуил Маршак не сразу начал писать для детей. Он родился в 1887...

Дыхательная гимнастика по методу Стрельниковой помогает справляться с приступами высокого давления. Правильное выполнение упражнений -...
О ВУЗе Брянский государственный университет имени академика И.Г. Петровского - самый крупный вуз региона, в котором обучается более 14...
Вопрос №1. 1). Вставьте пропущенные буквы, объясните написание слов. Прил…жжение, выр…сти, к…снуться, м…кать, разг…раться, ск…кать,...
Экономический календарь Форекс – это настольная книга каждого трейдера независимо от опыта торговли и уровня профессионализма, и особенно...
Представители класса паукообразных – существа, живущие рядом с человеком на протяжении многих веков. Но этого времени оказалось...
Белые туфли у девушек и женщин практически всегда ассоциируются со свадебным нарядом, хотя белый цвет туфель уже давно не обязателен. А...